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Abstract

Let X be a p-divisible group over a regular scheme S such that the
Newton polygon in each geometric point of S is the same. Then there
is a p-divisible group isogenous to X which has a slope filtration.

1 Introduction

Let X be a p-divisible group over a perfect field. The Dieudonné classification
implies that X is isogenous to a direct product of isoclinic p-divisible groups.
We will study what remains true, if the perfect field is replaced by a ring R
such that pR = 0.

Let now X be a p-divisible group over R. Let us denote by FrX : X →
X(p) the Frobenius homomorphism. We call X isoclinic and slope divisible
if there are natural numbers r ≥ 0 and s > 0, such that

p−rFrsX : X → X(ps)

is an isomorphism. Then X is isoclinic of slope r/s, i.e. it is isoclinic of slope
r/s over each geometric point of SpecR . We will say that r/s is the slope
of X.

If R is a field a p-divisible group is isoclinic iff it is isogenous to a p-
divisible group which is isoclinic and slope divisible.

It is stated in a letter of Grothendieck to Barsotti (see [G1]), that over a
field K = R any p-divisible group admits a slope filtration:

0 = X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xm = X (1)
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This filtration is uniquely determined by the following properties: The in-
clusions are strict and the factors Xi/Xi−1 are isoclinic p-divisible groups of
slope λi, such that 1 ≥ λ1 > . . . > λm ≥ 0. Moreover the rational numbers
λi are uniquely determined. A proof of this statement was never published,
but can be found here.

The heights of the factors and the numbers λi determine the Newton
polygon and conversely. If we want a slope filtration over R, we have to
assume that the Newton polygon is the same in any point of SpecR. We say
in this case that X has a constant Newton polygon.

Theorem: Let R be a regular ring. Then any p-divisible group over R
with constant Newton polygon is isogenous to a p-divisible group X, which
admits a strict filtration (1) such that the quotients Xi/Xi−1 are isoclinic and
slope divisible of slope λi with 1 ≥ λ1 > . . . > λm ≥ 0.

In the case where dimR = 1 and R is finitely generated over a perfect
field the theorem was proved by Katz [K] using the crystalline theory. Our
proof uses only Dieudonné theory over a perfect field. It is based on a purity
result (proposition 5) below which was suggested to us when reading the
work of Harris and Taylor.

Let S be a regular scheme and U an open subset such that the codimen-
sion of the complement is ≥ 2. Then we show that a p-divisible group over U
with constant Newton polygon extends up to isogeny to a p-divisible group
over S. One might call this Nagata-Zariski purity for p-divisible groups.

We note that there is a difficult purity result of de Jong and Oort, which
holds without the regularity assumption for any noetherian scheme S. It
says that a p-divisible group X over S, which has constant Newton polygon
on U , has constant Newton polygon on S.

Finally I would like to thank Johan de Jong and Michael Harris for point-
ing out this problem to me, and Frans Oort for helpful remarks.

2 The étale part of a Frobenius module

We will work over a base scheme S over Fp. The Frobenius morphism will
be denoted by FrobS

Definition 1 Fix an integer a > 0. A Frobenius module over S is a finitely
generated locally free OS-module M, and a FrobaS-linear map Φ :M→M.
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There is an important case, where the condition that M is locally free
is automatically satisfied namely if Φ is a FrobaS-linear isomorphism. This
means that the linearization

Φ] : OS ⊗FrobaS ,SM→M

is an isomorphism.

Lemma 2 Let R be a local ring with maximal ideal m. Assume that R is
m-adically separated. Let M be a finitely generated R-module. Assume that
there exists a FrobaS-linear isomorphism Φ : M →M . Then M is free.

Proof: We choose a minimal resolution of M :

0→ U → P →M → 0,

where P is a finitely generated free R-module and U ⊂ mP . Since R⊗Froba,R
P is a free R-module the linearization Φ] extends to R ⊗Froba,R P , i.e. we
find a commutative diagram:

R⊗Froba,R P −−−→ R⊗Froba,RM

Φ]

y yΦ]

P −−−→ M

(2)

Since P/mP ∼= M/mM it follows by Nakayama that the left vertical ar-
row is surjective and hence an isomorphism. The diagram implies U =
Φ](R ⊗Froba,R U) (with a small abuse of notation). Since P is m-adically
separated it is enough to show that U ⊂ mnP for each number n. This is
true for n = 1 by construction. We assume by induction that the inclusion
is true for a given n and find:

U ⊂ Φ](R⊗Froba,R mnP ) ⊂ Φ](mnpa ⊗Froba,R P ) ⊂ mnpaP.

Q.E.D.

To any Frobenius module we associate the following functor on the cate-
gory of schemes T → S:

CM(T ) = {x ∈ Γ(T,MT ) | Φx = x}
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Proposition 3 The functor CM is representable by a scheme which is étale
and affine over S.

Proof: Since the functor is a sheaf for the flat (fppf) topology the question
is local on S. We may therefore assume that S = SpecR and that M is the
sheaf associated to a free R-module M . We choose an isomorphism M ∼= Rn

and write the operator Φ in matrix form:

Φx = Ux(pa), x ∈ Rn.

Here x is a column vector, and x(pa) is the vector obtained by raising all
components to the pa-th power. U is a square matrix with coefficients in R.
Let A be an R-algebra. We set CM(A) = CM(SpecA). Then CM is just the
functor of solutions of the equation:

x = Ux(pa), x ∈ An.

This functor is clearly a closed subscheme of the affine space AnR.
To show that CM is étale one applies the infinitesimal criterion: Let

A → Ā be a surjection of R-algebras with kernel a, such that a2 = 0. We
have to show that the canonical map

CM(A)→ CM(Ā)

is bijective. We consider an element x̄ ∈ CM(Ā), and lift it to an element x
of A ⊗R M ∼= An. We set ρ = Φx − x ∈ a ⊗R M . Since Φ(a ⊗R M) = 0 we
obtain

Φ(x+ ρ) = Φx = x+ ρ.

This shows that x+ ρ ∈ CM(A) is the unique lifting of x̄. Q.E.D.

To make life easier let us assume that S is an Fpa-scheme. Then CM may
be considered as a sheaf of Fpa-vector spaces. If S is connected and η ∈ S is
a point, the natural map

CM(S)→ CM(η)

is injective because CM is unramified and separated over S (e.g. proposition
[EGA IV 17.4.9]).
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Let us assume that S = SpecK is the spectrum of an algebraically closed
field. Let (M,Φ) be a Frobenius module over K. Then there is a unique
decomposition:

M = M bij ⊕Mnil, (3)

into Φ-invariant subspaces, such that Φ is bijective on the first summand
and nilpotent on the second summand. Moreover by a theorem of Dieudonné
(lemma [Z, 6.25]) we have an isomorphism:

K ⊗Fpa CM(SpecK)→M bij (4)

Let us assume that S = SpecK is the spectrum of separably closed field,
and denote the algebraic closure by K̄. Since CM(K) = CM(K̄), the subspace
M bij is defined over K by (4). Note that Mnil is not defined over K, e.g.
M = Kp−1

ane Φ = Frob.
We note that the submodule M bij is defined over any field K by Galois

descent ([G2] B, Exemple 1): If Ks denotes the separable closure and G its
Galois group over K, we set:

M bij = (Ks ⊗Fpa CM(Ks))G

This subspace is characterized as follows: On M bij the operator Φ acts as a
Froba-linear isomorphism, and on the factor M/M bij it acts nilpotently.

We note that the functor M 7→M bij is an exact functor in M . To see this
it is enough to consider the case of an algebraically closed field K. With this
assumption the result follows because the decomposition (3) is functorial
in M . The same argument shows that the functor commutes with tensor
products.

Assume that S = SpecR and that (M,Φ) is a Frobenius module over R.

Lemma 4 Assume that SpecR is connected. Then the natural map

R⊗Fpa CM(R)→M (5)

is an injection onto a direct summand of M .
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Proof: Since SpecR is connected, the natural map CM(R) → CM(Rp) is
for any prime ideal p of R injective ([EGA] loc.cit.). Therefore it is enough
to show our statement for a local ring R with maximal ideal m. Indeed the
question whether the finitely generated quotient of (5) is projective is local.
Since Rp ⊗Fpa CM(R) is obviously a direct summand of Rp ⊗Fpa CM(Rp) we
are reduced to the local case.

In this case it is enough to show that the following map is injective:

R/m⊗Fpa CM(R)→M/mM.

Since the map CM(R) → CM(R/m) is injective we are reduced to the case
where R is a field. Then the injectivity follows from the considerations above.

Q.E.D.

Let S = SpecR, where R is an henselian local ring with maximal ideal
m. Then there is a unique Φ-invariant direct summand L ⊂M , such that Φ
is an Froba-linear isomorphism on L, and is nilpotent on M/L + mM . We
call L the finite part.

To show this one reduces the problem by Galois descent [G2] to the case
where R is strictly henselian. In this case we can set L = R⊗Fpa CM(R). We
note also that taking the finite part L is an exact functor in M . This functor
also commutes with tensor products.

Let us return to the general situation of definition 1. For each point η of
S we define the function:

µ(M,Φ)(η) = dimFpa
(CM)η̄,

where η̄ is some geometric point over η.

If µ(M,Φ)(η) ≥ k it stays bigger or equal than k in some neighbourhood
of η. If this function is constant on S there is a Φ-invariant submodule L
of M, which is locally a direct summand, such that Φ is an Froba-linear
isomorphism on L and is locally on S nilpotent on M/L. By this last
property L is uniquely determined. For this result it is not necessary that S
is noetherian. Indeed in this case the scheme C associated to (M,Φ) is finite
étale since all geometric fibres have the same number of points (corollaire
[EGA IV 18.2.9]). Then C represents an étale sheaf on S denoted by the
same letter. In the sense of étale sheaves we have:

L = OS ⊗Fpa C
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If the scheme S is perfect the exact sequence:

0→ L →M→M/L → 0

splits canonically. Indeed, it is enough to define this splitting in the case
S = SpecR. Then Φ : L → L is bijective. Assume that Φn is zero on M/L
for some number n. LetMnil be the kernel of Φn onM. Then the projection
Mnil → M/L is bijective. Indeed, let x ∈ M. Then Φnx ∈ L. Since Φ is
bijective on L, we find y ∈ L with Φny = Φnx. But then x and x− y ∈Mnil

have the same image in M/L. This proves the assertion.
The following purity result is contained in Harris-Taylor [HT] in a special

case:

Proposition 5 Let R be a noetherian local ring of dimension ≥ 2. Let
(M,Φ) be a Frobenius module over R. Assume that the function µ(M,Φ) is
constant outside the closed point of SpecR. Then it is constant.

Proof: We can assume that R is a complete local ring with algebraically
closed residue field. Let S = SpecR, and let U the complement of the closed
point s ∈ S.

Since CM is étale over R it admits a unique decomposition:

CM = Cf
M

∐
C0
M ,

where Cf
M is finite and étale over SpecR, and where C0

M has an empty special
fibre. We note that C0

M is affine as a closed subscheme of CM .
We have to show that C0

M is empty. Let us assume the opposite. We
consider the following function on U :

]C0
M,η̄ = ]CM,η̄ − ]Cf

M,η̄, η ∈ U. (6)

Here ] denotes the number of points in the corresponding scheme. The first
term on the right hand side of (6) is by assumption constant on U while the
second term has this property for obvious reasons.

Hence all geometric fibres of the map

C0
M → U,

have the same number of points. Together with our assumption that C0
M is

not empty this shows that the last map is surjective. But this implies that
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U is affine (théorème [EGA II 6.7.1)]. Since U is not affine ([G3] Proposition
6.4) we have a contradiction. Q.E.D.

If R is a regular local ring of dimension 2, then any Frobenius module
(M,Φ) over U may be extended to S, because the direct image of M by
j : U → S is a free R-module M . This implies in particular that any locally
constant étale sheaf of Fpa-vector spaces extends to a locally constant étale
sheaf on S (purity).

We apply this to finite commutative group schemes as follows: Let G be
a finite locally free group scheme over a scheme S. Assume we are given a
homomorphism Φ : G → G(pa). Let G = SpecM relative to S. Then Φ
induces on M the structure of a Frobenius module.

Let S = SpecR the spectrum of an henselian local ring. Let L be the finite
part of M which was defined after lemma 4. Since its formation commutes
with tensor products we obtain a finite locally free group scheme GΦ =
SpecL. Since L is a direct summand ofM the natural morphism G→ GΦ is
an epimorphism of finite locally free group schemes. Let us denote by GΦ−nil

the kernel. We obtain an exact sequence of finite locally free group schemes:

0→ GΦ−nil → G→ GΦ → 0 (7)

such that Φ induces an isomorphism on GΦ and is nilpotent on the special
fibre of GΦ−nil.

Lemma 6 Let Gi i = 1, 2, 3 be finite locally free group schemes over the
spectrum S of a henselian local ring. Let Φi : Gi → G

(pa)
i be homomorphisms.

Assume we are given an exact sequence:

0→ G1 → G2 → G3 → 0,

which respects the homomorphisms Φi. Then the corresponding sequence

0→ GΦ1
1 → GΦ2

2 → GΦ3
3 → 0,

is exact.

Proof: Let S be the spectrum of an algebraically closed field. In view of
the decomposition (3) we have a unique Φi-equivariant section of the epimor-
phism Gi → GΦ

i . Therefore there exists a functorial decomposition:
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Gi = GΦi
i ⊕G

Φi−nil
i

This proves the assertion for an algebraically closed field and hence for any
field. In the general case we consider the kernel H of the epimorphsim GΦ2

2 →
GΦ3

3 . Then we obtain a homomorphism of locally free group schemes GΦ1
1 →

H, which is an isomorphism over the closed point of S. Hence it is an
isomorphism by the lemma of Nakayama. Q.E.D.

We consider a pair (G,Φ) as above over any locally noetherian scheme S.
Let k be the maximal value of the corresponding function µ = µ(M,Φ). Then
the set µ = k is an open set U of S. Over U we have an exact sequence of
finite locally free group schemes (7) such that Φ induces an isomorphism on
GΦ and is locally on S nilpotent on GΦ−nil. If S is irreducible the complement
of U is by proposition 5 of pure codimension 1 or empty. The formation of
GΦ is by lemma 6 an exact functor in an obvious sense.

Assume that Φ is an isomorphism, i.e. G = GΦ. The étale sheaf C
associated to (M,Φ) is a locally constant étale sheaf of Fpa-bigebras. If S
is the spectrum of a strictly henselian local ring the canonical isomorphism
M = OS ⊗ C of bigebras means that G is obtained via base change from a
group scheme G0 over Fpa , and Φ from the identity G0 → G

(pa)
0 .

3 The slope filtration of a p-divisible group

Let X be a p-divisible group over a scheme S and λ ∈ Q. We call X slope
divisible with respect to λ if there are locally on S integers r, s > 0 such that
λ = r

s
and the following quasiisogeny is an isogeny:

p−rFrsX : X → X(ps) (8)

Recall that a quasiisogeny is an isogeny formally divided by a power of
p ([RZ] definition 2.8). We will use the fact that the functor of points of S
where a quasiisogeny is an isogeny is representable by a closed subscheme
of S ([RZ] proposition 2.9). If X is slope divisible and isoclinic of slope λ
(i.e. isoclinic over any geometric point of S) then the isogeny above is an
isomorphism.
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Theorem 7 Let S be a regular scheme. Let X be a p-divisible group over S
whose Newton polygon is constant. Then there is a p-divisible group Y over
S which is isogenous to X, and which has a filtration by closed immersions
of p-divisible groups:

0 = Y0 ⊂ Y1 ⊂ . . . ⊂ Yk = Y,

such that Yi/Yi−1 is isoclinic and slope divisible with respect λi, and the group
Yi is slope divisible with respect to λi. One has λ1 > λ2 > . . . > λk.

The existence of the slope filtration over a field which is not necessarily
perfect is announced in [G1]. Since a proof was never published we give it
here before treating the general case.

Proposition 8 Let K be a field of characteristic p. Let G → H be a mor-
phism of p-divisible groups over K. The there is a unique factorization in
the category of p-divisible groups

G→ G′ → H ′ → H

with the following properties:

(i) G′ → H ′ is an isogeny.

(ii) H ′ → H is a monomorphism of p-divisible groups.

(iii) For each number n the morphism G(n)→ G′(n) is an epimorphism of
finite group schemes.

This factorization commutes with base change to another field.

Proof: We note that a monomorphism in the category of p-divisible groups
is the same thing as a closed immersion. Let A be the kernel of G → H
in the category of flat sheaves of abelian groups. Then A has the following
properties:

(i) The kernel A(n) of multiplication by pn on A is representable by a finite
group scheme.

(ii) The group A is the union of the subgroups A(n).
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With these assumptions there is a unique p-divisible subgroup A′ ⊂ A such
that the quotient is a finite group scheme. Indeed, we consider the following
sequence of monomorphisms

A(n+ 1)/A(n)
p→A(n)/A(n− 1)

p→ . . .→ A(1), (9)

which is induced by the multiplication by p. Since the ranks of the group
schemes in (9) cannot decrease infinitely, there is a number n0 such that
A(n + 1)/A(n) → A(n)/A(n − 1) is an isomorphism for n > n0. We set
A′ = A/A(n0). Then we obtain A′(m) = A(n0 + m)/A(n0). Because for A′

all homomorphisms in (9) are isomorphisms this group is a p-divisible group.

The multiplication by pn0 defines a monomorphism A′
pn0

↪→A. The cokernel of
this monomorphism is a finite locally free group scheme. This is seen in the
diagram

0 // A′(n0) //
� _

��

A′
pn0

//

pn0

��

A′ // 0

0 // A(n0) // A // A′ // 0

Now we may define G′ as the quotient G/A′, and H ′ as the quotient of G′ by
the finite group scheme A/A′. Q.E.D.

The group H ′ is the image of G→ H in the category of flat sheaves. We
call G′ the small image of G→ H.

Assume for a moment that K is a perfect field, and let MG and MH

be the covariant Dieudonné modules. Then MG′ is the image of the map
MG → MH , while MH′ is the smallest direct summand of MH containing
MG′ .

Let X be a p-divisible group of height h over a perfect field K. We denote
by M its covariant Dieudonné module. It is a free W (K)-module of rank h.
Let λ = r/s be the smallest Newton slope of X. By lemma [Z, 6.13] there
is a W (K)-lattice M ′ in M ⊗ Q such that V sM ′ ⊂ prM ′. The operator
U = p−rV s acts on M ⊗Q.

Lemma 9 The submodule M0 ⊂M ⊗Q defined by:

M0 = M + UM + U2M + . . .+ Uh−1M,

is a Dieudonné module which is invariant by U .
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Proof: By [Z] loc.cit. we know that M ⊗ Q contains a U -invariant lattice.
Let M ′ be a lattice which contains M , such that UM ′ ⊂ M ′. We will take
M ′ minimal with respect to inclusion. Then M * pM ′. We consider the
ascending chain of lattices:

pM ′
$ pM ′ +M ⊂ pM ′ +M + UM ⊂ . . . ⊂M ′.

Since dimkM
′/pM ′ = h there is an integer e ≤ h− 1 such that

pM ′ +M + . . .+ U eM = pM ′ +M + . . .+ U e+1M.

Hence this is a U -invariant lattice containing M and we conclude by mini-
mality:

M ′ = M + . . .+ U eM + pM ′.

But then the lemma of Nakayama shows

M ′ = M + . . .+ U eM.

Since U commutes with F and V , it is easy to see that M ′ is a Dieudonné
module. This proves the lemma. Q.E.D.

By this lemma F s(h−1)M0 is the Dieudonné module of a p-divisible group
Y over K, which is slope divisible with respect to λ. Clearly Y is the small
image of the morphism of p-divisible groups which is defined as the composite
of the following quasimorphisms:

X(p(h−1)s) × . . .×X(ps) ×X α→ X(p(h−1)s) → X (10)

where the last arrow is the power V er(h−1)s of the Verschiebung V er : X(p) →
X, and where the restriction of α to the factor X(p(h−i)s) is p−(i−1)rFr(i−1)s.
We recall here that V er induces F on the Dieudonné module M , while Fr :
X → Xp induces V (lemma [Z, 5.19]).

If K is not perfect we can still consider the small image Y of (10). Making
base change to the perfect hull we see that Y → X is an isogeny, and that
Y is slope divisible, i.e. that

Φ = p−rFrs : Y → Y (ps)

is an isogeny. If we apply (7) to the finite group schemes Y (n) and the
operator Φ we obtain an exact sequence of p-divisible groups:

0→ Y Φ−nil → Y → Y Φ → 0 (11)
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The p-divisible group Y Φ is slope divisible and isoclinic, while the smallest
slope of Y Φ−nil is strictly bigger than λ.

Remark: In the notation of lemma 9 the inclusion F s(h−1)M0 ⊂M holds.
This follows easily from r ≤ s. Note that we can take s ≤ h. It follows that
over any field K the degree of the isogeny Y → X is bounded by ph

2(h−1),
i.e. by a constant which depends only on the height h of X.

Definition 10 Let X be a p-divisible group over a field K. We call X
completely slope divisible if it admits a filtration

0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xm = X (12)

by p-divisible subgroups, and if there are rational numbers λ1 > . . . > λm
such that

(i) Xi is slope divisible with respect to λi for i = 1, . . . ,m.

(ii) Xi/Xi−1 is isoclinic and slope divisible with respect to λi.

Since there are no homomorphims between p-divisible groups with pair-
wise different Newton slopes ([Z]) it follows easily that the filtration (12) is
uniquely determined.

Corollary 11 If the field K is perfect the sequence (12) splits canonically.

Proof: By the remark after definition 10 the splitting is unique. We consider
the Dieudonné modules Mi of Xi. By induction it is enough to show that
the following sequence splits as a sequence of Dieudonné modules:

0→Mm−1 →Mm →Mm/Mm−1 → 0

But Φ = p−rmV s acts on this sequence. On Mm−1 the action is topologically
nilpotent and on Mm/Mm−1 it is bijective. Therefore we conclude by lemma
[Z, 6.16]. Q.E.D.

Proposition 12 Let h be a number. Then there is a constant c which de-
pends only on h with the following property.

Let X be a p-divisible group of height h over a field K. Then there is an
isogeny X ′ → X whose degree is smaller than c such that X ′ is completely
slope divisible.
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Proof: Let λi for i = 1, . . . ,m be the slopes of X. We may write λi = ri/s
where s divides h!, and r1 > . . . > rm. By what we have proved we find an
isogeny Y → X of bounded degree such that Y is slope divisible with respect
to λm. If m = 1 then Y is completely slope divisible. For m > 1 we argue
by induction. We set Φ = p−rmFrs and obtain the Φ-decomposition (11).
By induction there is an isogeny of bounded degree Y Φ−nil → Z where Z is
completely slope divisible. Then we take the push-out of the sequence (11)
by the morphism Y Φ−nil → Z:

0→ Z → Z ′ → Y Φ−et → 0

The only thing we have to check is that Z ′ is slope divisible with respect to
rm/s. But by induction Z is slope divisible with respect to rm−1/s and hence
a fortiori with respect to rm/s. From the exact sequence (11) it follows that
Y Φ−nil is slope divisible with respect to λm = rm/s. By definition Z ′ sits in
an exact sequence:

0→ Y Φ−nil → Y × Z → Z ′ → 0

Since all groups in this sequence except Z ′ are slope divisible with respect to
λm = rm/s the same is true for Z ′. Q.E.D.

Corollary 13 Let X be a p-divisible groups over a field K. Let λ1 > . . . >
λm be the sequence of slopes of X. Then there is a filtration of X

0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xm = X (13)

by p-divisible subgroups, such that

(i) Xi has the slopes λ1, . . . , λi for i = 1, . . . ,m.

(ii) Xi/Xi−1 is isoclinic of slope λi.

Proof: Indeed in the notation of proposition 12 it is enough to consider the
image of the filtration on X ′ by the isogeny X ′ → X. Q.E.D.

Proof of Theorem 7: If S is the spectrum of a field this follows from
proposition 12.

If the dimension of S is 1 this was shown under more restrictive conditions
by Katz ([K] Corollary 2.6.3). We give an alternative proof which holds in

the general situation: Let K be a function field of S. Any isogeny XK →
◦
Y
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over K extends to an isogeny X → Y over S. (See also the discussion in
front of the next proposition.) Hence we may assume that XK is completely
slope divisible (definition 10). We have to show that this filtration extends to
S. Since the functor of points of S, where (8) is an isogeny is representable
by a closed subscheme of S we see that X is slope divisible with respect to
λk. Therefore we have an isogeny:

Φ = p−rFrs : X → X(ps).

The function µ associated to (X(n),Φ) is constant since the Newton polygon
is constant. Therefore we may form the finite group schemes X(n)Φ. For
varying n this is a p-divisible group Z, since the functor X(n) 7→ X(n)Φ is
exact. We obtain an exact sequence:

0→ X ′ → X → Z → 0

ThenX ′ has again constant Newton polygon, but the slope λk doesn’t appear.
Since X ′K is completely slope divisible we can finish the proof in the case
dimS = 1 by induction.

In arbitrary dimension this consideration shows that a p-divisible group
X over S has a slope filtration as in theorem 7, if XK is completely slope
divisible.

By the same method we may find Y with the filtration over an open set
U ⊂ S, which contains all points of codimension 1. Indeed, we start again

with an isogeny XK →
◦
Y , where

◦
Y is a p-divisible group over K which is

completely slope divisible. The kernel
◦
G of this isogeny is a closed subscheme

of some XK(n). We denote by G the scheme theoretic closure in X(n). Let
U be the open subscheme where G is flat. We replace S by U and assume
that G is flat over S. Then one checks that G inherits the structure of a
group scheme, such that G→ X(n) is a closed immersion of group schemes.
We may replace X by Y = X/G. This group is slope divisible with respect
to λk. Therefore we obtain the slope filtration as above. The case where S
has arbitrary dimension will now follow from the following proposition:

Proposition 14 Let S be a regular scheme and U ⊂ S an open subscheme
which contains all points of codimension 1. Suppose that Y is a p-divisible
group on U with a filtration as in theorem 7. Then Y extends to S.
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Proof: We set SpecAi(n) = Yi(n). Let j : U → S be the immersion. It is
enough to prove the following 3 statements.

1) The sheaves A′i(n) = j∗Ai(n) are locally free OS-modules.

If this is true the bigebra structure on Ai(n) extends to A′i(n). Therefore we
can define finite locally free group schemes Y ′i (n) = SpecA′i(n).

2) For varying n the systems {Y ′i (n)} define a p-divisible group Y ′i .

3) The induced maps Y ′i → Y ′i+1 are closed immersions.

To verify these statements one can make without loss of generality a
faithfully flat base change S ′ → S. Therefore it is enough to consider the
case, where S is the spectrum of a complete regular local ring R of dimension
≥ 2 with algebraically closed residue field. By induction on the dimension
we may assume that U is the complement of the closed point.

We make an induction on the length of the filtration. For k = 1 we extend
Y1 as follows. Let λ1 = r

s
such that Φ = p−rFrs is an isogeny and a hence

an isomorphism Y1 → Y
(ps)

1 . Since the morphism Frobs : S → S is flat, we
may apply base change (lemme [EGA, IV 2.3.1)] to the cartesian diagram:

U −−−→ S

Frobs

y yFrobs
U −−−→ S

This yields an isomorphism:

R⊗Frobs,R A′1(n) ∼= j∗(OU ⊗Frobs,OU A1(n)),

where A′1(n) denotes the global sections of A′1(n). Therefore the isomorphism
Φ induces an isomorphism

Φ∗ : R⊗Frobs,R A′1(n)→ A′1(n)

We will denote the associated Frobs-linear map by Ψ : A′1(n) → A′1(n). By
the lemma 2 it follows that A′1(n) is free. This shows the assertion 1). To
see the second assertion we have to show that the sequence:

0→ Y ′1(1)→ Y ′1(n)→ Y ′1(n− 1)→ 0 (14)
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is exact. Since we know that this sequence is exact over U , it suffices to show
that the first arrow is a closed immersion. Indeed knowing this we obtain a
morphism of finite locally free group schemes over S:

Y ′1(n)/Y ′1(1)→ Y ′1(n− 1)

Since this is an isomorphism over U it must be also an isomorphism over
S. Finally consider the locally constant étale sheaves Cn on S associated to
(A′1(n),Ψ). Then Cn → C1 is an epimorphism of étale sheaves because the
restriction to U is. From this we obtain that A′1(n) → A′1(1) is surjective
too. Hence the first arrow of (14) is a closed immersion and the sequence is
exact.

We assume now by induction that Yk−1 with its filtration extends to a
p-divisible group Y ′k−1 on S. We denote by Z ′ the extension of the p-divisible
group Z = Yk/Yk−1 to S.

We show that A′k(n) is free. We denote FrobmU by αm : Um → U , and
FrobmS by βm : Sm → S. Of course Um = U but we would like to think
of FrobU as a flat covering. Applying again base change to the cartesian
diagram above it is enough to show that j∗α

∗
mAk(n) is free. But the exact

sequence

0→ Yk−1(n)→ Yk(n)→ Z(n)→ 0, (15)

splits over the perfect closure of U , and therefore over some Um by the dis-
cussion in front of proposition 5. Hence over Um the scheme Yk(n) ×U Um
is the product of the schemes Yk−1(n) ×U Um and Z(n) ×U Um. Therefore
Yk(n) ×U Um extends to a locally free scheme over Sm. This proves that
j∗α

∗
mAk(n) is free.
Since Yk is slope divisible with respect to λk, we find r and s with λk = r

s

such that Φ = p−rFrs : Yk → Y
(ps)
k is an isogeny. The pairs (Yk(n),Φ) extend

to S. The purity result (propositon 5 ) for these extensions (Y ′k(n),Φ), yields
an exact sequence of finite locally free group schemes on S:

0→ Hn → Y ′k(n)→ (Y ′k(n))Φ → 0

It is clear that Hn must be the extension of Yk−1(n) and (Y ′k(n))Φ must be
the extension Z ′. We set Y ′ = lim

→
Y ′k(n) as a flat sheaf. Then we obtain an

exact sequence of flat sheaves:

0→ Y ′k−1 → Y ′ → Z ′ → 0

17



We know that the outer sheaves are p-divisible groups and therefore Y ′ is a
p-divisible group. This is the desired group in the isogeny class of X.

Q.E.D.

This completes also the proof of theorem 7. Combining this theorem and
proposition 14 we obtain:

Corollary 15 Let S be a regular scheme and U ⊂ S an open subscheme
which contains all points of codimension 1. Suppose that X is a p-divisible
group on U such that the Newton polygon is constant on U . Then there is
a p-divisible group X ′ on S , whose restriction to U is isogenous to X. The
Newton polygon of X ′ is constant.

The reader should compare this with a result of de Jong and Oort ([JO]
Theorem 4.13).

References

[JO] de Jong, A.J., Oort, F.: Purity of the stratification by Newton
polygons, (to appear).

[G1] Grothendieck, A.: Groupes de Barsotti-Tate et cristaux de
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[G3] Grothendieck, A.: Local Cohomology, LNM 41, Springer
1967.

[HT] Harris,M., Taylor, R.: On the geometry and cohomology of
some simple Shimura varieties. (to appear)

[K] Katz, N.M.: Slope filtration of F–crystals, Astérisque 63, 113
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