

# Fibers of word maps and composition factors



Alexander Bors, University of Salzburg alexander.bors@sbg.ac.at

## Introduction

- Throughout: w denotes a reduced word in d distinct variables  $X_1, \ldots, X_d$ .
- For each group G, we have the word map  $w_G : G^d \to$ G, induced by substitution.
- Assume G is finite. What can we say about G under the assumption that  $w_G$ has a "large" fiber, say of size at least  $\rho |G|^d$  for  $\rho \in$ (0, 1] fixed?

## **Proof sketch, part 1**

- Write  $w = x_1^{\epsilon_1} \cdots x_l^{\epsilon_l}, \ \epsilon_i \in \{\pm 1\}, l$  the length of w, and let  $\iota$  be the unique function  $\{1, \ldots, l\} \rightarrow \{1, \ldots, d\}$ such that  $x_i = X_{\iota(i)}, \ i = 1, \ldots, l$ .
- For G a group and  $\alpha_1,\ldots,\alpha_l \in \operatorname{Aut}(G),$ the automorphic word map  $w_G^{(\alpha_1,\ldots,\alpha_l)}$  is the function  $G^{\overline{d}} \rightarrow G, (g_1, \ldots, g_d) \mapsto$  $\alpha_1(g_{\iota(1)})^{\epsilon_1}\cdots\alpha_l(g_{\iota(l)})^{\epsilon_l}.$ G,finite • For groups denote by  $\mathfrak{P}_w(G)$ the largest fiber size of an automorphic word map  $w_G^{(\alpha_1,\ldots,\alpha_l)}, \alpha_1,\ldots,\alpha_l$  ranging over Aut(G), and set  $\mathfrak{p}_w(G) := \mathfrak{P}_w(G)/|G|^d.$

## **Proof sketch, part 2**

- For any finite group G, if  $T_1, \ldots, T_r$  are the *characteristic* composition factors of G, then  $\mathfrak{p}_w(G) \leq \prod_{i=1}^r \mathfrak{p}_w(T_i) \leq \min_{i=1,\ldots,r} \mathfrak{p}_w(T_i).$
- If S is a composition factor of G, then G has a characteristic composition factor of the form  $S^n$ , n a positive integer.
- Hence by the Lemma, if  $\mathfrak{p}_w(G) \geq \rho$ , then G can-

- Larsen and Shalev showed (see [2, Theorem 1.2]):  $w_S$ for S a large nonabelian finite simple group only has fibers of size at most  $|S|^{d-\eta(w)}, \eta(w) > 0.$
- One can adapt parts of Larsen and Shalev's ideas to show the following (see [1, Theorem 1.1.2]):

### Theorem

There are explicit functions  $f_1^{(w)}, f_2^{(w)} : (0,1] \rightarrow [1,\infty)$  such that for all  $\rho \in (0,1]$  and all finite groups G where  $w_G$  has a fiber of size at least  $\rho |G|^d$ , the following hold:

- By "coset-wise counting", it is not difficult to show that  $\mathfrak{P}_w(G) \leq \mathfrak{P}_w(N) \cdot$  $\mathfrak{P}_w(G/N)$ , or equivalently  $\mathfrak{p}_w(G) \leq \mathfrak{p}_w(N) \cdot \mathfrak{p}_w(G/N)$ , for all finite groups G and all N char G.
- Moreover, by adaptations of proofs from [2], one can show:

 $p_w(G) \ge p$ , then G callnot have any composition factors that are large alternating groups or simple Lie type groups of large rank.

## **Concluding remarks**

- Open question: Do there even exist  $\eta(w) > 0$  and  $N(w) \in \mathbb{N}$  such that for all nonabelian finite simple groups S with  $|S| \ge N(w)$ and all positive integers n,  $\mathfrak{p}_w(S^n) \le |S^n|^{-\eta(w)}$ ?
- This would imply that under  $\mathfrak{p}_w(G) \ge \rho$ , the orders of the nonabelian composition factors of G are bounded in terms of  $\rho$  and w.

- 1. No finite alternating group of order larger than  $f_1^{(w)}(\rho)$ is a composition factor of G.
- 2. No (classical) finite simple group of Lie Type of rank larger than  $f_2^{(w)}(\rho)$  is a composition factor of G.

#### Lemma

There exist  $\eta'(w) > 0$  and  $M(w) \in \mathbb{N}$  such that for all positive integers n and all S which are either

- a finite alternating group of order at least M(w) or
- a finite simple group of Lie type of rank at least M(w),

 $\mathfrak{P}_w(S^n) \leq |S^n|^{d-\eta'(w)}$ , or equivalently,  $\mathfrak{p}_w(S^n) \leq |S^n|^{-\eta'(w)}$ .

## References

- [1] A. Bors, Fibers of automorphic word maps and an application to composition factors, submitted (2016), arXiv:1608.00131 [math.GR].
- [2] M. Larsen and A. Shalev,
  Fibers of word maps and
  some applications, J. Algebra
  354:36-48 (2012).