$(2, p)$-generation of finite simple groups

Question

Is every non-abelian finite simple group generated by an involution and an element of prime order?

Introduction

Let G be a finite simple group. A result of Steinberg proves that every finite simple group is generated by a pair of elements. Given a pair of positive integers a and b, we say G is (a, b)-generated if G is generated by a pair of elements of orders a and b.
As two involutions generate a dihedral group, the smallest pair of interest is $(2,3)$. The question of which finite simple groups are (2,3)-generated has been studied extensively. A sample of results is listed below.

Table: $(2,3)$-generation of finite simple groups

Family	Result	Reference
Alternating groups	All except $A_{3}, A_{6}, A_{7}, A_{8}$	$[4]$
Classical groups	All but finitely many not	$[2]$
	equal to $P S p_{4}\left(2^{f}\right), P S p_{4}\left(3^{f}\right)$	
Exceptional groups	All except ${ }^{2} B_{2}\left(2^{2 f+1}\right)$	$[3]$
Sporadic groups	All except $M_{11}, M_{22}, M_{23}, M c L$	$[5]$

The problem of determining exactly which finite simple groups are $(2,3)$-generated, or more generally $(2, p)$-generated for some prime p, remains open.

General method

Let G be any finite group. Let $M<_{\max } G$ denote a maximal subgroup. For a group H let $i_{m}(H)$ denote the number of elements of order m in H. Let $x \in G$ be an element of order p. Let $P_{2}(G, x)$ denote the probability that G is generated by x and a random involution, and let $Q_{2}(G, x)=1-P_{2}(G, x)$. We have

$$
\begin{equation*}
Q_{2}(G, x) \leq \sum_{x \in M<_{\max } G} \frac{i_{2}(M)}{i_{2}(G)} \tag{1}
\end{equation*}
$$

To prove G is $(2, p)$-generated, it suffices to prove $Q_{2}(G, x)<1$. For the classical groups, our method in most cases is as follows:
(1) Choose a prime p dividing the order of G such that p does not divide the order of many maximal subgroups;
(2) For $x \in G$ of order p, determine the maximal subgroups containing x using Aschbacher's theorem;
(3) Bound $i_{2}(M)$ and $i_{2}(G)$ in terms of n and q such that for n, q sufficiently large we have $Q_{2}(G, x)<1$ using (1), and hence G is ($2, p$)-generated.
For the remaining cases with small n and q we improve the bounds case by case.

Primitive prime divisors

Let $q, e>1$ be positive integers with $(q, e) \neq\left(2^{a}-1,2\right),(2,6)$. By Zsigmondy's theorem, there exists a prime divisor $r_{q, e}$ of $q^{e}-1$ such that $r_{q, e}$ does not divide $q^{i}-1$ for $i<e$. We call $r_{q, e}$ a primitive prime divisor of $q^{e}-1$.
If G is a finite simple classical group with natural module V of dimension n over the field $\mathbb{F}_{q^{\delta}}$, where $\delta=2$ if G is unitary and $\delta=1$ otherwise, let p be a primitive prime divisor $p=r_{q, e}$, where e is listed below.

Table: Values of e	
G	e
$P S L_{n}(q), P S p_{n}(q), P \Omega_{n}^{-}(q)$	n
$P \Omega_{n}^{+}(q)$	$n-2$
$P \Omega_{n}(q)(n q$ odd $)$	$n-1$
$P S U_{n}(q)(n$ odd $)$	$2 n$
$P S U_{n}(q)(n$ even $)$	$2 n-2$

Example: $P \Omega_{n}^{-}(q)$

Let $G=P \Omega_{n}^{-}(q)$. We prove G is $(2, p)$-generated for some prime p as follows:
(1) Let $p=r_{q, n}$ as above, and let $x \in G$ be an element of order p.
(2) By Aschbacher's theorem, the G-classes of maximal subgroups M possibly containing x are as follows:

(3) We bound the number of involutions $i_{2}(M)$ of M as

$$
i_{2}(M) \leq \quad \cdots \quad 2\left(q^{t}+1\right) q^{\frac{n^{2}}{4 t}-t} \quad \cdots \quad 2(q+1)^{2} q^{\frac{n^{2}}{8}+\frac{n}{4}-2}
$$

and we have $i_{2}(G) \geq \frac{1}{8} q^{\frac{n}{2}_{4}^{4}}-1$. Therefore, using (1), we have $Q_{2}(G, x)<1$ for $n \geq 18$, and so G is $(2, p)$-generated for $n \geq 18$.

Theorem

Let G be a finite simple classical group with natural module of dimension n over $\mathbb{F}_{q^{\delta}}$, where $\delta=2$ if G is unitary and $\delta=1$ otherwise. Assume $n \geq 8$ and $G \neq P \Omega_{8}^{+}(2)$. Let p be a primitive prime divisor of $q^{e}-1$, where e is listed above. Then G is (2, p)-generated.

Theorem

Every non-abelian finite simple group G is generated by an involution and an element of prime order.

References

[1] C. S. H. King, Generation of finite simple groups by an involution and an element of prime order. https://arxiv.org/abs/1603.04717.
[2] M. W. Liebeck, A. Shalev, Classical groups, probabilistic methods and the (2, 3)-generation problem. Ann. Math. 144 (1996), 77-125.
[3] F. Lübeck, G. Malle, (2, 3)-generation of exceptional groups. J. London. Math. Soc. 59 (1999), 101-122.
[4] G. A. Miller, On the groups generated by two operators. Bull. Am. Math. Soc. 7 (1901), 424-426.
[5] A. J. Woldar, On Hurwitz generation and genus actions of sporadic groups. III. J. Math 33 (1989), 416-437.

