(2, p)-generation of finite simple groups

Imperial College London

Carlisle S. H. King

Supervisor: Prof. Martin W. Liebeck

Question

Is every non-abelian finite simple group generated by an involution and an element of prime order?

Introduction

Let G be a finite simple group. A result of Steinberg proves that every finite simple group is generated by a pair of elements. Given a pair of positive integers a and b, we say G is (a, b)-generated if G is generated by a pair of elements of orders a and b.

As two involutions generate a dihedral group, the smallest pair of interest is (2,3). The question of which finite simple groups are (2,3)-generated has been studied extensively. A sample of results is listed below.

Table: (2, 3)-generation of finite simple groups

Family	Result	Reference
Alternating groups	All except A_3, A_6, A_7, A_8	[4]
Classical groups	All but finitely many not	[2]
	equal to $PSp_4(2^f), PSp_4(3^f)$	
Exceptional groups	All except ${}^{2}B_{2}(2^{2f+1})$	[3]
Sporadic groups	All except $M_{11}, M_{22}, M_{23}, M_{CL}$	[5]

To prove G is (2, p)-generated, it suffices to prove $Q_2(G, x) < 1$. For the classical groups, our method in most cases is as follows:

- Choose a prime p dividing the order of G such that p does not divide the order of many maximal subgroups;
- **2** For $x \in G$ of order p, determine the maximal subgroups containing x using Aschbacher's theorem;
- Sound $i_2(M)$ and $i_2(G)$ in terms of *n* and *q* such that for *n*, *q* sufficiently large we have $Q_2(G, x) < 1$ using (1), and hence G is (2, p)-generated.

For the remaining cases with small *n* and *q* we improve the bounds case by case.

Primitive prime divisors

Let q, e > 1 be positive integers with $(q, e) \neq (2^{a} - 1, 2), (2, 6)$. By Zsigmondy's theorem, there exists a prime divisor $r_{q,e}$ of $q^e - 1$ such that $r_{q,e}$ does not divide q' - 1 for i < e. We call $r_{q,e}$ a primitive prime divisor of $q^e - 1$.

The problem of determining exactly which finite simple groups are (2,3)-generated, or more generally (2, p)-generated for some prime p, remains open.

General method

Let G be any finite group. Let $M <_{max} G$ denote a maximal subgroup. For a group H let $i_m(H)$ denote the number of elements of order *m* in *H*. Let $x \in G$ be an element of order *p*. Let $P_2(G, x)$ denote the probability that G is generated by x and a random involution, and let $Q_2(G, x) = 1 - P_2(G, x)$. We have

$$Q_2(G, x) \le \sum_{x \in M <_{\max} G} \frac{I_2(M)}{i_2(G)}.$$
 (1)

If G is a finite simple classical group with natural module V of dimension *n* over the field $\mathbb{F}_{q^{\delta}}$, where $\delta = 2$ if *G* is unitary and $\delta = 1$ otherwise, let p be a primitive prime divisor $p = r_{q,e}$, where *e* is listed below. Table: Values of e

<i>G</i>	е
$PSL_n(q), PSp_n(q), P\Omega_n^-(q)$	n
$P\Omega_n^+(q)$	<i>n</i> – 2
$P\Omega_n(q)$ (nq odd)	n-1
$PSU_n(q) (n \text{ odd})$	2 <i>n</i>
$PSU_n(q)$ (<i>n</i> even)	2 <i>n</i> – 2

Example: $P\Omega_n^-(q)$

Let $G = P\Omega_n^-(q)$. We prove G is (2, p)-generated for some prime p as follows:

1 Let $p = r_{q,n}$ as above, and let $x \in G$ be an element of order p.

2 By Aschbacher's theorem, the G-classes of maximal subgroups M possibly containing x are as follows:

3 We bound the number of involutions $i_2(M)$ of M as

 $i_2(M) \leq \cdots 2(q^t+1)q^{\frac{n^2}{4t}-t} \cdots 2(q+1)^2q^{\frac{n^2}{8}+\frac{n}{4}-2}$

and we have $i_2(G) \ge \frac{1}{8}q^{\frac{n^2}{4}-1}$. Therefore, using (1), we have $Q_2(G, x) < 1$ for $n \ge 18$, and so G is (2, p)-generated for $n \ge 18$.

Theorem

Let G be a finite simple classical group with natural module of dimension *n* over $\mathbb{F}_{q^{\delta}}$, where $\delta = 2$ if *G* is unitary and $\delta = 1$ otherwise. Assume $n \ge 8$ and $G \ne P\Omega_8^+(2)$. Let p be a primitive prime divisor of $q^e - 1$, where e is listed above. Then G is (2, p)-generated.

Theorem

Every non-abelian finite simple group G is generated by an involution and an element of prime order.

References

C. S. H. King, Generation of finite simple groups by an involution and an element of prime 11 order. https://arxiv.org/abs/1603.04717.

 q^{2n+4} if $\operatorname{soc}(M) \neq A_{n'}$,

(n+2)! otherwise,

- M. W. Liebeck, A. Shalev, Classical groups, probabilistic methods and the [2] (2,3)-generation problem. Ann. Math. 144 (1996), 77-125.
- F. Lübeck, G. Malle, (2,3)-generation of exceptional groups. J. London. Math. Soc. 59 |3| (1999), 101-122.
- G. A. Miller, On the groups generated by two operators. Bull. Am. Math. Soc. 7 (1901), [4] 424-426.
- A. J. Woldar, On Hurwitz generation and genus actions of sporadic groups. III. J. Math. 5 **33** (1989), 416-437.