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We will speak about a submitted paper entitled

A proof of Pyber’s base size conjecture

written by Hülya Duyan, Zoltán Halasi and AM.

One can find the pdf on ArXiv.
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Bases

Let G be a finite permutation group acting on a finite set Ω.

A subset ∆ of Ω is called a base for G if ∩δ∈∆Gδ = 1.

Bases played a key role in the development of permutation group
theoretic algorithms (see Seress (2003)). But bases of special kinds
also appear in representation theory.
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Bases for general permutation groups

The minimal size of a base for G (acting on Ω of size n) is denoted
by b(G ). It is easy to see that 2b(G) ≤ |G | ≤ nb(G).

Blaha (1992) showed that the problem of finding b(G ) is NP-hard.
But one may approximate b(G ) by a greedy heuristic. The size of
such a base is O(b(G ) log log n) where n = |Ω| (Blaha (1992)).

Pyber (1993) showed that there exists a universal constant c > 0
such that almost all (a proportion tending to 1 as n→∞)
subgroups G of Sym(n) satisfy b(G ) > cn.
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Bounding the orders of primitive permutation groups

Let G be a primitive permutation group of degree n and not
containing Alt(n). There are several bounds for |G | (≤ nb(G)) in
the literature whose proof use bounds for b(G ).

I b(G ) ≤ n/2 (Bochert (1889)).

I If G is uniprimitive, then b(G ) < 4
√
n log n (Babai (1981)).

I If G is doubly transitive, then b(G ) < 2c
√

log n for a universal
constant c > 0 (Babai (1982)).

I If G is doubly transitive, then b(G ) < c(log n)2 where c is a
universal constant (Pyber (1993)).

I Using CFSG, groups G with b(G ) ≥ 9 log n were classified by
Liebeck (1984).
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Cameron’s conjecture

An ingredient of Liebeck’s proof was a result stating that an
almost simple primitive permutation group of degree n in its, later
called, non-standard action has order at most n9. This bound was
later improved by Liebeck and his result showed that the Mathieu
group M24 in its action on 24 points is the worst case.

Cameron and Kantor conjectured that an almost simple primitive
permutation group in its non-standard action has bounded minimal
base size, perhaps 7 with equality holding for M24.

The first part of this conjecture was established by Liebeck and
Shalev (1999) and the second half was completed in a series of
papers by Cameron, Kantor (1993), Liebeck, Shalev (2003 and
2005), James (2006 and 2006), Burness (2007), Burness, Liebeck,
Shalev (2009), Burness, O’Brien, Wilson (2010), and Burness,
Guralnick, Saxl (2011).
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Babai’s conjecture

Let d be a fixed positive integer. Let Γd be the class of finite
groups G such that G does not have a composition factor
isomorphic to an alternating group of degree greater than d and no
classical composition factor of rank greater than d .

Babai, Cameron, Pálfy (1982) showed that if G ∈ Γd is a primitive
permutation group of degree n, then |G | < nf (d) for some function
f (d). Babai conjectured that there is a function g(d) such that
b(G ) < g(d) whenever G is a primitive permutation group in Γd .

Seress (1996) showed this for G a solvable primitive group. Babai’s
conjecture was proved by Gluck, Seress, Shalev (1998). Later
Liebeck, Shalev (1999) showed that in Babai’s conjecture the
function g(d) can be taken to be linear in d .
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Pyber’s conjecture

The previous three slides suggest that the order of a primitive
permutation group is closely tied to its minimal base size.

On one hand we have the trivial bound log |G |/ log n ≤ b(G )
(holding for any permutation group G ).

Pyber’s conjecture (1993).

There exists a universal constant c such that for a primitive per-
mutation group G of degree n we have b(G ) ≤ c(log |G |/ log n).

This bound fails if we drop the assumption that G is primitive.
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Non-affine primitive permutation groups

Theorem (Liebeck, Shalev (1999); Burness et al (2007, 2009,
2010, 2011); Benbenishty (2005)).

If G is an almost simple primitive permutation group of degree n,
then b(G ) < 15(log |G |/ log n).

A formula for b(G ) when G is a primitive group of diagonal type
has been obtained by Fawcett (2013) (and an upper bound was
given by Gluck, Seress, Shalev (1998)). Primitive permutation
groups of product type or of twisted wreath product type were
treated by Burness and Seress (2015). After working out the
constants we obtain the following.

Theorem.

If G is a primitive permutation group of degree n and not of affine
type, then b(G ) < 45(log |G |/ log n).
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Affine primitive permutation groups
For the rest of the talk we will consider Pyber’s base size
conjecture for affine primitive permutation groups.

Let H be a finite (linear) group acting faithfully and irreducibly on
a finite vector space V . Pyber’s conjecture amounts to showing
that there exist universal constants c1 and c2 such that

b(H) ≤ c1(log |H|/ log |V |) + c2.

This has been known for

I H solvable (Seress (1996));

I H acting coprimely on V (Gluck, Magaard (1998), see also
Halasi, Podoski (2016));

I H a p-solvable group where p divides |V | (Halasi, M (2016));

I H acting primitively on V (Liebeck, Shalev (2002 and 2014));

I certain groups H acting imprimitively on V (Fawcett, Praeger
(2016)).
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The distinguishing number

A closely related invariant to the minimal base size is the
distinguishing number (in the sense of Albertson and Collins).

Let G be a finite permutation group acting on a finite set Ω of
order n. The minimal number of colors needed to color all the
points in Ω in such a way that the stabilizer in G of this coloring is
trivial is denoted by d(G ) and is called the distinguishing number
of G .

A trivial observation is that |G | < d(G )n when n > 1. This gives
the lower bound n

√
|G | < d(G ).

We wish to find a similar upper bound. It is natural to assume that
G is transitive.
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Bounding the distinguishing number, I

An equivalent form of a result of Burness and Seress (2015) is that
there exists a universal constant c such that if G is a transitive
permutation group of degree n then d(G ) ≤ |G |c/n. This was used
in the non-affine case of Pyber’s conjecture.

We aim to give a stronger and explicit bound and that will directly
be applied. Moreover we need a different proof. The ideas of this
new proof are implicitly used in the proof of the affine case of
Pyber’s conjecture.
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Bounding the distinguishing number, II
Let G ≤ Sym(Ω) be a permutation group. Put n = |Ω|. Let
Γ = {∆1, . . . ,∆k} be a system of blocks of imprimitivity for G
with |∆i | = m for 1 ≤ i ≤ k . Let Hi = NG (∆i ) for each i with
1 ≤ i ≤ k , and N = ∩kj=1Hj . Then Hi/CG (∆i ) ≤ Sym(∆i ).
Furthermore, G acts on Γ with kernel N, so K := G/N ≤ Sym(Γ).

Lemma

If Hj acts trivially on ∆j (i.e. Hj = CG (∆j)) for every 1 ≤ j ≤ k ,
then d(G ) ≤ d m

√
d(K )e.

Lemma

Assume that G is transitive. Suppose that d(H1) ≤ c for some
constant c. Then d(G ) ≤ c · d m

√
d(K )e.

c is small when H1 acts primitively on ∆1 such that H1/CH1(∆1)
does not contain Alt(∆1). For in this case Seress (1997) and Dolfi
(2000) showed that d(H1) ≤ 4.
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Bounding the distinguishing number, III

The result of Seress (1997) and Dolfi (2000) carries over to
quasi-primitive groups. In fact we have the following.

Theorem

Let M / G ≤ Sym(Ω) be transitive permutation groups where M is
a direct product of isomorphic simple groups. Then d(G ) ≤ 12 or
Alt(Ω) ≤ G ≤ Sym(Ω).

Assume that the action of H1 is large (following Burness and
Seress (2015)) with N 6= 1. Then the socle of N is a subdirect
product of isomorphic alternating groups. We write
Alt(m)k/t ≤ N ≤ Sym(m)k/t and call t the linking factor of N.

Lemma

Let us assume that H1 is large and N 6= 1 with linking factor t.
Then d(G ) ≤ 3 · d t

√
me · d m

√
d(K )e.
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Bounding the distinguishing number, IV

Theorem

Let G be a transitive permutation group acting on a finite set of
size n > 1. Then n

√
|G | < d(G ) ≤ 48 n

√
|G |.

Sketch of proof. From the previous slide we may assume that there
exists a minimal normal subgroup M in G which does not act
transitively on Ω. Let an orbit of M on Ω be ∆1, and let Γ be the
set of orbits of M on Ω. Let the size of Γ be k and let H1 be the
stabilizer in G of ∆1. Since M / H1, the previous theorem implies
that d∆1(H1) ≤ 12 or Alt(∆1) ≤ H1/CH1(∆1) ≤ Sym(∆1).

Case 1. d∆1(H1) ≤ 12. We skip this part.
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Bounding the distinguishing number, V
Case 2. Alt(∆1) ≤ H1/CH1(∆1) ≤ Sym(∆1) with |∆1| = m ≥ 13.
In this case the action of H1 on ∆1 is large. Let the kernel of the
action of G on Γ be N. Since M ≤ N, we know that N 6= 1. Set
ε = 1 if t = 1 and ε = 2 if t 6= 1. We have the following.

d(G ) ≤ 3d t
√
med m

√
d(K )e ≤ 6ε t

√
m m

√
d(K ) = 6ε

mk
√

mmk/t m
√

d(K ).

Set c = 6 · 21/mt · 31/t . By use of 1
2 (m/3)m < m!/2 = |Alt(m)|,

we have that d(G ) is at most

6ε
mk
√

mmk/t m
√

d(K ) < 6ε
mk

√
((m!/2) · 2 · 3m)k/t m

√
d(K ) ≤

≤ c · ε n

√
(|Alt(m)|)k/t m

√
d(K ).

We know that Alt(m)k/t ≤ N. This gives the inequality
d(G ) < c · ε n

√
|N| m

√
d(K ). By the induction hypothesis, we have

d(K ) ≤ 48 k
√
|K |. Thus

d(G ) < c ·ε m
√

48 n
√
|N| n

√
|K | ≤ 6·ε·21/13t31/t 13

√
48 n

√
|G | < 48 n

√
|G |.
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Reducing to imprimitive linear groups
Let H ≤ GL(V ) act irreducibly on V .

Liebeck, Shalev (2002 and 2014)

There exists a universal constant c > 0 such that if H acts
primitively on V , then

bV (H) ≤ max{18
log |H|
log |V |

+ 30 , c}.

Therefore we may introduce the following notation. Let
V = ⊕t

i=1Vi be a decomposition of V into a sum of subspaces Vi

of V that is preserved by the action of H. For every i with
1 ≤ i ≤ t, let Hi = NH(Vi ) and let Ki = Hi/CHi

(Vi ) ≤ GL(Vi ) be
the image of the restriction of Hi to Vi . The group H acts on the
set Π = {V1, . . . ,Vt} in a transitive way. Let N be the kernel of
this action and let P be the image of H in Sym(Π). So
N = ∩ti=1Hi and P ∼= H/N.
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Reducing to the case when bV1
(K1) is unbounded

Lemma

If K1 = 1, then bV (H) = dlog|V1| dΠ(P)e.

Theorem

Let us assume that bV1(K1) ≤ b for some constant b. Then we
have

bV (H) ≤ b + 1 + log 48 +
log |P|
log |V |

.

Sketch of proof. By the previous lemma we have
bV (H) ≤ b + dlog|V1| dΠ(P)e. Now apply dΠ(P) ≤ 48 t

√
|P|.
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Alternating-induced representations, I

Let k ≥ 5 and let K be Sym(k) or Alt(k). Let U be the usual
permutation module for K with permutation basis {e1, . . . , ek}.
Let U0 be the submodule of such vectors whose augmentation is 0.
This is irreducible if p - k. When p | k , there is a 1-dimensional W
such that U0/W is irreducible.

We say that H is alternating-induced if K1
∼= K (with k ≥ 7) and

V1
∼= U0 (if p - k) or V1

∼= U0/W (if p | k).

The action of H on V may be described using the action of H on
U = ⊕iUi where Ui is a permutation module with basis

{e(i)
1 , . . . , e

(i)
k }.

Lemma

We have bV (H) ≤ 2bU(H) + 3 for k ≥ 7.
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Alternating-induced representations, II

Theorem

If H ≤ GL(V ) is an alternating-induced linear group, then

bV (H) ≤ 17 + 2(log |H|)/(log |V |).

Sketch of proof. Let H act on U by permuting (transitively) the

basis B = {e(i)
j | 1 ≤ i ≤ t, 1 ≤ j ≤ k}. Since any vector u ∈ U

can be seen as a coloring of this basis by using q (size of the field)
colors, bU(H) ≤ dlogq(dB(H))e. Apply the bound

dB(H) ≤ 48 kt
√
|H|. Finally, apply the previous lemma.
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(mod T )-representations, I

Definition

Let V be a finite vector space over Fq and T ≤ GL(V ) any
subgroup. We say that a map X : H → GL(V ) is a
(mod T )-representation of H if the following two properties hold:

(1) X (g) normalizes T for every g ∈ H;

(2) X (gh)T = X (g)X (h)T for every g , h ∈ H.

Linear representations and projective representations are examples
of (mod T )-representations.

Definition

Let T ≤ GL(V ) and X1,X2 : H → GL(V ) be two
(mod T )-representations of H. We say that X1 and X2 are
(mod T )-equivalent if there is an f ∈ NGL(V )(T ) such that
X1(g)T = fX2(g)f −1T for all g ∈ G .
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(mod T )-representations, II

We consider (mod TV )-representations where V = ⊕t
i=1Vi and

TV = {g ∈ GL(V ) | g(Vi ) = Vi and g |Vi
∈ Z (GL(Vi )) ∀1 ≤ i ≤ t}.

This group is ' (F×q )t .

If X : H → GL(V (p)) is a (mod TV )-representation, then the
associated maps Xi : Hi → ΓL(Vi ) are projective representations.
Conversely, if Xi : Hi → ΓL(Vi ) are equivalent projective
representations, then the induced representation
X = IndH

H1
(X1) : H → GL(V (p)) (this can be uniquely defined up

to (mod TV )-equivalence) will be a (mod TV )-representation of
H transitively permuting the Vi , and it is easy to see that every
(mod TV )-representation of H transitively permuting the Vi can
be obtained in this way.

22 / 31



Classical-induced representations without multiplicities, I

Let X : H → GL(V (p)) be a (mod TV )-representation of H.
Notice that X (H)TV is a group. Assume that X (H)TV acts
transitively on Π. We will consider its base size on V , denoted by
bX (H).

Assume that X is classical-induced, i.e. the image Ki of the
homomorphism Xi : Hi → PΓL(Vi ) is some classical group i.e.
Si = soc(Ki ) ≤ PΓL(Vi ) is isomorphic to some simple classical
group S = Cl(k, q0) ≤ PΓL(k , q) for k ≥ 9 where Fq0 is some
subfield of Fq.

When k ≥ 9 the group generated by all inner, diagonal and field
automorphisms of S has index at most 2 in Aut(S).

23 / 31



Classical-induced representations without multiplicities, II

For any subset ∆ ⊆ Π let V∆ := ⊕Vi∈∆Vi , and
X∆ : NH(∆)→ GL(V∆(p)) be the (mod TV∆

)-representation of
NH(∆) defined by taking the restriction of X (h) to V∆ for all
h ∈ NH(∆). Furthermore, let the associated homomorphism X∆

be X∆(h) := X∆(h)TV∆
/TV∆

. Define S∆ := soc(X∆(CH(∆))).

Multiplicity-free condition

If ∆ ⊆ Π is an H-block such that S∆ ' S and all
Xi : S∆ → PΓL(Vi ) for i ∈ ∆ are projectively equivalent, then
|∆| = 1.

Proposition

Let X be classical-induced. Let ∆ ⊆ Π be any H-block satisfying
S∆ ' S . Suppose that the multiplicity-free condition holds. Then
|∆| ≤ 2.
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Classical-induced representations without multiplicities, III

Theorem

There exists a universal constant c > 0 such that if
X : H → GL(V ) is a (mod TV )-representation of H (with respect
to a direct sum decomposition V = ⊕t

i=1Vi ), which is a
classical-induced representation possessing the multiplicity-free
condition, then bX (H) ≤ 45(log |H|)/(log |V |) + c .

A few words on the proof. There is an associated homomorphism
X : H → NGL(V (p))(TV )/TV defined by X(h) := X (h)TV /TV .
There are two cases.

I X(N) 6= 1. Here soc(X(N)) is a subdirect product of classical
groups with linking factor at most 2. The previously men-
tioned result of Liebeck and Shalev (2002 and 2014) is used.

I X(N) = 1. In this case we use some ideas from the proof on
the distinguishing number. We get a contradiction using the
proposition on the previous slide.
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Eliminating small tensor product factors, I

Recall that to prove Pyber’s conjecture for affine primitive
permutation groups, we may assume that H is induced from a
primitive linear group H1 having unbounded base size.

Theorem (Liebeck, Shalev (2002 and 2014))

Let H ≤ GL(Uk(p)) be a primitive linear group of unbounded base
size and q = pf be maximal such that H ≤ ΓL(Uk/f (q)). Then
there is a tensor product decomposition U = U1 ⊗U2 over Fq such
that 1 ≤ dim(U1) < dim(U2) and H preserves this tensor product
decomposition. Let H0 = GL(Uk/f (q)) ∩ H and let H0

2 be the
image of the projection of H0 to GL(U2), that is,

H0
2 := {b ∈ GL(U2) |∃a ∈ GL(U1) : a⊗ b ∈ H0}.

Then one of the following holds...
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Eliminating small tensor product factors, II

Theorem (Liebeck, Shalev (2002 and 2014) continued)

... Then one of the following holds.

(1) H0
2 ' Sym(m)× F∗q or Alt(m)× F∗q for some m such that U2

is the unique non-trivial irreducible component of the natural
m-dimensional permutation representation of Sym(m). In that
case dimFq(U2) = m − 1 unless p | m, when
dimFq(U2) = m − 2.

(2) H0
2 is a classical group Cl(r , q0) ≤ GL(r , q) over some subfield

Fq0 ≤ Fq, where r = dimFq(U2).

Note that there is a similar characterization of primitive linear
groups of large orders due to Jaikin-Zapirain and Pyber (2011).
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Eliminating small tensor product factors, III

Theorem

There exists an absolute constant c > 0 such that if
X : H → GL(V ) is an irreducible linear representation over Fp,
then bX (H) ≤ 45(log |H|)/(log |V |) + c .

About the proof. A key tool is the following. Assume that the
projective representation X1 : H1 → ΓL(V1) preserves a tensor
product decomposition V1 = U1 ⊗W1 over Fq where U1 and W1

are Fq vector spaces and dimFq(U1) ≤ dimFq(W1). By taking the
composition of Xi with the projection map to Wi , one can define
new projective representations Yi : Hi → ΓL(Wi ). Let
Y : H → GL(W (p)) be the induced representation Y = IndH

H1
(Y1),

where W can be identified with W1 ⊕ . . .⊕Wt .

Lemma

We have bX (H) ≤ dbY (H)/ dimFq(U1)e+ 4.
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Eliminating small tensor product factors, IV
About the proof continued. This way we may pass from the
representation X to Y . We get that Y is alternating-induced or
classical-induced. We may use the previous results in case Y is
alternating-induced or multiplicity-free classical-induced. Thus we
must reduce to the case when Y is multiplicity-free
classical-induced.

For this purpose let ∆ ⊆ Π be a maximal H-block violating the
multiplicity-free condition, i.e. S∆ ' S and the representations
Yi : S∆ → ΓL(Wi ) for Vi ∈ ∆ are projectively equivalent. Let
Y∆ : NH(∆)→ GL(W∆(p)) be the (mod TW∆

)-representation
defined by the restriction of Y . Then Y = IndH

NH(∆)(Y∆).
Furthermore, by choosing a suitable basis, Y∆(NH(∆)) is included
into the Kronecker product of a group of monomial matrices and a
group of matrices isomorphic to some classical group. This means
that we have a tensor product decomposition W∆ = W S

∆ ⊗WC
∆

preserved by Y∆(NH(∆)). We apply the previous lemma once
again.

29 / 31



Statement of the result

Theorem

There exists a universal constant c > 0 such that the minimal base
size b(G ) of a primitive permutation group G of degree n satisfies

log |G |
log n

≤ b(G ) < 45
log |G |
log n

+ c.

Remark. It is only a coincidence in the proof that the constant 45
appears both in the non-affine case and in the affine case.
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Thank you for your attention.
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