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The University of Western Australia 

My congratulations to Bernd Fischer and thanks 

 I appreciate the invitation to speak in honour of 

 

Our colleague Bernd Fischer 

 

 

Photographs: courtesy Ludwig Danzer 
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1969  Fischer theory of three transposition groups published 

 In particular:  wonderful constructions of the three Fischer sporadic finite 

simple groups 

 

 “Three-transposition theory”  caught the imagination of mathematicians 

world-wide and in many areas 

• In group theory, combinatorics, geometry   

 

 My aim: 

• Trace several paths either influenced by “Three-transposition theory”  

• Or where Three-transposition groups appeared unexpectedly  

 

• And they keep on arising ….. 

 



The University of Western Australia 

1969 Lecture Note, University of Warwick 

1971 Inventiones paper 

 Definitions: 

 Group G 

 family C of 3-transpositions in G:  

1) C closed under conjugation,  

2) For all x, y in C,  | xy | is 1 or 2 or 3 

   

 G called a 3-transposition group   

• if G generated a family  of 3-transpositions 

• Usually refer to (G, C) as a three transposition group 

 

 Fischer classifies all finite almost simple 3-transposition groups – beautiful 
concept, beautiful proof 

Distinct x, y 

Either commute 

Or generate Sym(3) 
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Fischer’s classification: 

 Given (G, C) a three transposition group 

 Assume each normal {2,3}-subgroup central, and G’ = G” 

 Then G/Z(G) is known explicitly:  one of  

1) Sym(n) , Sp(2n,2) , Oε(2n,2) , PSU(n,2) Oε(2n,3)  or 

2) One of the three Fischer sporadic groups Fi22 , Fi23 , Fi24     

 And the class C (modulo Z(G)) was specified in each case 

 

 

 This result and the underlying theory was very influential 

47 MathSciNet citations, 297 cites in Google Scholar 
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Huge impact in Group Theory: simple group classification 

 1973  Aschbacher:  extended theory to “odd transposition groups” 

 

Fischer groups investigated: 

 1974  Hunt: determined conjugacy classes of  Fi23 & some character values  

 1981 Parrott:  characterised  Fi22 , Fi23 , Fi24 by their centralisers of a 

central involution  

 

Inspired and underpinned studies of subgroup structure of simple groups: 

 1979 Kantor:  Subgroups of finite classical groups generated by long root 

elements 

Even quite recently:   for example 

 2006 (Chris) Parker: 3-local characterisation of  Fi22  
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Geometrical and Combinatorial impact 

 1974 Buekenhout:  Fischer spaces   

• Partial linear space (P, L) with point set P, line set L 

• Each line incident with 3 points 

• Each intersecting line pair contained in a                                                        

“Subspace” AG(2,3) or dual of AG(2,2) 

 

 Each three transposition group (G, C) 

• Gives Fischer space  (G,C) = (C, L) 

• lines are Sym(3) ‘s  

 

 Buekenhout: 1-1 correspondence between  

connected Fischer spaces and three transposition groups with trivial centre 

(23) 

(12) 

(13) 

Ex:  (G,C)  

has just  

one line  

Connected: collinearity graph connected 
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Geometrical and Combinatorial impact 

 1971  Fischer:  diagram D of a three transposition group (G, C) 

• Graph with vertex set C 

• { x, y } an edge  | xy | = 3 

• [in analogy with Coxeter diagrams] 

 

 Example G = Sym(3), C = { (12), (23), (13) } 

 

 Paper contains diagrams like this 

 So there was a combinatorial way of thinking 

(23) 

(12) 

(13) 
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Geometrical and Combinatorial impact: Cuypers and (J I) Hall 

 1989 - 1997  [3 of JIH, 1 by HC, 4 joint] :  extend to infinite  three 

transposition groups (G, C) – strong use of graph theoretic methodology  

 As well as the diagram D, they study  

 The commuting graph A of (G, C) 

• Graph with vertex set C 

• { x, y } an edge  | xy | = 2 

• Commuting graph is complement of diagram 

 

 Example G = Sym(3), C = { (12), (23), (13) } 

Commuting graph is the empty graph 

 

 Note that G is a group of automorphisms of both D and A 

 

(23) 

(12) 

(13) 
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Geometrical and Combinatorial impact: Cuypers and (J I) Hall 

 Two equivalence relations on C 

 D-relation:   

• x D y  x, y have same neighbour set in D 

 A-relation:   

• x A y  x, y have same neighbour set in A 

 

 Both relations are G-invariant – induced G-action 

On the sets of equivalence classes 

 

 G is irreducible if G faithful on the   

Equivalence classes for each relation 

 

 

(23) 

(12) 

(13) 

Ex:  both relations 

Trivial for Sym(3)  

All finite three transposition groups with no nontrivial soluble normal subgroups are irreducible 
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(23) 

(12) 

(13) 

Geometrical and Combinatorial impact: Cuypers and (J I) Hall 

 Two equivalence relations on C 

 D-relation:   

• x D y  x, y have same neighbour set in D 

 A-relation:   

• x A y  x, y have same neighbour set in A 

 

 Classification:  all irreducible three transposition groups  

• Essentially same as finite case – same classical groups over possibly 

infinite dimensional spaces.  

 

 

Ex:  both relations 

Trivial for Sym(3)  

All finite three transposition groups with no nontrivial soluble normal subgroups are irreducible 
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Commuting graphs and diagrams 

 Broader context:  Group G and class C of involutions (union of conjugacy 

classes; often a single class) 

• Graph with vertex set C 

• { x, y } an edge  CONDITION holds  

 

 CONDITION:  “commuting”  that is | xy | = 2 

• Motivating examples: all simply laced Weyl groups 

• Bates, Bundy, Perkins, Rowley [2003 + +] 

• Studied for all Coxeter groups:  connectivity, diameters of components  

• Many generalisations in literature 
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Commuting graphs and diagrams 

 Broader context:  Group G and class C of involutions (union of conjugacy 

classes; often a single class) 

• Graph with vertex set C 

• { x, y } an edge  CONDITION holds  

 

 CONDITION: | xy | = 3 equivalently  < x, y > = Sym(3) 

• Called  Sym(3) - involution graph    

• Devillers, Giudici  [2008  - several papers] 

• General theory on connectivity, automorphisms, existence of triangles 

 

 Motivated by ….  
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Tower of graphs admitting interesting groups 

 Arose from general study of decomposing edges of a Johnson graph J(v,k) 
“nicely” into isomorphic subgraphs  [Devillers, Giudici, Li, CEP 2008] 

 

• Exceptional example J(12,4)  [valency 32, 495 vertices] 

– admits M12 decomposing into 12 copies of  [valency 8, 165 vertices] admitting M11   

• Exceptional example J(11,3)  
– admits M11 decomposing into 12 copies of  [valency 6, 55 vertices] admitting PSL(2,11)   

 

• Use Witt designs to understand graphs   J(12,4), ,  

• Or diagram geometry to understand  A5 < PSL(2,11) < M11 

  

 Most uniform interpretation was as a set of four Involution graphs 

 

 

 CONDITION:   < x, y > = Sym(3) PLUS  something extra 

• Devillers, Giudici, Li, CEP  [2010] 
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Commuting graphs and diagrams 

 Broader context:  Group G and class C of involutions (union of conjugacy 

classes; often a single class) 

• Graph with vertex set C 

• { x, y } an edge  CONDITION holds  

 

 CONDITION: | xy | lies in given set    of positive integers 

•  - Local fusion graph or Local fusion graph if  = {all odd integers} 

• Ballantyne, Greer, Rowley [2013  - several papers] 

• For symmetric groups, sporadic simple groups:  diameter at most 2 

 

 Theorem: for all r, m exists G, C where local fusion graph has m 

components, each of diameter r  
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Now for something different: beginning with M12 

 Conway’s Game on PG(3,3) 

 

 Start from a specified point ∞ 

 Move to a second point 
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Now for something different: beginning with M12 

 Conway’s Game on PG(3,3) 

 

 Start from a specified point ∞ 

 Move to a second point, say 3 

 

 Associate move with permutation 

 [∞, 3] = (∞,3) (5,7)   
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Now for something different: beginning with M12 

 Conway’s Game on PG(3,3) 

 

 Start from a specified point ∞ 

 Move to a second point, say 3 

 

 Associate move with permutation 

 [∞, 3] = (∞,3) (5,7)   

 Repeat:  [3,9] = (3,9) (6,12) 

 Composite move sequence 

[∞, 3, 9] = [∞, 3] [3,9] = (∞,3) (5,7) (3,9) (6,12)  

                = (∞, 9, 3 ) (5, 7) (6,12) 
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Now for something different: beginning with M12 

 Conway’s Game on PG(3,3) 

 

 L∞(PG(3,3)) := SET of all move sequences starting with ∞ 

 “Conway’s groupoid” – subset of Sym(13) – not a group 

 

 ∞(PG(3,3)) := SET of all move sequences starting AND ENDING with ∞ 

 “hole stabiliser” – is a group  

 Isomorphic to M12 

 

 

 Gill, Gillespie, Nixon, Semeraro: where else can we play this game?  
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Try a 2-(n,4,k) design D 

 n points, each point pair { a, b } lies on k lines [all of size 4] 

 Try to define 

 

 

 

 Well defined provided the points ci and di are pairwise distinct 

 So need D  supersimple  distinct lines have at most two common points 

 

 L∞(D) := SET of all move sequences starting with distinguished point ∞ 

 ∞(D) := SET of all move sequences starting AND ENDING with ∞ 
 

 

 Gill, Gillespie, Nixon, Semeraro:  computer searches  and some theory 
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Supersimple 2-(n,4,k) design D 

 Each point pair { a, b } has elementary move 

 

 For k=1 found: either Conway’s groupoid or ∞(D) = Alt(n-1), L∞(D) = Alt(n) 

 

 For k=2 found: INTERESTING CASE or ∞(D) = Sym(n-1), L∞(D) = Sym(n) 

 

 INTERESTING CASE n=10, ∞(D) = O+(4,2), L∞(D) = Sp(4,2)  [a group!] 

 And D satisfies:   

• Symmetric difference of two intersecting lines is also a line 

• Each 4-subset of points contains 0, 2 or 4 collinear triples 

 

 

Collinear triples forms  

regular two graph 
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Supersimple 2-(n,4,k) designs D with 

• Symmetric difference of two intersecting lines is also a line 

• Each 4-subset of points contains 0, 2 or 4 collinear triples 

 

 2017 Gill, Gillespie, CEP, Semeraro:  

• L∞(D) always a group 

 

 For E := { [a,b] | distinct points a, b }  

• E conjugacy class of L∞(D) 

• (L∞(D), E) three transposition group   
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Supersimple 2-(n,4,k) designs D with 

• Symmetric difference of intersection lines is also a line 

• Each 4-subset of points contains 0, 2 or 4 collinear triples 

 

 Using the Fischer classification of three transposition groups we find 

 

 2017 Gill, Gillespie, CEP, Semeraro: One of the following 

1)  ∞(D) = 1  and  L∞(D) = E(2m)  

2) ∞(D) = O+(2m,2), L∞(D) = Sp(2m,2) 

3)  ∞(D) = O-(2m,2), L∞(D) = Sp(2m,2) 

4)  ∞(D) = Sp(2m,2), L∞(D) = 22m.Sp(2m,2) 

 D described explicitly e.g. in case 1) points and planes of AG(m,2) 
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Thank you 

Photo. Courtesy: Joan Costa  joancostaphoto.com 

To Professor Bernd Fischer 

For your beautiful mathematics  

Congratulations on the milestone 

celebrated at this conference 
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