

Three transpositions, Graphs and Groupoids

CHERYL E PRAEGER

CENTRE FOR THE MATHEMATICS OF SYMMETRY AND COMPUTATION

BIELEFELD JANUARY 2017

My congratulations to Bernd Fischer and thanks

↘ I appreciate the invitation to speak in honour of

Our colleague Bernd Fischer

Photographs: courtesy Ludwig Danzer

1969 Fischer theory of three transposition groups published

- In particular: wonderful constructions of the three Fischer sporadic finite simple groups
- "Three-transposition theory" caught the imagination of mathematicians world-wide and in many areas
 - In group theory, combinatorics, geometry
- ש My aim:
 - Trace several paths either influenced by "Three-transposition theory"
 - Or where Three-transposition groups appeared unexpectedly
 - And they keep on arising

1969 Lecture Note, University of Warwick 1971 Inventiones paper

- Definitions:
- **□** Group G
- J family C of 3-transpositions in G:
 - 1) C closed under conjugation,
 - 2) For all x, y in C, | xy | is 1 or 2 or 3

☑ G called a 3-transposition group

- if G generated a family of 3-transpositions
- Usually refer to (G, C) as a three transposition group
- Fischer classifies all finite almost simple 3-transposition groups beautiful concept, beautiful proof

Distinct x, y Either commute Or generate Sym(3)

Fischer's classification:

- ☑ **Given** (G, C) a three transposition group
- Solution State Assume each normal {2,3}-subgroup central, and G' = G"
- Y Then G/Z(G) is known explicitly: one of
 - 1) Sym(n) , Sp(2n,2) , $O^\epsilon(2n,2)$, PSU(n,2) $O^\epsilon(2n,3)$ or
 - 2) One of the three Fischer sporadic groups $\rm Fi_{22}$, $\rm Fi_{23}$, $\rm Fi_{24}$
- ☑ And the class C (modulo Z(G)) was specified in each case

अ This result and the underlying theory was very influential

47 MathSciNet citations, 297 cites in Google Scholar

Huge impact in Group Theory: simple group classification

☑ 1973 Aschbacher: extended theory to "odd transposition groups"

Fischer groups investigated:

- ▶ **1974 Hunt:** determined conjugacy classes of Fi₂₃ & some character values
- ▶ 1981 Parrott: characterised Fi₂₂, Fi₂₃, Fi₂₄ by their centralisers of a central involution

Inspired and underpinned studies of subgroup structure of simple groups:

▶ 1979 Kantor: Subgroups of finite classical groups generated by long root elements

Even quite recently: for example

≥ 2006 (Chris) Parker: 3-local characterisation of Fi₂₂

Geometrical and Combinatorial impact

```
□ 1974 Buekenhout: Fischer spaces \Pi
```

- Partial linear space (P, L) with point set P, line set L
- Each line incident with 3 points
- Each intersecting line pair contained in a "Subspace" AG(2,3) or dual of AG(2,2)
- ☑ Each three transposition group (G, C)
 - Gives Fischer space $\Pi(G,C) = (C, L)$
 - lines are Sym(3) 's
- ❑ Buekenhout: 1-1 correspondence between

connected Fischer spaces and three transposition groups with trivial centre

Connected: collinearity graph connected

(13)

Ex: П(G,C)

has just

one line

(12)

(23)

Geometrical and Combinatorial impact

- ▶ **1971 Fischer: diagram** D of a three transposition group (G, C)
 - Graph with vertex set C
 - { x, y } an edge ⇔ | xy | = 3
 - [in analogy with Coxeter diagrams]
- Paper contains diagrams like this
- So there was a combinatorial way of thinking

Geometrical and Combinatorial impact: Cuypers and (J I) Hall

- ▶ 1989 1997 [3 of JIH, 1 by HC, 4 joint] : extend to infinite three transposition groups (G, C) strong use of graph theoretic methodology
- As well as the **diagram D**, they study
- □ The **commuting graph A** of (G, C)
 - Graph with vertex set C
 - { x, y } an edge ⇔ | xy | = 2
 - Commuting graph is **complement** of diagram
- ▶ Example G = Sym(3), C = { (12), (23), (13) } Commuting graph is the empty graph

Note that G is a group of automorphisms of both D and A

Geometrical and Combinatorial impact: Cuypers and (J I) Hall

- ☑ Two equivalence relations on C
- **□ D**-relation:
 - $\mathbf{x} \equiv_{\mathsf{D}} \mathbf{y} \Leftrightarrow \mathbf{x}, \mathbf{y}$ have same neighbour set in D
- ► A-relation:
 - $\mathbf{x} \equiv_{A} \mathbf{y} \Leftrightarrow \mathbf{x}, \mathbf{y}$ have same neighbour set in A
- Both relations are G-invariant induced G-action
 On the sets of equivalence classes

G is **irreducible** if G faithful on the Equivalence classes for each relation

All finite three transposition groups with no nontrivial soluble normal subgroups are irreducible

Geometrical and Combinatorial impact: Cuypers and (J I) Hall

All finite three transposition groups with no nontrivial soluble normal subgroups are irreducible

Commuting graphs and diagrams

- ❑ Broader context: Group G and class C of involutions (union of conjugacy classes; often a single class)
 - Graph with vertex set C
 - { x, y } an edge \Leftrightarrow **CONDITION** holds
- Solution: "commuting" that is |xy| = 2
 - Motivating examples: all simply laced Weyl groups
 - Bates, Bundy, Perkins, Rowley [2003 + +]
 - Studied for all Coxeter groups: connectivity, diameters of components
 - Many generalisations in literature

Commuting graphs and diagrams

- ❑ Broader context: Group G and class C of involutions (union of conjugacy classes; often a single class)
 - Graph with vertex set C
 - { x, y } an edge \Leftrightarrow **CONDITION** holds
- Solution: |xy| = 3 equivalently $\langle x, y \rangle = Sym(3)$
 - Called Sym(3) involution graph
 - Devillers, Giudici [2008 several papers]
 - General theory on connectivity, automorphisms, existence of triangles
- ☑ Motivated by

 $A_5 < \text{PSL}(2, 11) < M_{11} < M_{12}.$

Tower of graphs admitting interesting groups

- Arose from general study of decomposing edges of a Johnson graph J(v,k) "nicely" into isomorphic subgraphs [Devillers, Giudici, Li, CEP 2008]
 - Exceptional example J(12,4) [valency 32, 495 vertices]
 - admits M_{12} decomposing into 12 copies of Σ [valency 8, 165 vertices] admitting M_{11}
 - Exceptional example J(11,3)
 - admits M_{11} decomposing into 12 copies of Π [valency 6, 55 vertices] admitting PSL(2,11)
 - Use Witt designs to understand graphs J(12,4), Σ , Π
 - Or diagram geometry to understand A₅ < PSL(2,11) < M₁₁
- Nost uniform interpretation was as a set of four Involution graphs
- Solution: $\langle x, y \rangle = Sym(3)$ PLUS something extra
 - Devillers, Giudici, Li, CEP [2010]

Commuting graphs and diagrams

- ❑ Broader context: Group G and class C of involutions (union of conjugacy classes; often a single class)
 - Graph with vertex set C
 - { x, y } an edge \Leftrightarrow **CONDITION** holds
- Solution: |xy| lies in given set π of positive integers
 - π Local fusion graph or Local fusion graph if π = {all odd integers}
 - Ballantyne, Greer, Rowley [2013 several papers]
 - For symmetric groups, sporadic simple groups: diameter at most 2
- ➤ Theorem: for all r, m exists G, C where local fusion graph has m components, each of diameter r

- \square Conway's Game on PG(3,3)
- \checkmark Start from a specified point ∞
- 凶 Move to a second point

- \checkmark Conway's Game on PG(3,3)
- Start from a specified point ∞
- ☑ Move to a second point, say 3
- Associate move with permutation $[\infty, 3] = (\infty, 3) (5,7)$

- \checkmark Conway's Game on PG(3,3)
- Start from a specified point ∞
- ☑ Move to a second point, say 3
- ❑ Associate move with permutation

 [∞, 3] = (∞,3) (5,7)
 ❑ Repeat: [3,9] = (3,9) (6,12)
 ❑ Composite move sequence

$$[\infty, 3, 9] = [\infty, 3] [3,9] = (\infty, 3) (5,7) (3,9) (6,12)$$
$$= (\infty, 9, 3) (5,7) (6,12)$$

- \checkmark Conway's Game on PG(3,3)
- ▶ $L_{\infty}(PG(3,3)) := SET$ of all move sequences starting with ∞
- ▶ $\Pi_{\infty}(PG(3,3)) := SET$ of all move sequences starting AND ENDING with ∞
- ↘ "hole stabiliser" is a group
- ☑ Isomorphic to M₁₂
- □ Gill, Gillespie, Nixon, Semeraro: where else can we play this game?

Try a 2-(n,4,k) design D

- ↘ n points, each point pair { a, b } lies on k lines [all of size 4]

$$[a, b] = (a, b) \prod_{i=1}^{k} (c_i, d_i)$$

- \checkmark Well defined provided the points c_i and d_i are pairwise distinct
- So need D supersimple distinct lines have at most two common points
- ▶ $\Pi_{\infty}(D) := SET$ of all move sequences starting AND ENDING with ∞
- Sill, Gillespie, Nixon, Semeraro: computer searches and some theory

Supersimple 2-(n,4,k) design D

> Each point pair { a, b } has elementary move

 $[a, b] = (a, b) \prod_{i=1}^{k} (c_i, d_i)$

- ▷ For k=1 found: either Conway's groupoid or $\Pi_{\infty}(D) = Alt(n-1), L_{\infty}(D) = Alt(n)$
- ▶ For k=2 found: INTERESTING CASE or $\Pi_{\infty}(D) = Sym(n-1), L_{\infty}(D) = Sym(n)$
- ▷ INTERESTING CASE n=10, $\Pi_{\infty}(D) = O^+(4,2)$, $L_{\infty}(D) = Sp(4,2)$ [a group!]
- And D satisfies:
 - Symmetric difference of two intersecting lines is also a line
 - Each 4-subset of points contains 0, 2 or 4 collinear triples

Collinear triples forms regular two graph

- Symmetric difference of two intersecting lines is also a line
- Each 4-subset of points contains 0, 2 or 4 collinear triples
- ע 2017 Gill, Gillespie, CEP, Semeraro:
 - $L_{\infty}(D)$ always a group
- ↘ For E := { [a,b] | distinct points a, b }
 - E conjugacy class of $L_{\infty}(D)$
 - $(L_{\infty}(D), E)$ three transposition group

- Symmetric difference of intersection lines is also a line
- Each 4-subset of points contains 0, 2 or 4 collinear triples
- Using the Fischer classification of three transposition groups we find
- ≥ 2017 Gill, Gillespie, CEP, Semeraro: One of the following

1)
$$\Pi_{\infty}(D) = 1$$
 and $L_{\infty}(D) = E(2^m)$

- 2) $\Pi_{\infty}(D) = O^{+}(2m,2), L_{\infty}(D) = Sp(2m,2)$
- 3) $\Pi_{\infty}(D) = O^{-}(2m,2), L_{\infty}(D) = Sp(2m,2)$
- 4) $\Pi_{\infty}(D) = Sp(2m,2), L_{\infty}(D) = 2^{2m}.Sp(2m,2)$
- \square D described explicitly e.g. in case 1) points and planes of AG(m,2)

Thank you

To Professor Bernd Fischer
 For your beautiful mathematics
 Congratulations on the milestone celebrated at this conference

Photo. Courtesy: Joan Costa joancostaphoto.com

Thank you

Photo. Courtesy: Joan Costa joancostaphoto.com

Γhe University of Western Australia