Three transpositions, Graphs and Groupoids

My congratulations to Bernd Fischer and thanks

\geq I appreciate the invitation to speak in honour of
Our colleague Bernd Fischer

1969 Fischer theory of three transposition groups published

y In particular: wonderful constructions of the three Fischer sporadic finite simple groups
y "Three-transposition theory" caught the imagination of mathematicians world-wide and in many areas

- In group theory, combinatorics, geometry
\searrow My aim:
- Trace several paths either influenced by "Three-transposition theory"
- Or where Three-transposition groups appeared unexpectedly
- And they keep on arising

1969 Lecture Note, University of Warwick 1971 Inventiones paper

\searrow Definitions:
\pm Group G
$>$ family C of 3 -transpositions in G :

1) C closed under conjugation,
2) For all x, y in $C,|x y|$ is 1 or 2 or 3

Distinct x, y Either commute Or generate Sym(3)

\searrow G called a 3-transposition group

- if G generated a family of 3-transpositions
- Usually refer to (G, C) as a three transposition group
\searrow Fischer classifies all finite almost simple 3-transposition groups - beautiful concept, beautiful proof

Fischer's classification:

\searrow Given (G, C) a three transposition group
\searrow Assume each normal $\{2,3\}$-subgroup central, and $G^{\prime}=G^{\prime \prime}$
\searrow Then $G / Z(G)$ is known explicitly: one of

1) $\operatorname{Sym}(n), S p(2 n, 2), O^{\varepsilon}(2 n, 2), \operatorname{PSU}(n, 2) O^{\varepsilon}(2 n, 3)$ or
2) One of the three Fischer sporadic groups $\mathrm{Fi}_{22}, \mathrm{Fi}_{23}, \mathrm{Fi}_{24}$
\searrow And the class C (modulo $Z(G)$) was specified in each case
\searrow This result and the underlying theory was very influential

Huge impact in Group Theory: simple group classification

$\searrow 1973$ Aschbacher: extended theory to "odd transposition groups"

Fischer groups investigated:
$\searrow 1974$ Hunt: determined conjugacy classes of Fi_{23} \& some character values
≥ 1981 Parrott: characterised $\mathrm{Fi}_{22}, \mathrm{Fi}_{23}, \mathrm{Fi}_{24}$ by their centralisers of a central involution

Inspired and underpinned studies of subgroup structure of simple groups:
$\searrow 1979$ Kantor: Subgroups of finite classical groups generated by long root elements
Even quite recently: for example
$\searrow 2006$ (Chris) Parker: 3-local characterisation of Fi_{22}

Geometrical and Combinatorial impact

$\searrow 1974$ Buekenhout: Fischer spaces Π

- Partial linear space (P, L) with point set P, line set L
- Each line incident with 3 points
- Each intersecting line pair contained in a "Subspace" AG $(2,3)$ or dual of $\operatorname{AG}(2,2)$
v Each three transposition group (G, C)
- Gives Fischer space $\Pi(\mathrm{G}, \mathrm{C})=(\mathrm{C}, \mathrm{L})$
- lines are Sym(3) ‘s
\searrow Buekenhout: 1-1 correspondence between

connected Fischer spaces and three transposition groups with trivial centre
Connected: collinearity graph connected

Geometrical and Combinatorial impact

± 1971 Fischer: diagram D of a three transposition group (G, C)

- Graph with vertex set C
- $\{x, y\}$ an edge $\Leftrightarrow|x y|=3$
- [in analogy with Coxeter diagrams]
\searrow Example $G=\operatorname{Sym}(3), C=\{(12),(23),(13)\}$
\searrow Paper contains diagrams like this
\searrow So there was a combinatorial way of thinking

(23)

Geometrical and Combinatorial impact: Cuypers and (J I) Hall

y 1989-1997 [3 of JIH, 1 by HC, 4 joint] : extend to infinite three transposition groups (G, C) - strong use of graph theoretic methodology
\searrow As well as the diagram D , they study
\searrow The commuting graph A of (G, C)

- Graph with vertex set C
- $\{x, y\}$ an edge $\Leftrightarrow|x y|=2$
- Commuting graph is complement of diagram
\searrow Example $G=\operatorname{Sym}(3), C=\{(12),(23),(13)\}$
Commuting graph is the empty graph
(23)
\geq Note that G is a group of automorphisms of both D and A

Geometrical and Combinatorial impact: Cuypers and (J I) Hall

\searrow Two equivalence relations on C
\searrow D-relation:

- $\mathbf{x} \equiv_{\mathrm{D}} \mathbf{y} \Leftrightarrow \mathbf{x}, \mathbf{y}$ have same neighbour set in D
\pm A-relation:
- $\mathbf{X} \equiv_{A} \mathbf{y} \Leftrightarrow \mathbf{x}, \mathbf{y}$ have same neighbour set in A
y Both relations are G-invariant - induced G-action On the sets of equivalence classes
$y G$ is irreducible if G faithful on the Equivalence classes for each relation

Ex: both relations Trivial for Sym(3)

All finite three transposition groups with no nontrivial soluble normal subgroups are irreducible

Geometrical and Combinatorial impact: Cuypers and (J I) Hall

\searrow Two equivalence relations on C
\searrow D-relation:

- $\mathbf{x} \equiv_{\mathrm{D}} \mathbf{y} \Leftrightarrow \mathbf{x}, \mathbf{y}$ have same neighbour set in D

Ex: both relations
Trivial for Sym(3)
y A-relation:

- $\mathbf{x} \equiv_{A} \mathbf{y} \Leftrightarrow \mathbf{x}, \mathbf{y}$ have same neighbour set in A
\searrow Classification: all irreducible three transposition groups
- Essentially same as finite case - same classical groups over possibly infinite dimensional spaces.

All finite three transposition groups with no nontrivial soluble normal subgroups are irreducible

Commuting graphs and diagrams

\searrow Broader context: Group G and class C of involutions (union of conjugacy classes; often a single class)

- Graph with vertex set C
- $\{x, y\}$ an edge \Leftrightarrow CONDITION holds
\pm CONDITION: "commuting" that is $|x y|=2$
- Motivating examples: all simply laced Weyl groups
- Bates, Bundy, Perkins, Rowley [2003 + +]
- Studied for all Coxeter groups: connectivity, diameters of components
- Many generalisations in literature

Commuting graphs and diagrams

\searrow Broader context: Group G and class C of involutions (union of conjugacy classes; often a single class)

- Graph with vertex set C
- $\{x, y\}$ an edge \Leftrightarrow CONDITION holds
\pm CONDITION: $|x y|=3$ equivalently $\langle x, y\rangle=\operatorname{Sym}(3)$
- Called Sym(3)-involution graph
- Devillers, Giudici [2008 - several papers]
- General theory on connectivity, automorphisms, existence of triangles
\searrow Motivated by

$A_{5}<\operatorname{PSL}(2,11)<M_{11}<M_{12}$.

Tower of graphs admitting interesting groups

\searrow Arose from general study of decomposing edges of a Johnson graph $\mathrm{J}(\mathrm{v}, \mathrm{k})$ "nicely" into isomorphic subgraphs [Devillers, Giudici, Li, CEP 2008]

- Exceptional example $J(12,4)$ [valency 32,495 vertices]
- admits M_{12} decomposing into 12 copies of Σ [valency 8,165 vertices] admitting M_{11}
- Exceptional example J(11,3)
- admits M_{11} decomposing into 12 copies of Π [valency 6,55 vertices] admitting $\operatorname{PSL}(2,11)$
- Use Witt designs to understand graphs J(12,4), Σ, Π
- Or diagram geometry to understand $\mathrm{A}_{5}<\mathrm{PSL}(2,11)<\mathrm{M}_{11}$

\searrow Most uniform interpretation was as a set of four Involution graphs

\searrow CONDITION: $\langle x, y\rangle=\operatorname{Sym}(3)$ PLUS something extra
- Devillers, Giudici, Li, CEP [2010]

Commuting graphs and diagrams

\searrow Broader context: Group G and class C of involutions (union of conjugacy classes; often a single class)

- Graph with vertex set C
- $\{x, y\}$ an edge \Leftrightarrow CONDITION holds
\pm CONDITION: |xy | lies in given set π of positive integers
- π - Local fusion graph or Local fusion graph if $\pi=$ \{all odd integers \}
- Ballantyne, Greer, Rowley [2013 - several papers]
- For symmetric groups, sporadic simple groups: diameter at most 2
\searrow Theorem: for all r, m exists G, C where local fusion graph has m components, each of diameter r

Now for something different: beginning with \mathbf{M}_{12}

\searrow Conway's Game on PG(3,3)
\searrow Start from a specified point ∞
v Move to a second point

Now for something different: beginning with \mathbf{M}_{12}

\searrow Conway's Game on PG(3,3)
\searrow Start from a specified point ∞
\searrow Move to a second point, say 3
\searrow Associate move with permutation

$$
[\infty, 3]=(\infty, 3)(5,7)
$$

Now for something different: beginning with \mathbf{M}_{12}

\searrow Conway's Game on PG(3,3)
\searrow Start from a specified point ∞
\searrow Move to a second point, say 3
\searrow Associate move with permutation

$$
[\infty, 3]=(\infty, 3)(5,7)
$$

\searrow Repeat: $[3,9]=(3,9)(6,12)$
\searrow Composite move sequence
$[\infty, 3,9]=[\infty, 3][3,9]=(\infty, 3)(5,7)(3,9)(6,12)$
$=(\infty, 9,3)(5,7)(6,12)$

Now for something different: beginning with \mathbf{M}_{12}

\pm Conway's Game on PG(3,3)
$\geq \mathrm{L}_{\infty}(\mathrm{PG}(3,3)):=$ SET of all move sequences starting with ∞
\searrow "Conway's groupoid" - subset of Sym(13) - not a group
$\searrow \Pi_{\infty}(\mathrm{PG}(3,3)):=$ SET of all move sequences starting AND ENDING with ∞
\searrow "hole stabiliser" - is a group
\searrow Isomorphic to M_{12}
\searrow Gill, Gillespie, Nixon, Semeraro: where else can we play this game?

Try a 2-(n,4,k) design D

y n points, each point pair $\{a, b\}$ lies on k lines [all of size 4]
y Try to define

$$
[a, b]=(a, b) \prod_{i=1}^{k}\left(c_{i}, d_{i}\right)
$$

\searrow Well defined provided the points c_{i} and d_{i} are pairwise distinct
\searrow So need D supersimple distinct lines have at most two common points
$\searrow \mathrm{L}_{\infty}(\mathrm{D}):=$ SET of all move sequences starting with distinguished point ∞
$\searrow \Pi_{\infty}(\mathrm{D}):=$ SET of all move sequences starting AND ENDING with ∞
\searrow Gill, Gillespie, Nixon, Semeraro: computer searches and some theory

Supersimple 2-(n,4,k) design D

\searrow Each point pair $\{a, b\}$ has elementary move

$$
[a, b]=(a, b) \prod_{i=1}^{k}\left(c_{i}, d_{i}\right)
$$

\searrow For $k=1$ found: either Conway's groupoid or $\Pi_{\infty}(\mathrm{D})=\operatorname{Alt}(\mathrm{n}-1), \mathrm{L}_{\infty}(\mathrm{D})=\operatorname{Alt}(\mathrm{n})$
\searrow For $\mathrm{k}=2$ found: $\operatorname{INTERESTING}$ CASE or $\Pi_{\infty}(\mathrm{D})=\operatorname{Sym}(\mathrm{n}-1), \mathrm{L}_{\infty}(\mathrm{D})=\operatorname{Sym}(\mathrm{n})$
\searrow INTERESTING CASE $\mathrm{n}=10, \Pi_{\infty}(\mathrm{D})=\mathrm{O}^{+}(4,2), \mathrm{L}_{\infty}(\mathrm{D})=\mathrm{Sp}(4,2)$ [a group!]
\searrow And D satisfies:

- Symmetric difference of two intersecting lines is also a line
- Each 4 -subset of points contains 0 , 2 or 4 collinear triples

$$
[a, b]=(a, b) \prod_{i=1}^{k}\left(c_{i}, d_{i}\right)
$$

Supersimple 2-(n,4,k) designs D with

- Symmetric difference of two intersecting lines is also a line
- Each 4 -subset of points contains 0 , 2 or 4 collinear triples

У 2017 Gill, Gillespie, CEP, Semeraro:

- $\mathrm{L}_{\infty}(\mathrm{D})$ always a group
\searrow For $E:=\{[a, b] \mid$ distinct points $a, b\}$
- E conjugacy class of $L_{\infty}(D)$
- $\left(\mathrm{L}_{\infty}(\mathrm{D}), \mathrm{E}\right)$ three transposition group

$$
[a, b]=(a, b) \prod_{i=1}^{k}\left(c_{i}, d_{i}\right)
$$

Supersimple 2-(n,4,k) designs D with

- Symmetric difference of intersection lines is also a line
- Each 4 -subset of points contains 0 , 2 or 4 collinear triples
\searrow Using the Fischer classification of three transposition groups we find
> 2017 Gill, Gillespie, CEP, Semeraro: One of the following

1) $\Pi_{\infty}(\mathrm{D})=1$ and $\mathrm{L}_{\infty}(\mathrm{D})=E\left(2^{\mathrm{m}}\right)$
2) $\Pi_{\infty}(D)=O^{+}(2 m, 2), L_{\infty}(D)=S p(2 m, 2)$
3) $\Pi_{\infty}(D)=O-(2 m, 2), L_{\infty}(D)=S p(2 m, 2)$
4) $\Pi_{\infty}(D)=\operatorname{Sp}(2 m, 2), L_{\infty}(D)=2^{2 m} \cdot S p(2 m, 2)$
$\searrow D$ described explicitly e.g. in case 1) points and planes of $A G(m, 2)$

Thank you

>To Professor Bernd Fischer
$>$ For your beautiful mathematics
>Congratulations on the milestone celebrated at this conference

Thank you

