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w = (1 3 9 8)(2 5 6)(4)(7) ∈ S9

The group Sn is a (finite) Weyl group. Weyl groups are
examples of Coxeter groups.

A Coxeter system (W ,S) is a (not necessarily finite) group
W generated by a finite set S = {s1, . . . , sn} with a
presentation

W = 〈 s1, . . . , sn | s2
i = e, si sj · · ·︸ ︷︷ ︸

mij copies

= sjsi · · ·︸ ︷︷ ︸
mji copies

if i 6= j 〉,

where mij = mji ∈ {2, 3, . . . } ∪ {∞}.
Examples: dihedral groups, hyperoctahedral groups, Weyl
groups of semisimple alg. groups or Kac-Moody groups, ...

Coxeter groups can be realized as real reflection groups, that
is, groups generated by reflections on finite-dimensional real
spaces, preserving a symmetric bilinear form (which is
non-degenerate iff W is finite).
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Cycle decompositions in Coxeter groups

Question 1

Is there a natural generalization of the cycle decomposition to
elements of (finite) Coxeter groups?

I Plan of the talk:

1. Cycle decompositions in arbitrary Coxeter groups.
2. Hurwitz action and (parabolic) quasi-Coxeter elements

in finite Coxeter groups.
3. Cycle decompositions in finite Coxeter groups.

I The main result, which is a characterization of (parabolic)
quasi-Coxeter elements in finite Coxeter groups, is a joint
work with B. Baumeister, K. Roberts, and P. Wegener.



Generalized cycle
decompositions

and quasi-Coxeter
elements in

Coxeter groups

Thomas Gobet

Coxeter groups

Cycle
decompositions in
arbitrary Coxeter
groups

Parabolic
quasi-Coxeter
elements

Cycle
decompositions in
finite Coxeter
groups

Cycle decompositions in Coxeter groups

Question 1

Is there a natural generalization of the cycle decomposition to
elements of (finite) Coxeter groups?

I Plan of the talk:

1. Cycle decompositions in arbitrary Coxeter groups.
2. Hurwitz action and (parabolic) quasi-Coxeter elements

in finite Coxeter groups.
3. Cycle decompositions in finite Coxeter groups.

I The main result, which is a characterization of (parabolic)
quasi-Coxeter elements in finite Coxeter groups, is a joint
work with B. Baumeister, K. Roberts, and P. Wegener.



Generalized cycle
decompositions

and quasi-Coxeter
elements in

Coxeter groups

Thomas Gobet

Coxeter groups

Cycle
decompositions in
arbitrary Coxeter
groups

Parabolic
quasi-Coxeter
elements

Cycle
decompositions in
finite Coxeter
groups

Cycle decompositions in Coxeter groups

Question 1

Is there a natural generalization of the cycle decomposition to
elements of (finite) Coxeter groups?

I Plan of the talk:

1. Cycle decompositions in arbitrary Coxeter groups.
2. Hurwitz action and (parabolic) quasi-Coxeter elements

in finite Coxeter groups.
3. Cycle decompositions in finite Coxeter groups.

I The main result, which is a characterization of (parabolic)
quasi-Coxeter elements in finite Coxeter groups, is a joint
work with B. Baumeister, K. Roberts, and P. Wegener.



Generalized cycle
decompositions

and quasi-Coxeter
elements in

Coxeter groups

Thomas Gobet

Coxeter groups

Cycle
decompositions in
arbitrary Coxeter
groups

Parabolic
quasi-Coxeter
elements

Cycle
decompositions in
finite Coxeter
groups

Cycle decompositions in Coxeter groups

Question 1

Is there a natural generalization of the cycle decomposition to
elements of (finite) Coxeter groups?

I Plan of the talk:

1. Cycle decompositions in arbitrary Coxeter groups.

2. Hurwitz action and (parabolic) quasi-Coxeter elements
in finite Coxeter groups.

3. Cycle decompositions in finite Coxeter groups.

I The main result, which is a characterization of (parabolic)
quasi-Coxeter elements in finite Coxeter groups, is a joint
work with B. Baumeister, K. Roberts, and P. Wegener.



Generalized cycle
decompositions

and quasi-Coxeter
elements in

Coxeter groups

Thomas Gobet

Coxeter groups

Cycle
decompositions in
arbitrary Coxeter
groups

Parabolic
quasi-Coxeter
elements

Cycle
decompositions in
finite Coxeter
groups

Cycle decompositions in Coxeter groups

Question 1

Is there a natural generalization of the cycle decomposition to
elements of (finite) Coxeter groups?

I Plan of the talk:

1. Cycle decompositions in arbitrary Coxeter groups.
2. Hurwitz action and (parabolic) quasi-Coxeter elements

in finite Coxeter groups.

3. Cycle decompositions in finite Coxeter groups.

I The main result, which is a characterization of (parabolic)
quasi-Coxeter elements in finite Coxeter groups, is a joint
work with B. Baumeister, K. Roberts, and P. Wegener.



Generalized cycle
decompositions

and quasi-Coxeter
elements in

Coxeter groups

Thomas Gobet

Coxeter groups

Cycle
decompositions in
arbitrary Coxeter
groups

Parabolic
quasi-Coxeter
elements

Cycle
decompositions in
finite Coxeter
groups

Cycle decompositions in Coxeter groups

Question 1

Is there a natural generalization of the cycle decomposition to
elements of (finite) Coxeter groups?

I Plan of the talk:

1. Cycle decompositions in arbitrary Coxeter groups.
2. Hurwitz action and (parabolic) quasi-Coxeter elements

in finite Coxeter groups.
3. Cycle decompositions in finite Coxeter groups.

I The main result, which is a characterization of (parabolic)
quasi-Coxeter elements in finite Coxeter groups, is a joint
work with B. Baumeister, K. Roberts, and P. Wegener.



Generalized cycle
decompositions

and quasi-Coxeter
elements in

Coxeter groups

Thomas Gobet

Coxeter groups

Cycle
decompositions in
arbitrary Coxeter
groups

Parabolic
quasi-Coxeter
elements

Cycle
decompositions in
finite Coxeter
groups

Cycle decompositions in Coxeter groups

Question 1

Is there a natural generalization of the cycle decomposition to
elements of (finite) Coxeter groups?

I Plan of the talk:

1. Cycle decompositions in arbitrary Coxeter groups.
2. Hurwitz action and (parabolic) quasi-Coxeter elements

in finite Coxeter groups.
3. Cycle decompositions in finite Coxeter groups.

I The main result, which is a characterization of (parabolic)
quasi-Coxeter elements in finite Coxeter groups, is a joint
work with B. Baumeister, K. Roberts, and P. Wegener.



Generalized cycle
decompositions

and quasi-Coxeter
elements in

Coxeter groups

Thomas Gobet

Coxeter groups

Cycle
decompositions in
arbitrary Coxeter
groups

Parabolic
quasi-Coxeter
elements

Cycle
decompositions in
finite Coxeter
groups

Changing the generating set

I Let (W ,S) be a Coxeter system.

I Let `S : W −→ Z≥0 be the classical length function wrt the
generating set S . If W = Sn and w ∈W with cycle
decomposition w = c1c2 · · · ck , then (in general)

`S(w) 6=
∑
i

`S(ci ).

This is rather bad news.

I But: if you consider the length function `T with respect to
the set T of transpositions of Sn, then

`T (w) =
∑
i

`T (ci ) !

Moreover, the set T is the set of all the conjugates to
elements of S . In the Coxeter theoretic language: T is the
set of reflections of W .
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The “dual” approach

I There is a so-called “dual” approach to study a Coxeter
group, initiated by Bessis, Brady and Watt. The idea is to
study W as a group generated by T , instead of S .

I A dual Coxeter system (W ,T ) is a group W with a subset
T ⊆W such that there is S ⊆ T such that (W ,S) is a
Coxeter system and T =

⋃
w∈W wSw−1 (this is a bad

definition, but there is no known direct characterization of
dual Coxeter systems).

I A generalization of the cycle decomposition could then be: a
(unique?) factorization w = c1c2 · · · ck , ci ∈W , such that
cicj = cjci for all i , j , `T (w) =

∑
i `T (ci ), and the

decomposition is “maximal”.

Question 2

How should we define a “cycle” in W?
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Coxeter elements and parabolic subgroups

I (Baumeister-Dyer-Stump-Wegener) Let (W ,T ) be a dual
Coxeter system. A (parabolic) Coxeter element in W is a
product q1q2 · · · qn (resp. q1q2 · · · qm, m ≤ n) where
S ′ := {q1, q2, · · · qn} ⊆ T is such that (W ,S ′) is a Coxeter
system (in that case, (W ,S) ∼= (W ,S ′) and
T =

⋃
w∈W wS ′w−1). A parabolic subgroup W ′ ⊆W is a
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Coxeter elements and parabolic subgroups, II

Proposition (BGRW, 2015)

Parabolic subgroups and classical parabolic subgroups coincide for
finite Coxeter groups and infinite, irreducible 2-spherical Coxeter
groups.

In general both definitions are unequivalent.

I A parabolic Coxeter element is a Coxeter element in a
parabolic subgroup (with its canonical structure of Coxeter
group). In Sn:

1. Every element is a parabolic Coxeter element.
2. Cycles are p.C.e. in irreducible parabolic subgroups.
3. Parabolic subgroups coincide with reflection subgroups,

that is, subgroups generated by reflections.

Question 3

Is any element w ∈W a Coxeter element in a (finitely generated)
reflection subgroup W ′ ⊆W?
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Parabolic quasi-Coxeter elements

I The answer to Question 3 is unfortunately negative. Let W
be of type D4, S = {s0, s1, s2, s3} with s2t 6= ts2 for all
t ∈ S\{s2}. Then the element

w = s1s2s1s0s2s3

lies in no proper reflection subgroup W ′ ⊆W . It is not a
Coxeter element (not obvious).

I w = s1s2s1s0s2s3 = s1(s2s1s2)(s2s0s2)s3. This last word is an
element of RedT (w), that is, a reduced factorization of w as
a product of reflections. This factorization contains the four
reflections {s1, s2s1s2 = s1s2s1, s2s0s2, s3}. They generate W .

I A (parabolic) quasi-Coxeter element (short (p)qc) w ∈W is
an element admitting a T -reduced factorization t1t2 · · · tk
such that 〈t1, t2, . . . , tk〉 = W (resp.〈t1, t2, . . . , tk〉 is a
parabolic subgroup of W ).
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Generalized cycle decomposition for pqc’s

Lemma

Let w ∈W be a pqc, t1t2 · · · tk , q1q2 · · · qk ∈ RedT (w) such that
the subgroups W ′ := 〈t1, t2, . . . , tk〉 and W ′′ := 〈q1, q2, . . . , qk〉
are both parabolic. Then W ′ = W ′′. We denote this parabolic
subgroup by P(w) and call it the parabolic closure of w.

Conjecture 1

Let w ∈W be a pqc, then for every t1t2 · · · tk ∈ RedT (w) we
have 〈t1, t2, . . . , tk〉 = P(w). (OK for finite W , BGRW).

Proposition (Generalized cycle decomposition for pqc’s)

Let w ∈W be a pqc; ∃! decomposition w = c1c2 · · · cm such that

1. cicj = cjci , ∀i , j ,

2. `T (w) =
∑

i `T (ci ),

3. P(w) = P(c1)× P(c2)× · · · × P(ck), P(ci ) is irreducible for
all i and ci is a pqc in P(ci ).
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pqc’s in finite Coxeter groups

I Let Bk be the Artin braid group on k strands. If w ∈W is
such that `T (w) = k, there is an operation of Bk on
RedT (w). If σi is the Artin generator exchanging the strands
i and i + 1, the operation is defined by

σi · (t1, . . . , ti , ti+1, . . . , tk) = (t1, . . . , ti+1, ti+1ti ti+1, . . . , tk).

I If the Hurwitz action is transitive on RedT (w), then one can
pass from any T -reduced expression of w to any other just
by applying “dual braid relations”, that is, relations of the
form ab = bc with a, b, c ∈ T . Hence a dual analogue of the
Matsumoto property holds.

I Unfortunately, the Hurwitz action on RedT (w) is not
transitive in general. It fails for example if w is the longest
element in W of type B2.
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Main result

Theorem (BGRW, 2015)

Let (W ,S) be a finite Coxeter system, w ∈W. The Hurwitz
action is transitive on RedT (w) if and only if w is a parabolic
quasi-Coxeter element.

I The proof of ”⇒ ” is easy, and uniform.

I The proof of ”⇐ ” is case-by-case.

1. Type I2(m) is easy. In types An and Bn, pqc’s are
parabolic Coxeter elements, for which the result is
known.

2. In simply-laced types, we first prove Conjecture 1 using
root lattices. The proof for Dn is then by induction on
n, using the fact that maximal parabolic subgroups in
Dn intersect non-trivially for n ≥ 6.

3. All the remaining cases are done by computer.
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quasi-Coxeter element.

I The proof of ”⇒ ” is easy, and uniform.

I The proof of ”⇐ ” is case-by-case.

1. Type I2(m) is easy. In types An and Bn, pqc’s are
parabolic Coxeter elements, for which the result is
known.

2. In simply-laced types, we first prove Conjecture 1 using
root lattices. The proof for Dn is then by induction on
n, using the fact that maximal parabolic subgroups in
Dn intersect non-trivially for n ≥ 6.

3. All the remaining cases are done by computer.
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Cycle decompositions in finite Coxeter groups

I Call an element w ∈W indecomposable if there is no
nontrivial factorization w = uv , u, v ∈W with vu = uv and
`T (uv) = `T (u) + `T (v).

I Using the main result one can show

Theorem (Cycle decompositions in finite Coxeter groups)

Let (W ,S) be a finite Coxeter group and w ∈W a pqc. There is
a unique decomposition w = c1c2 · · · ck such that

1. cicj = cjci for all i , j ,

2. `T (w) =
∑

i `T (ci ),

3. ci is indecomposable for all i .

I In type An every element is a pqc, and we recover the cycle
decomposition.
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Cycle decompositions in finite Coxeter groups, II

I What can we say about elements which fail to be pqc’s?
Applying the main result, for any such element w ∈W the
Hurwitz action on RedT (w) has several orbits O1, . . . ,O`.

Proposition

There is a one-to-one correspondence

{O1, . . . ,O`}
∼−→
{

Reflection subgroups of W
in which w is a qc

}
,

t1t2 · · · tk ∈ Oi 7→ 〈t1, t2, . . . , tk〉.

In particular, in each of these reflection subgroups, w has a unique
generalized cycle decomposition.
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Example and remarks

I Consider the quasi-Coxeter element w = s1s2s1s0s2s3 in W of
type D4 from before. In W , w is a cycle. Viewing W inside a

Coxeter group W̃ of type B4, we have
w = (2, 1,−2,−1)(3, 4,−3,−4). In the reflection subgroup
W (which is not parabolic), w is a quasi-Coxeter element
which is a cycle. But w is also a quasi-Coxeter element in a
reflection subgroup W ′ of type B2 × B2, in which its cycle
decomposition has two factors c1 = (2, 1,−2,−1) and
c2 = (3, 4,−3,−4).

I In finite Coxeter groups, an element w is a pqc if and only if
there exists a qc q ∈W such that
`T (w) + `T (w−1q) = `T (q) (which we write w ≤T q). In
infinite W , there are elements w ≤T c for c a Coxeter
element which fail to be pqc. But it still seems that we have
Hurwitz transitivity on RedT (w). It is therefore natural to
study reflection subgroups defined by (reduced expressions
of) such elements, as generalizations of parabolic subgroups.
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