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Theorem [Aschbacher-Scott 1985]
To settle the maximal subgroup problem for general finite groups it
suffices to

1. Determine the conjugacy classes of maximal subgroups of the
almost simple groups.

2. For every quasisimple group G and all prime divisors ` of |G|
determine H1(G,V ) for every irreducible F`G-module V .

The choices for G are sporadic (for example M ), alternating, of
exceptional Lie type, classical (for example PSLn(q)).

The possibilities for V are not completely classified.We need all
decomposition numbers and minimal fields of definition.



Aschbacher’s Theorem

Let X be a classical group with natural module V = km, Char(k) = `.
Aschbacher defines 8 families Ci (X ) of “geometric” subgroups of X .

Theorem [Aschbacher 1984]
If H ≤ X is maximal, then either H ∈ Ci (X ) , or H ∈ S(X ) meaning

1. The generalized Fitting subgroup F ∗(H) is quasisimple;

2. F ∗(H) acts absolutely irreducibly on V ;

3. the action of F ∗(H) on V can not be defined over a smaller field;

4. any bilinear, quadratic or sesquilinear form on V that is stabilized
by F ∗(H) is also stabilized by X .

Aschbacher calls the collection of subgroups of X which satisfy
conditions 1 through 4 above S(X ).



Some remarks

The geometric families
C1(X ) are the stabilizers of subspaces of V .

dim(V ) ≤ 12
Recent work of Bray, Holt and Roney-Dougal achieves a full
classification of conjugacy classes of maximal subgroups.

dim(V ) ≥ 13
Kleidman and Liebeck classify those situations when a maximal
member of Ci (X ) is not maximal in G. Generally such occurrences
are rare.



Open Question
When are members of S(X ) maximal in X?

General Observation
If H is quasisimple and ϕ ∈ IBr`, then there exists a quasisimple
classical group X with natural module V affording ϕ and a
corresponding homomorphism Φ : H 7→ X ≤ GL(V ) such that
HΦ ∈ S(X ).

Possible obstructions to the maximality of NX (HΦ) in X
The definition of S(X ) implies that if NX (HΦ) < G < X , then

G ∈ C2(X ) ∪ C4(X ) ∪ C6(X ) ∪ C7(X ) ∪ S(X ).

S(X ) = Spor ∪ Alt ∪ CL d ∪ CL c ∪ EX d ∪ EX c



Problem 1
For each HΦ, name the possible types of G; i.e. identify the members
of C2(X ) ∪ C4(X ) ∪ C6(X ) ∪ C7(X ) ∪ S(X ) which may contain HΦ.

Problem 2
Name X ; i.e., determine the minimal field k of definition of Φ, and the
H invariant form(s) on V = km. Choose X minimal subject to
containing HΦ and also determine NGL(V )(X ).

Problem 3
For each X̃ ∈ NGL(V )(X ) with X ≤ X̃ determine NX̃ (HΦ) and
NX̃ (HΦ) ∩G. More generally determine the action of NX̃ (HΦ) on the
set of G’s lying over HΦ.

Conclusion:
G obstructs the maximality of NX̃ (H) iff NX̃ (H) < X̃ ∩G.



Problem 1: Necessary conditions for the existence of
obstructions G to the maximality of NX (HΦ) in X .

I If G ∈ C2(X ), then Φ is an induced representation.

I If G ∈ C4(X ), then Φ is a tensor (Kronecker) product of two
representations of unequal degrees > 1.

I If G ∈ C7(X ), then Φ is a tensor product of two or more
representations of equal degrees; i.e., Φ is tensor induced.

I If G ∈ C6(X ),then H ≤ NX (E) where E is extraspecial resp.
symplectic type of order r1+2s respectively 2× 21+2s and
dim(V ) = r s resp. 2s.

I If G ∈ S(X ), then (F ∗(G),H,V ) is an irreducible triple; i.e., the
irreducible F ∗(G)-module V restricts irreducibly to H.This is a
special case of the branching problem.



Potential obstructions G to the maximality of H ∈ S(X )

C2 HHM DM/NN Seitz HHM Seitz HHM induced
C4 MT BK Stei MT Stei MT tensor prod

C6 MT and Bray inde pend ently r1+2nSp2n(r)

C7 ← — MT — — → tensor ind

Spor LM-wip Hu LSS LSS ↑
Alt S/KW S/KW S/KW S/KW S/KW S/KW |

BK/KS BK/KS JS/BK BK/KS BK/KS BK/KS |
KTS KTS KS/KTS KTS KTS KTS |

CL d LM-wip Hu D/S/T MRT D/S/T MRT branching

CL c LM-wip Hu LSS Seitz LSS Se/S/N rules

EX d LM-wip Hu D/S/T MRT D/S/T MRT |
EX c LM-wip Hu LSS Seitz LSS Seitz ↓

G / H Spor Alt CL d CL c EX d EX c H rep’n
HHM = Hiss Husen Magaard, MT = Magaard Tiep, MRT = Magaard Röhrle Testerman, BK = Bessenrodt Klechshev,
DM/NN = Djokovic Malzan / Nett Noeske, D/S/T = Dynkin/Seitz/Testerman, Hu = Husen, JS = Jantzen Seitz, S/KW=
Saxl/Kleidman Wales, BK/KS/KST = Brundan Kleshchev/Kleshchev Sheth/Kleshchev Sin Tiep, LSS = Liebeck Saxl
Seitz, Se/S/N = Seitz/ Schaefer-Frey / H.N. Nguyen, LM = Le Magaard



Irreducible Tensor Decomposable H-modules
Recall: If H ∈ S(X ) is C4 obstructed, then V is tensor decomposable.
Theorem [Seitz, M.-Tiep ]If H ∈ S(X ) is of Lie type defined over Fq ,
with q = pa and V is a tensor decomposable irreducible H-module,
then one of the following is true:

I p = ` and the H-module V is not `-restricted, (Steinberg’s Thm.)

I V is `-restricted, and either p = ` = 2 and H is of Lie type Bn,
Cn, F4 or G2, or p = ` = 3 and H is of type G2,

I p 6= ` and q ≤ 3,

I H ∼= Sp2n(5), or Sp2n(2a)

I H/Z (H) ∼= PSL3(4),

I H ∼= F4(2a), or 2F4(22b+1).



Not all tensor product factorizations lead to C4(X ) or C7(X )
obstructions

I If H = 41·PSL3(4), then 8a ⊗ 8d = 64a. The Frobenius-Schur
indicator of 8a and 8d is 0, whereas it is + for 64a. Thus
H ∈ S(Ω+

64(`)) for ` 6= 2,3,5,7, yet the maximal C4(Ω+
64(`))

subgroups are NX (Sp8(`) ◦ Sp8(`)) and NX (Ω±8 (`) ◦ Ω±8 (`)).

I Another example: H = M24 ∈ S(Ω10395(`)), via it’s largest
irreducible character χ26, whenever (`, |M24|) = 1. Here
χ26 = χ3 ⊗ χ5 = χ4 ⊗ χ5 = χ3 ⊗ χ6 = χ4 ⊗ χ6 The indicator of
χ26 is +, whereas those of χ4, χ5, χ6χ7 are 0.

I If H = M, then 11 of the 194 ordinary irreducible characters are
tensor decomposable.Of these, 8 are C4-obstructed, and 3 are
not. For example χ55 = χ2 ⊗ χ16 is C4 obstructed, whereas
χ185 = χ6 ⊗ χ17 is not.



S(X ) obstructions: The case H ∼= M11
How often does H ∈ S(X ), imply H maximal in X?
Morally this should happen most of the time, but ....

Theorem
If H w M11 and H ∈ S(X ), then NX (H) is maximal in X iff
F ∗(X ) = SL5(3).

ϕ Type of X C2 C4,7 C6 SLie Saltspor

ϕ2 Ω9(11) A11

ϕ3 SL10(11) 2.M12

ϕ4 SL10(11) 2.M12

ϕ5 Ω11(11) 210 o M11 < 210 o A11 M12 < A12

ϕ6 Ω+
16(11) Spin+

9 (11) 2.A11,M12

ϕ7 Ω+
44(11) Ω9(11) A11

ϕ8 Ω55(11) 254 o M11 < 254 o A55 PΩ11(11) M12 < A12

Table: Obstructions to the maximality of M11 embeddings; the case
` = 11



Irreducible Imprimitive Representations

Theorem [Hiß, M. 2016] If H is quasisimple and ` is not a divisor of
|H|, then all imprimitive elements of IBr`(H) are known.

Theorem[Hiß, Husen, M. 2015]If F ∗(H) is quasisimple and V is
irreducible and imprimitive, then one of the following is true:

1. H is of Lie type and characteristic p 6= ` and V is Harish-Chandra
induced or H has an exceptional Schur multiplier,

2. H ∈ Lie(p), p = `, F ∗(H) ∈ {SL2(5),SL2(7) ∼= SL3(2),Sp4(3)},

3. H = An and V is from one of three families, or ` ≤ n, H = 2·An
and the block stabilizer is intransitive, or n ≤ 9.

4. F∗(H)
Z (F∗(H)) ∈ {M11,M12,M22,M24,HS,McL,ON,Co2,Fi22,Co1,Fi ′24}



Theorem 7.3 [Hiß, Husen, M.] due to Lusztig
Let s ∈ G∗ be semisimple such that CG∗(s) is contained in a proper
split Levi subgroup L∗ of G∗. Let L be a split Levi subgroup of G dual
to L∗.

I Then every ordinary irreducible character of G contained in
E(G, [s]) is Harish-Chandra induced from a character of E(L, [s]).

I If s is `-regular for some prime ` not dividing q, then every
irreducible `-modular character of G contained in E`(G, [s]) is
Harish-Chandra induced from a Brauer character lying in
E`(L, [s]).

Corollary: The proportion of primitive irreducible characters in
Irr(SLn(q)) approaches 1/n for large values of q.



V irreducible and imprimitve does not necessarily imply
the existence of a C2(X ) obstruction.

I If H = SL2(q), ` is odd, and V affords RT ,Θ with |T | = q− 1, then
V is irreducible and imprimitive of dimension q + 1 = |H : T |p′ .
In fact V = IndH

B (L) is irreducible and imprimitive. Here B is a
Borel subgroup of H,and L affords InflB

T (Θ) ∈ IBr`(B).

I Then H ≤ k∗ o Sm ≤ GLm(k), and H projects to a transitive
subgroup of Sm.

I The module V is a self-dual H-module which implies that H must
be in Z2 o Sm ≤ Om(k); which is impossible if |Θ| > 2.

I If |Θ| = 2, then q is odd and RT ,Θ and is not irreducible.

I Even though roughly half of the irreducible H representations
are induced, none are C2(X ) obstructed.



Examples of C2(X ) type obstructions

I Let H = SL3(5), 5 < ` 6= 31, and V = IndG
P (Θ), where P is one of

the two classes of the maximal parabolics and 1 6= Θ is a linear
character of P.

I If |Θ| = 4, then H ≤ SLε31(`) where ` ≡ ε mod 4.

I If X = SLε31(`), then NX̃ (H) is C2(X̃ ) obstructed in X̃ iff no
element of X̃ induces a graph automorphism on F ∗(H).

I If |Θ| = 2, then H ≤ X = Ω31(`) and Aut(H) ≤ SO31(`). Also
Aut(H) ≤ Ω31(`) iff ` ≡ 1 mod 4.

I So NΩ31(`)(H) is C2(Ω31(`)) obstructed iff ` ≡ 3 mod 4.

I If ` ≡ 3 mod 4, then NX̃ (H) is not C2(X̃ ) obstructed if
SO31(`) ≤ X̃ .



THANK YOU!


