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Theorem [Aschbacher-Scott 1985]

To settle the maximal subgroup problem for general finite groups it
suffices to

1. Determine the conjugacy classes of maximal subgroups of the
almost simple groups.

2. For every quasisimple group G and all prime divisors ¢ of |G|
determine H'(G, V) for every irreducible F,G-module V.

The choices for G are sporadic (for example M ), alternating, of
exceptional Lie type, classical (for example PSL,(q)).

The possibilities for V are not completely classified.We need all
decomposition numbers and minimal fields of definition.



Aschbacher’s Theorem

Let X be a classical group with natural module V = k™, Char(k) = ¢.
Aschbacher defines 8 families C;(X) of “geometric” subgroups of X.

Theorem [Aschbacher 1984]
If H < X is maximal, then either H € C;(X) , or H € S(X) meaning

1. The generalized Fitting subgroup F*(H) is quasisimple;
F*(H) acts absolutely irreducibly on V;

the action of F*(H) on V can not be defined over a smaller field;
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any bilinear, quadratic or sesquilinear form on V that is stabilized
by F*(H) is also stabilized by X.

Aschbacher calls the collection of subgroups of X which satisfy
conditions 1 through 4 above S(X).



Some remarks

The geometric families
C1(X) are the stabilizers of subspaces of V.

dim(V) <12

Recent work of Bray, Holt and Roney-Dougal achieves a full
classification of conjugacy classes of maximal subgroups.
dim(V) > 13

Kleidman and Liebeck classify those situations when a maximal

member of C;(X) is not maximal in G. Generally such occurrences
are rare.



Open Question
When are members of S(X) maximal in X?

General Observation

If H is quasisimple and ¢ € IBry, then there exists a quasisimple
classical group X with natural module V affording ¢ and a
corresponding homomorphism ¢ : H — X < GL(V) such that
H® € S(X).

Possible obstructions to the maximality of Nx(H®) in X
The definition of S(X) implies that if Nx(H®) < G < X, then

G € Co(X) UCa(X) UCs(X)UC7(X)US(X).

S(X) =SporUAltUCLdUCLcUEXdUEXc



Problem 1
For each H®, name the possible types of G; i.e. identify the members
of C2(X) U Ca(X) U Cs(X) U C7(X) U S(X) which may contain H®.

Problem 2

Name X i.e., determine the minimal field k of definition of &, and the
H invariant form(s) on V = k. Choose X minimal subject to
containing H® and also determine Ngi (v (X).

Problem 3 )

For each X € Ngi(v)(X) with X < X determine Ny (H®) and

N5 (H®) N G. More generally determine the action of Ny (H®) on the
set of G’s lying over Ho.

Conclusion: )
G obstructs the maximality of Ny (H) iff Ny (H) < XN G.



Problem 1: Necessary conditions for the existence of
obstructions G to the maximality of Nx(H®) in X.

> If G € Co(X), then @ is an induced representation.

> If G € C4(X), then @ is a tensor (Kronecker) product of two
representations of unequal degrees > 1.

> If G € C7(X), then ¢ is a tensor product of two or more
representations of equal degrees; i.e., ® is tensor induced.

» If G € Cs(X),then H < Nx(E) where E is extraspecial resp.
symplectic type of order r'+2s respectively 2 x 21425 and
dim(V) = r® resp. 2.

> If G € §(X), then (F*(G), H, V) is an irreducible triple; i.e., the
irreducible F*(G)-module V restricts irreducibly to H.This is a
special case of the branching problem.



Potential obstructions G to the maximality of H € S(X)

Co HHM | DM/NN Seitz HHM | Seitz HHM | induced
C4 MT BK Stei MT Stei MT tensor prod
Cs MT and Bray inde | pend ently | ri+2nsp, (r)
C7 — — MT — — — tensor ind
Spor | LM-wip Hu LSS LSS 0
Alt S/KW S/KW S/KW SIKW SIKW SIKW |
BK/KS BK/KS JS/BK BK/KS BK/KS BK/KS \
KTS KTS KS/KTS | KTS | KTS KTS \
CLd | LM-wip Hu D/S/T MRT | D/S/T | MRT branching
CLc LM-WIp Hu LSS Seitz LSS Se/S/N rules
EXd | LM-wip Hu D/S/T MRT | D/S/T | MRT \
EXc | LM-wip Hu LSS Seitz | LSS Seitz )
G/ H| Spor Alt CLd CLc | EXd EXc | Hrepn

HHM = Hiss Husen Magaard, M

T = Magaard Tiep, MRT = Magaard Réhrle Testerman, BK = Bessenrodt Klechshev,
DM/NN = Djokovic Malzan / Nett Noeske, D/S/T = Dynkin/Seitz/Testerman, Hu = Husen, JS = Jantzen Seitz, S/IKW=
Saxl/Kleidman Wales, BK/KS/KST = Brundan Kleshchev/Kleshchev Sheth/Kleshchev Sin Tiep, LSS = Liebeck Sax|

Seitz, Se/S/N = Seitz/ Schaefer-Frey / H.N. Nguyen, LM = Le Magaard



Irreducible Tensor Decomposable H-modules
Recall: If H € S(X) is C4 obstructed, then V is tensor decomposable.

Theorem [Seitz, M.-Tiep ]If H € S(X) is of Lie type defined over Fg,
with g = p? and V is a tensor decomposable irreducible H-module,
then one of the following is true:

» p =/ andthe H-module V is not /-restricted, (Steinberg’s Thm.)

v

V is (-restricted, and either p = ¢ = 2 and H is of Lie type By,
Cn, F4 0r G, or p=¢ =3 and H is of type G,

p#tandg<s3,

H = Sp2n(5)’ or Sp2n(2a)
H/Z(H) = PSL3(4),

H = F4(23), or 2F4(22b+1).

v

v

v

v



Not all tensor product factorizations lead to C4(X) or C7(X)
obstructions

> If H=44.-PSL3(4), then 8; ® 84 = 64,. The Frobenius-Schur
indicator of 8, and 8 is 0, whereas it is + for 64,. Thus
H € S(Q¢,(¢)) for £ # 2,3,5,7, yet the maximal C4(24,(¢))
subgroups are Nx(Spg(£) o Spg(¢)) and Nx(Qa (¢) o Q5 (£)).

» Another example: H = Moy € S(Q10395(¢)), via it’s largest
irreducible character 26, whenever (¢, |Ms|) = 1. Here
X26 = X3 ® X5 = X4 ® X5 = X3 ® X6 = X4 ® X6 The indicator of
X26 iS +, Whereas those of x4, x5, xex7 are 0.

» If H =M, then 11 of the 194 ordinary irreducible characters are
tensor decomposable.Of these, 8 are C4-obstructed, and 3 are
not. For example xs5 = x2 ® x16 iS C4 Obstructed, whereas
X185 = X6 @ X17 IS not.



S(X) obstructions: The case H = M;;
How often does H € S(X), imply H maximal in X?
Morally this should happen most of the time, but ....
Theorem

If H = My and H € S(X), then Nx(H) is maximal in X iff
F*(X) = SLs(3).

¢ | Type of X Co | Ca7|Cs Stie Saitspor
w2 | Q9(11) At

@3 | SL1p(11) 2.Miz
¢4 | SLyg(11) 2.Mz
©s5 Q11(11) 210><1M11 <210>4A11 M12<A12
Y6 QTG(‘H) Sping(ﬁ) 2.A11,M12
»7 914(11) 99(11) A11

©s Q55(11) 254 X M11 < 254 X A55 PQ11(11) M12 < A12

Table: Obstructions to the maximality of M;; embeddings; the case
=11




Irreducible Imprimitive Representations

Theorem [Hi3, M. 2016] If H is quasisimple and ¢ is not a divisor of
|H|, then all imprimitive elements of IBr,(H) are known.

Theorem[Hif3, Husen, M. 2015]If F*(H) is quasisimple and V is
irreducible and imprimitive, then one of the following is true:

1. His of Lie type and characteristic p # ¢ and V is Harish-Chandra
induced or H has an exceptional Schur multiplier,

2. H e Lie(p), p= ¢, F*(H) € {SL(5), SLa(7) = SL3(2), Spa(3)},

3. H= A, and V is from one of three families, or ¢/ < n, H=2-A,
and the block stabilizer is intransitive, or n < 9.

4. ZEE;*(m)) S {M11 , /\”127 Mgg, /\/’247 HS7 MCL, ON, COQ, Fioo, CO1, Flé4}




Theorem 7.3 [Hi3, Husen, M.] due to Lusztig

Let s € G* be semisimple such that Cg- () is contained in a proper
split Levi subgroup L* of G*. Let L be a split Levi subgroup of G dual
to L*.

» Then every ordinary irreducible character of G contained in
E(G, [s]) is Harish-Chandra induced from a character of £(L, [$]).

» If sis ¢-regular for some prime ¢ not dividing g, then every
irreducible ¢-modular character of G contained in & (G, [s]) is
Harish-Chandra induced from a Brauer character lying in
Eo(L, [s]).

Corollary: The proportion of primitive irreducible characters in
Irr(SLn(q)) approaches 1/n for large values of q.



V irreducible and imprimitve does not necessarily imply
the existence of a Co(X) obstruction.

> If H=SL»(q), ¢ is odd, and V affords Rr e with |T| = g— 1, then
V is irreducible and imprimitive of dimension g+ 1 = |H : T|p.
In fact V = IndJ(L) is irreducible and imprimitive. Here Bis a
Borel subgroup of H,and L affords Infl?(©) € 1Br,(B).

» Then H < k* 1 S;; < GLy(k), and H projects to a transitive
subgroup of Sp,.

» The module V is a self-dual H-module which implies that H must
be in Z> 1 S; < Op(k); which is impossible if |©] > 2.

> If |©] =2, then g is odd and Rr e and is not irreducible.

» Even though roughly half of the irreducible H representations
are induced, none are Cy(X) obstructed.



Examples of Co(X) type obstructions

>

Let H = SL3(5), 5 < ¢ # 31, and V = Ind§(©), where P is one of
the two classes of the maximal parabolics and 1 # © is a linear
character of P.

If |©] = 4, then H < SL§;(¢) where £ = ¢ mod 4.
If X = SLg; (), then Ny (H) is C2(X) obstructed in X iff no
element of X induces a graph automorphism on F*(H).

If |©] =2, then H < X = Q34¢(¢) and Aut(H) < SOg34(¢). Also
Aut(H) < Qz1(¢) iff =1 mod 4.

So No,, 1) (H) is C2(231(¢)) obstructed iff £ =3 mod 4.

If £=3 mod 4, then Ny (H) is not C2(X) obstructed if
SOg1(¢) < X.



THANK YOU!



