Overgroups of Irreducible Quasisimple Subgroups in Finite Classical Groups

K. Magaard

University of Birmingham

January 14, 2017

Theorem [Aschbacher-Scott 1985]

To settle the maximal subgroup problem for general finite groups it suffices to

- 1. Determine the conjugacy classes of maximal subgroups of the almost simple groups.
- 2. For every quasisimple group *G* and all prime divisors ℓ of |G| determine $H^1(G, V)$ for every irreducible $\mathbb{F}_{\ell}G$ -module *V*.

The choices for *G* are *s*poradic (for example \mathbb{M}), alternating, of exceptional Lie type, classical (for example $PSL_n(q)$).

The possibilities for V are not completely classified. We need all decomposition numbers and minimal fields of definition.

Aschbacher's Theorem

Let *X* be a classical group with natural module $V = k^m$, $Char(k) = \ell$. Aschbacher defines 8 families $C_i(X)$ of "geometric" subgroups of *X*.

Theorem [Aschbacher 1984]

If $H \leq X$ is maximal, then either $H \in \mathcal{C}_i(X)$, or $H \in \mathcal{S}(X)$ meaning

- 1. The generalized Fitting subgroup $F^*(H)$ is quasisimple;
- 2. $F^*(H)$ acts absolutely irreducibly on V;
- 3. the action of $F^*(H)$ on V can not be defined over a smaller field;
- any bilinear, quadratic or sesquilinear form on V that is stabilized by F*(H) is also stabilized by X.

Aschbacher calls the collection of subgroups of X which satisfy conditions 1 through 4 above S(X).

Some remarks

The geometric families

 $C_1(X)$ are the stabilizers of subspaces of V.

$\dim(V) \leq 12$

Recent work of Bray, Holt and Roney-Dougal achieves a full classification of conjugacy classes of maximal subgroups.

$\dim(V) \ge 13$

Kleidman and Liebeck classify those situations when a maximal member of $C_i(X)$ is not maximal in *G*. Generally such occurrences are rare.

Open Question

When are members of S(X) maximal in X?

General Observation

If *H* is quasisimple and $\varphi \in \operatorname{IBr}_{\ell}$, then there exists a quasisimple classical group *X* with natural module *V* affording φ and a corresponding homomorphism $\Phi : H \mapsto X \leq GL(V)$ such that $H\Phi \in \mathcal{S}(X)$.

Possible obstructions to the maximality of $N_X(H\Phi)$ in X The definition of S(X) implies that if $N_X(H\Phi) < G < X$, then

$$G \in \mathcal{C}_2(X) \cup \mathcal{C}_4(X) \cup \mathcal{C}_6(X) \cup \mathcal{C}_7(X) \cup \mathcal{S}(X).$$

$\mathcal{S}(X) =$ Spor \cup Alt \cup CL d \cup CL c \cup EX d \cup EX c

Problem 1

For each $H\Phi$, name the possible types of *G*; i.e. identify the members of $C_2(X) \cup C_4(X) \cup C_6(X) \cup C_7(X) \cup S(X)$ which may contain $H\Phi$.

Problem 2

Name *X*; i.e., determine the minimal field *k* of definition of Φ , and the *H* invariant form(s) on $V = k^m$. Choose *X* minimal subject to containing $H\Phi$ and also determine $N_{\text{GL}(V)}(X)$.

Problem 3

For each $\tilde{X} \in N_{GL(V)}(X)$ with $X \leq \tilde{X}$ determine $N_{\tilde{X}}(H\Phi)$ and $N_{\tilde{X}}(H\Phi) \cap G$. More generally determine the action of $N_{\tilde{X}}(H\Phi)$ on the set of *G*'s lying over $H\Phi$.

Conclusion:

G obstructs the maximality of $N_{\tilde{X}}(H)$ iff $N_{\tilde{X}}(H) < \tilde{X} \cap G$.

Problem 1: Necessary conditions for the existence of obstructions G to the maximality of $N_X(H\Phi)$ in X.

- If $G \in C_2(X)$, then Φ is an induced representation.
- If G ∈ C₄(X), then Φ is a tensor (Kronecker) product of two representations of unequal degrees > 1.
- If G ∈ C₇(X), then Φ is a tensor product of two or more representations of equal degrees; i.e., Φ is tensor induced.
- If G ∈ C₆(X), then H ≤ N_X(E) where E is extraspecial resp. symplectic type of order r^{1+2s} respectively 2 × 2^{1+2s} and dim(V) = r^s resp. 2^s.
- If G ∈ S(X), then (F*(G), H, V) is an irreducible triple; i.e., the irreducible F*(G)-module V restricts irreducibly to H.This is a special case of the branching problem.

Potential obstructions *G* to the maximality of $H \in S(X)$

C ₂	HHM	DM/NN	Seitz	HHM	Seitz	HHM	induced
\mathcal{C}_4	MT	BK	Stei	MT	Stei	MT	tensor prod
\mathcal{C}_{6}	MT	and	Bray	inde	pend	ently	$r^{1+2n}\operatorname{Sp}_{2n}(r)$
\mathcal{C}_7	\leftarrow		MT		—	\rightarrow	tensor ind
Spor	LM-wip	Hu	LSS		LSS		1
Alt	S/KW	S/KW	S/KW	S/KW	S/KW	S/KW	
	BK/KS	BK/KS	JS/BK	BK/KS	BK/KS	BK/KS	
	KTS	KTS	KS/KTS	KTS	KTS	KTS	
CL d	LM-wip	Hu	D/S/T	MRT	D/S/T MRT		branching
CL c	LM-wip	Hu	LSS	Seitz	LSS	Se/S/N	rules
EX d	LM-wip	Hu	D/S/T	MRT	D/S/T	MRT	
EX c	LM-wip	Hu	LSS	Seitz	LSS	Seitz	\downarrow
G/H	Spor	Alt	CL d	CL c	EX d	EX c	H rep'n

HHM = Hiss Husen Magaard, MT = Magaard Tiep, MRT = Magaard Röhrle Testerman, BK = Bessenrodt Klechshev, DM/NN = Djokovic Malzan / Nett Noeske, D/S/T = Dynkin/Seitz/Testerman, Hu = Husen, JS = Jantzen Seitz, S/KW= Saxl/Kleidman Wales, BK/KS/KST = Brundan Kleshchev/Kleshchev Sheth/Kleshchev Sin Tiep, LSS = Liebeck Saxl Seitz, Se/S/N = Seitz/ Schaefer-Frey / H.N. Nguyen, LM = Le Magaard

Irreducible Tensor Decomposable H-modules

Recall: If $H \in S(X)$ is C_4 obstructed, then *V* is tensor decomposable. **Theorem** [Seitz, M.-Tiep]If $H \in S(X)$ is of Lie type defined over \mathbb{F}_q , with $q = p^a$ and *V* is a tensor decomposable irreducible *H*-module, then one of the following is true:

- ▶ $p = \ell$ and the *H*-module *V* is **not** ℓ -restricted, (Steinberg's Thm.)
- V is ℓ-restricted, and either p = ℓ = 2 and H is of Lie type B_n, C_n, F₄ or G₂, or p = ℓ = 3 and H is of type G₂,
- $p \neq \ell$ and $q \leq 3$,
- $H \cong \operatorname{Sp}_{2n}(5)$, or $\operatorname{Sp}_{2n}(2^a)$
- ► $H/Z(H) \cong PSL_3(4)$,
- $H \cong F_4(2^a)$, or ${}^2F_4(2^{2b+1})$.

Not all tensor product factorizations lead to $C_4(X)$ or $C_7(X)$ obstructions

- ▶ If $H = 4_1 \cdot \text{PSL}_3(4)$, then $8_a \otimes 8_d = 64_a$. The Frobenius-Schur indicator of 8_a and 8_d is 0, whereas it is + for 64_a . Thus $H \in S(\Omega_{64}^+(\ell))$ for $\ell \neq 2, 3, 5, 7$, yet the maximal $C_4(\Omega_{64}^+(\ell))$ subgroups are $N_X(\text{Sp}_8(\ell) \circ \text{Sp}_8(\ell))$ and $N_X(\Omega_8^\pm(\ell) \circ \Omega_8^\pm(\ell))$.
- ► Another example: $H = M_{24} \in S(\Omega_{10395}(\ell))$, via it's largest irreducible character χ_{26} , whenever $(\ell, |M_{24}|) = 1$. Here $\chi_{26} = \chi_3 \otimes \chi_5 = \chi_4 \otimes \chi_5 = \chi_3 \otimes \chi_6 = \chi_4 \otimes \chi_6$ The indicator of χ_{26} is +, whereas those of $\chi_4, \chi_5, \chi_6\chi_7$ are 0.
- If H = M, then 11 of the 194 ordinary irreducible characters are tensor decomposable. Of these, 8 are C₄-obstructed, and 3 are not. For example X₅₅ = X₂ ⊗ X₁₆ is C₄ obstructed, whereas X₁₈₅ = X₆ ⊗ X₁₇ is not.

 $\mathcal{S}(X)$ obstructions: The case $H \cong M_{11}$

How often does $H \in S(X)$, imply H maximal in X? Morally this should happen most of the time, but

Theorem

If $H \subseteq M_{11}$ and $H \in \mathcal{S}(X)$, then $N_X(H)$ is maximal in X iff $F^*(X) = SL_5(3)$.

φ	Type of X	\mathcal{C}_2	$\mathcal{C}_{4,7}$	\mathcal{C}_{6}	$\mathcal{S}_{\textit{Lie}}$	$\mathcal{S}_{altspor}$
φ_2	$\Omega_9(11)$					A ₁₁
φ_3	$SL_{10}(11)$					2. <i>M</i> ₁₂
φ_4	$SL_{10}(11)$					2. <i>M</i> ₁₂
φ_5	$\Omega_{11}(11)$	$2^{10} \rtimes M_{11} < 2^{10} \rtimes A_{11}$				$M_{12} < A_{12}$
φ_6	$\Omega^{+}_{16}(11)$				$Spin_{9}^{+}(11)$	2. <i>A</i> ₁₁ , <i>M</i> ₁₂
φ_7	$\Omega_{44}^{+}(11)$				$\Omega_9(11)$	A ₁₁
φ_{8}	$\Omega_{55}(11)$	$2^{54} \rtimes M_{11} < 2^{54} \rtimes A_{55}$			$P\Omega_{11}(11)$	$M_{12} < A_{12}$

Table: Obstructions to the maximality of M_{11} embeddings; the case $\ell = 11$

Irreducible Imprimitive Representations

Theorem [HiB, M. 2016] If *H* is quasisimple and ℓ is not a divisor of |H|, then all imprimitive elements of $\operatorname{IBr}_{\ell}(H)$ are known.

Theorem[HiB, Husen, M. 2015]If $F^*(H)$ is quasisimple and V is irreducible and imprimitive, then one of the following is true:

- 1. *H* is of Lie type and characteristic $p \neq \ell$ and *V* is Harish-Chandra induced or *H* has an exceptional Schur multiplier,
- 2. $H \in \text{Lie}(p), p = \ell, F^*(H) \in \{\text{SL}_2(5), \text{SL}_2(7) \cong \text{SL}_3(2), \text{Sp}_4(3)\},\$
- 3. $H = A_n$ and V is from one of three families, or $\ell \le n$, $H = 2 \cdot A_n$ and the block stabilizer is intransitive, or $n \le 9$.
- 4. $\frac{F^*(H)}{Z(F^*(H))} \in \{M_{11}, M_{12}, M_{22}, M_{24}, HS, McL, ON, Co_2, Fi_{22}, Co_1, Fi'_{24}\}$

Theorem 7.3 [Hiß, Husen, M.] due to Lusztig

Let $s \in G^*$ be semisimple such that $C_{\mathbf{G}^*}(s)$ is contained in a proper split Levi subgroup \mathbf{L}^* of \mathbf{G}^* . Let \mathbf{L} be a split Levi subgroup of \mathbf{G} dual to \mathbf{L}^* .

- ► Then every ordinary irreducible character of G contained in E(G, [s]) is Harish-Chandra induced from a character of E(L, [s]).
- ▶ If *s* is ℓ -regular for some prime ℓ not dividing *q*, then every irreducible ℓ -modular character of *G* contained in $\mathcal{E}_{\ell}(G, [s])$ is Harish-Chandra induced from a Brauer character lying in $\mathcal{E}_{\ell}(L, [s])$.

Corollary: The proportion of primitive irreducible characters in $Irr(SL_n(q))$ approaches 1/n for large values of q.

V irreducible and imprimitve does not necessarily imply the existence of a $C_2(X)$ obstruction.

- ▶ If $H = SL_2(q)$, ℓ is odd, and *V* affords $R_{T,\Theta}$ with |T| = q 1, then *V* is irreducible and imprimitive of dimension $q + 1 = |H : T|_{\rho'}$. In fact $V = \operatorname{Ind}_B^H(L)$ is irreducible and imprimitive. Here *B* is a Borel subgroup of *H*,and *L* affords $\operatorname{Infl}_T^B(\Theta) \in \operatorname{IBr}_\ell(B)$.
- Then H ≤ k* ≥ S_m ≤ GL_m(k), and H projects to a transitive subgroup of S_m.
- The module V is a self-dual H-module which implies that H must be in Z₂ ≥ S_m ≤ O_m(k); which is impossible if |Θ| > 2.
- If $|\Theta| = 2$, then *q* is odd and $R_{T,\Theta}$ and is not irreducible.
- ► Even though roughly half of the irreducible *H* representations are induced, none are C₂(X) obstructed.

Examples of $C_2(X)$ type obstructions

- Let H = SL₃(5), 5 < ℓ ≠ 31, and V = Ind^G_P(Θ), where P is one of the two classes of the maximal parabolics and 1 ≠ Θ is a linear character of P.
- If $|\Theta| = 4$, then $H \leq SL_{31}^{\epsilon}(\ell)$ where $\ell \equiv \epsilon \mod 4$.
- If X = SL^ε₃₁(ℓ), then N_{X̃}(H) is C₂(X̃) obstructed in X̃ iff no element of X̃ induces a graph automorphism on F^{*}(H).
- ▶ If $|\Theta| = 2$, then $H \le X = \Omega_{31}(\ell)$ and $\operatorname{Aut}(H) \le \operatorname{SO}_{31}(\ell)$. Also $\operatorname{Aut}(H) \le \Omega_{31}(\ell)$ iff $\ell \equiv 1 \mod 4$.
- ► So $N_{\Omega_{31}(\ell)}(H)$ is $C_2(\Omega_{31}(\ell))$ obstructed iff $\ell \equiv 3 \mod 4$.
- ▶ If $\ell \equiv 3 \mod 4$, then $N_{\tilde{X}}(H)$ is not $C_2(\tilde{X})$ obstructed if $SO_{31}(\ell) \leq \tilde{X}$.

THANK YOU!