What we (don't) know about permutation polytopes

Benjamin Nill
Otto-von-Guericke-Universität Magdeburg

Polytopes

Convex set:

contains the connecting segment between any two points

Polytopes

Convex set:

contains the connecting segment between any two points

Convex hull: $\operatorname{conv}(S)$ is smallest convex set containing set S

Polytopes

Convex set:

contains the connecting segment between any two points

Convex hull: $\operatorname{conv}(S)$ is smallest convex set containing set S

Polytopes

Polytopes: Convex hull of finite number of points

Polytopes

Faces: The intersection with hyperplanes with the polytope on one side

Vertices: 0-dimensional faces
Edges: 1-dimensional faces
Facets: maximal-dimensional (proper) faces

Polytopes

Faces: The intersection with hyperplanes with the polytope on one side

Vertices: 0-dimensional faces
Edges: 1-dimensional faces
Facets: maximal-dimensional (proper) faces

Polytopes

Faces: The intersection with hyperplanes with the polytope on one side

Vertices: 0-dimensional faces
Edges: 1-dimensional faces
Facets: maximal-dimensional (proper) faces

Polytopes

Faces: The intersection with hyperplanes with the polytope on one side

Vertices: 0-dimensional faces
Edges: 1-dimensional faces
Facets: maximal-dimensional (proper) faces

Symmetries of polytopes

Polytope \rightsquigarrow Symmetry groups

THIS TALK: Permutation polytopes

$G \leq S_{n}$ subgroup.

Definition

$$
P(G):=\operatorname{conv}(M(g): g \in G) \subset \operatorname{Mat}_{n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}
$$

where $M(g)$ is the corresponding $n \times n$-permutation matrix.

THIS TALK: Permutation polytopes

$G \leq S_{n}$ subgroup.

Definition

$$
P(G):=\operatorname{conv}(M(g): g \in G) \subset \operatorname{Mat}_{n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}
$$

where $M(g)$ is the corresponding $n \times n$-permutation matrix.

Examples:

- $P\left(S_{2}\right)=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$ is an interval (1-dimensional polytope) in \mathbb{R}^{4}
- $P\left(\left\langle\left(\begin{array}{llll}1 & 2 & 3 & \cdots\end{array} d+1\right)\right\rangle\right)$ is d-simplex
- $P(\langle(12),(34), \cdots,(2 d-12 d)\rangle)$ is d-cube

THIS TALK: Permutation polytopes

Two basic results:
(1) G acts transitively by multiplication on vertices of P :

$$
|\operatorname{Vertices}(P(G))|=|G|
$$

(2) The vertices of $P(G)$ have only 0 or 1 coordinates:

$$
|G| \leq 2^{\operatorname{dim}(P(G))} \text {, with equality if cube. }
$$

THIS TALK: Permutation polytopes

Two basic results:
(1) G acts transitively by multiplication on vertices of P :

$$
|\operatorname{Vertices}(P(G))|=|G|
$$

(2) The vertices of $P(G)$ have only 0 or 1 coordinates:

$$
|G| \leq 2^{\operatorname{dim}(P(G))} \text {, with equality if cube. }
$$

Guiding questions

Q1) What can we say about $P(G)$?

THIS TALK: Permutation polytopes

Two basic results:
(1) G acts transitively by multiplication on vertices of P :

$$
|\operatorname{Vertices}(P(G))|=|G|
$$

(2) The vertices of $P(G)$ have only 0 or 1 coordinates:

$$
|G| \leq 2^{\operatorname{dim}(P(G))} \text {, with equality if cube. }
$$

Guiding questions

Q1) What can we say about $P(G)$?

- fascinating geometric objects!

THIS TALK: Permutation polytopes

Two basic results:
(1) G acts transitively by multiplication on vertices of P :

$$
|\operatorname{Vertices}(P(G))|=|G|
$$

(2) The vertices of $P(G)$ have only 0 or 1 coordinates:

$$
|G| \leq 2^{\operatorname{dim}(P(G))} \text {, with equality if cube. }
$$

Guiding questions

Q1) What can we say about $P(G)$?

- fascinating geometric objects!

Q2) What can we deduce about G from $P(G)$?

THIS TALK: Permutation polytopes

Two basic results:
(1) G acts transitively by multiplication on vertices of P :

$$
|\operatorname{Vertices}(P(G))|=|G|
$$

(2) The vertices of $P(G)$ have only 0 or 1 coordinates:

$$
|G| \leq 2^{\operatorname{dim}(P(G))} \text {, with equality if cube. }
$$

Guiding questions

Q1) What can we say about $P(G)$?

- fascinating geometric objects!

Q2) What can we deduce about G from $P(G)$?

- challenging representation-theoretic problems!

Overview of talk

(1) The Birkhoff polytope
(2) Other special classes
(3) Faces
(9) Dimension
(3) Equivalences

The Birkhoff polytope B_{n}

Definition

$$
B_{n}:=P\left(S_{n}\right) \text { is called Birkhoff polytope. }
$$

(1) Vertices: all $n \times n$-permutation matrices
(2) Dimension: $(n-1)^{2}$

The Birkhoff polytope B_{n}

Definition

$$
B_{n}:=P\left(S_{n}\right) \text { is called Birkhoff polytope. }
$$

(1) Vertices: all $n \times n$-permutation matrices
(2) Dimension: $(n-1)^{2}$
(3) Volume:

- (Canfield, McKay '09): asymptotic formula

$$
\operatorname{vol}\left(B_{n}\right)=\exp \left(-(n-1)^{2} \ln n+n^{2}-\left(n-\frac{1}{2}\right) \ln (2 \pi)+\frac{1}{3}+o(1)\right)
$$

The Birkhoff polytope B_{n}

Definition

$B_{n}:=P\left(S_{n}\right)$ is called Birkhoff polytope.

(1) Vertices: all $n \times n$-permutation matrices
(2) Dimension: $(n-1)^{2}$
(3) Volume:

- (Canfield, McKay '09): asymptotic formula

$$
\operatorname{vol}\left(B_{n}\right)=\exp \left(-(n-1)^{2} \ln n+n^{2}-\left(n-\frac{1}{2}\right) \ln (2 \pi)+\frac{1}{3}+o(1)\right)
$$

- (De Loera, Liu, Yoshida '09): exact combinatorial formula

$$
\operatorname{vol}\left(B_{n}\right)=\frac{1}{\left((n-1)^{2}\right)!} \sum_{\sigma \in S_{n}} \sum_{T \in \operatorname{Arb}(\ell, n)} \frac{\langle c, \sigma\rangle^{(n-1)^{2}}}{\prod_{e \notin E(T)}\left\langle c, W^{T, e} \sigma\right\rangle}
$$

The Birkhoff polytope B_{n}

Definition

$B_{n}:=P\left(S_{n}\right)$ is called Birkhoff polytope.

(1) Vertices: all $n \times n$-permutation matrices
(2) Dimension: $(n-1)^{2}$
(3) Volume:

- (Canfield, McKay '09): asymptotic formula

$$
\operatorname{vol}\left(B_{n}\right)=\exp \left(-(n-1)^{2} \ln n+n^{2}-\left(n-\frac{1}{2}\right) \ln (2 \pi)+\frac{1}{3}+o(1)\right)
$$

- (De Loera, Liu, Yoshida '09): exact combinatorial formula

$$
\operatorname{vol}\left(B_{n}\right)=\frac{1}{\left((n-1)^{2}\right)!} \sum_{\sigma \in S_{n}} \sum_{T \in \operatorname{Arbb}(,, n)} \frac{\langle c, \sigma\rangle^{(n-1)}}{\Pi_{e \xi E(T)}\left\langle c, W^{T, e} \sigma\right\rangle} .
$$

- (Beck, Pixton '03): exact values known for $n \leq 10$:

$$
\operatorname{Vol}\left(B_{10}\right)=\frac{727291284016786420977508457990121862548823260052557333386607889}{828160860106766855125676318796872729344622463533089422677980721388055739956270293750883504892820848640000000}
$$

The Birkhoff polytope B_{n}

(9) Ehrhart polynomial:

The function $k \mapsto\left|\left(k B_{n}\right) \cap \operatorname{Mat}_{n}(\mathbb{Z})\right|$ is a polynomial e.g. for $B_{3}: \quad k \mapsto 1+\frac{9}{4} k+\frac{15}{8} k^{2}+\frac{3}{4} k^{3}+\frac{1}{8} k^{4}$

The Birkhoff polytope B_{n}

(9) Ehrhart polynomial:

The function $k \mapsto\left|\left(k B_{n}\right) \cap \operatorname{Mat}_{n}(\mathbb{Z})\right|$ is a polynomial e.g. for B_{3} : $\quad k \mapsto 1+\frac{9}{4} k+\frac{15}{8} k^{2}+\frac{3}{4} k^{3}+\frac{1}{8} k^{4}$ Counts (semi)magic squares with magic number k :

The Birkhoff polytope B_{n}

(9) Ehrhart polynomial:

The function $k \mapsto\left|\left(k B_{n}\right) \cap \operatorname{Mat}_{n}(\mathbb{Z})\right|$ is a polynomial e.g. for $B_{3}: \quad k \mapsto 1+\frac{9}{4} k+\frac{15}{8} k^{2}+\frac{3}{4} k^{3}+\frac{1}{8} k^{4}$ Counts (semi)magic squares with magic number k :

CONJECTURE 1 (De Loera et al.)

All coefficients are nonnegative.

The Birkhoff polytope B_{n}

(6) Faces:

- There are n^{2} facets (maximal proper faces).
- Face structure related to certain bipartite graphs (Brualdi, Gibson 76-77).

The Birkhoff polytope B_{n}

(6) Faces:

- There are n^{2} facets (maximal proper faces).
- Face structure related to certain bipartite graphs (Brualdi, Gibson 76-77).
- Any combinatorial type of a d-dimensional face of B_{n} appears in $B_{2 d}$ (Billera, Sarangarajan '94; Paffenholz '15).

The Birkhoff polytope B_{n}

(6) Faces:

- There are n^{2} facets (maximal proper faces).
- Face structure related to certain bipartite graphs (Brualdi, Gibson 76-77).
- Any combinatorial type of a d-dimensional face of B_{n} appears in $B_{2 d}$ (Billera, Sarangarajan '94; Paffenholz '15).

CONJECTURE 2 (Brualdi, Gibson '77)

Any two combinatorially equivalent faces of B_{n} are affinely equivalent.

The Birkhoff polytope B_{n}

(6) Faces:

- There are n^{2} facets (maximal proper faces).
- Face structure related to certain bipartite graphs (Brualdi, Gibson 76-77).
- Any combinatorial type of a d-dimensional face of B_{n} appears in $B_{2 d}$ (Billera, Sarangarajan '94; Paffenholz '15).

CONJECTURE 2 (Brualdi, Gibson '77)

Any two combinatorially equivalent faces of B_{n} are affinely equivalent.
(0) Symmetry group: Any combinatorial symmetry comes from left multiplication, right multiplication or transposition (Baumeister, Ladisch '16):

$$
\operatorname{Aut}_{\text {comb }}\left(B_{n}\right) \cong S_{n} \backslash C_{2}
$$

Other special classes

- $P\left(D_{n}\right)$ for $D_{n} \leq S_{n}$ dihedral group is completely understood (Baumeister, Haase, Nill, Paffenholz '14).

Other special classes

- $P\left(D_{n}\right)$ for $D_{n} \leq S_{n}$ dihedral group is completely understood (Baumeister, Haase, Nill, Paffenholz '14).
- Combinatorial type and volume of $P(G)$ known if $G \leq S_{n}$ is Frobenius group (i.e. exists $H \leq G$ s.t. $\left.\forall x \in G \backslash H, H \cap\left(x H x^{-1}\right)=\{e\}\right)$ (Burggraf, De Loera, Omar '13).

Other special classes

Recall: $P\left(S_{n}\right)=B_{n}$ has n^{2} many facets and dimension $(n-1)^{2}$.

Other special classes

Recall: $P\left(S_{n}\right)=B_{n}$ has n^{2} many facets and dimension $(n-1)^{2}$.

- Alternating group: $P\left(A_{n}\right)$ (for $n \geq 4$) has dimension $(n-1)^{2}, n!/ 2$ vertices, and exponentially many facets (Cunningham, Wang '04; Hood, Perkinson '04).

Other special classes

Recall: $P\left(S_{n}\right)=B_{n}$ has n^{2} many facets and dimension $(n-1)^{2}$.

- Alternating group: $P\left(A_{n}\right)$ (for $n \geq 4$) has dimension $(n-1)^{2}, n!/ 2$ vertices, and exponentially many facets (Cunningham, Wang '04; Hood, Perkinson '04).
- Cyclic subgroup: Let a, b, c coprime; $z_{a b}, z_{a c}, z_{b c}$ disjoint cycles of lengths $a b, a c, b c$. Then

$$
P\left(\left\langle z_{a b} z_{a c} z_{b c}\right\rangle\right)
$$

has dimension $a b+a c+b c-a-b-c$,

Other special classes

Recall: $P\left(S_{n}\right)=B_{n}$ has n^{2} many facets and dimension $(n-1)^{2}$.

- Alternating group: $P\left(A_{n}\right)$ (for $n \geq 4$) has dimension $(n-1)^{2}, n!/ 2$ vertices, and exponentially many facets (Cunningham, Wang '04; Hood, Perkinson '04).
- Cyclic subgroup: Let a, b, c coprime; $z_{a b}, z_{a c}, z_{b c}$ disjoint cycles of lengths $a b, a c, b c$. Then

$$
P\left(\left\langle z_{a b} z_{a c} z_{b c}\right\rangle\right)
$$

has dimension $a b+a c+b c-a-b-c, a b c$ vertices,

Other special classes

Recall: $P\left(S_{n}\right)=B_{n}$ has n^{2} many facets and dimension $(n-1)^{2}$.

- Alternating group: $P\left(A_{n}\right)$ (for $n \geq 4$) has dimension $(n-1)^{2}, n!/ 2$ vertices, and exponentially many facets (Cunningham, Wang '04; Hood, Perkinson '04).
- Cyclic subgroup: Let a, b, c coprime; $z_{a b}, z_{a c}, z_{b c}$ disjoint cycles of lengths $a b, a c, b c$. Then

$$
P\left(\left\langle z_{a b} z_{a c} z_{b c}\right\rangle\right)
$$

has dimension $a b+a c+b c-a-b-c$, $a b c$ vertices, but at least $\left(\left(2^{a}-2\right)\left(2^{b}-2\right)\left(2^{c}-2\right)+a b+a c+b c\right) / 2$ many facets. (Sontag, Jaakkola '08; Baumeister, Haase, Nill, Paffenholz '12)

Other special classes

Computational challenge

For $(a, b, c)=(5,6,7)$, the permutation polytope $P\left(\left\langle z_{a b} z_{a c} z_{b c}\right\rangle\right.$ has

- dimension 89,
- 210 vertices,
- but conjecturally $>10^{9}$ facets.

Faces of permutation polytopes

Let $G \leq S_{n}$. The stabilizer subgroup of a partition of $\{1, \ldots, n\}$ is a face of $P(G)$.

Faces of permutation polytopes

Let $G \leq S_{n}$. The stabilizer subgroup of a partition of $\{1, \ldots, n\}$ is a face of $P(G)$.

Conjecture (Baumeister, Haase, Nill, Paffenholz '09)
Any subgroup of G whose permutation polytope is a face of $P(G)$ is a stabilizer of a partition of $\{1, \ldots, n\}$.

Faces of permutation polytopes

Let $G \leq S_{n}$. The stabilizer subgroup of a partition of $\{1, \ldots, n\}$ is a face of $P(G)$.

Theorem (Haase '15)

Any subgroup of G whose permutation polytope is a face of $P(G)$ is a stabilizer of a partition of $\{1, \ldots, n\}$.

Faces of permutation polytopes

What about edges?

Proposition (Guralnick, Perkinson '05)

Let $g=z_{1} \cdots z_{r} \in S_{n}$ be the decomposition into disjoint cycles. Then

$$
\left\{\prod_{I \subseteq\{1, \ldots, r\}} z_{i} \in G\right\}
$$

are the vertices of the smallest face F_{g} of $P(G)$ that contains e and g.
$\rightsquigarrow e, g$ form an edge if and only if g is 'indecomposable'.

Faces of permutation polytopes

Example 1: $G=\langle(12),(34),(56)\rangle, g=(12)(34)(56) \in G$. Then $F_{g}=P(G)$:

Faces of permutation polytopes

$$
\begin{aligned}
& \text { Example 2: } H=\langle(12)(34),(56)\rangle, g=(12)(34)(56) \in H \text {. } \\
& F_{g}=P(H):
\end{aligned}
$$

Faces of permutation polytopes

$$
\begin{aligned}
& \text { Example 2: } H=\langle(12)(34),(56)\rangle, g=(12)(34)(56) \in H \text {. } \\
& F_{g}=P(H):
\end{aligned}
$$

Faces of permutation polytopes

Consequences (BHNP '09):

- The smallest face containing two vertices is centrally-symmetric.
(Interchange e.g. $z_{1} z_{2}$ by $z_{3} \cdots z_{r}$)

Faces of permutation polytopes

Consequences (BHNP '09):

- The smallest face containing two vertices is centrally-symmetric.
(Interchange e.g. $z_{1} z_{2}$ by $z_{3} \cdots z_{r}$)
- If $P(G)$ is centrally-symmetric, then
G is elementary abelian 2-group.
(For g as above, any element and its inverse is 'subelement' of g)

Faces of permutation polytopes

Consequences (BHNP '09):

- The smallest face containing two vertices is centrally-symmetric.
(Interchange e.g. $z_{1} z_{2}$ by $z_{3} \cdots z_{r}$)
- If $P(G)$ is centrally-symmetric, then
G is elementary abelian 2-group.
(For g as above, any element and its inverse is 'subelement' of g)
- $P(G)$ is a combinatorial product of two polytopes if and only if G is product of subgroups with disjoint support.

Faces of permutation polytopes

Consequences (BHNP '09):

- The smallest face containing two vertices is centrally-symmetric. (Interchange e.g. $z_{1} z_{2}$ by $z_{3} \cdots z_{r}$)
- If $P(G)$ is centrally-symmetric, then
G is elementary abelian 2-group.
(For g as above, any element and its inverse is 'subelement' of g)
- $P(G)$ is a combinatorial product of two polytopes if and only if G is product of subgroups with disjoint support.
- $P(G)$ is combinatorially a crosspolytope (d-dimensional 'octahedron') if and only if d is a power of 2 .

Faces of permutation polytopes

Recall: Any permutation polytope $P(G)$ of dimension d is affinely equivalent to a subpolytope of $[0,1]^{d}$.

Faces of permutation polytopes

Recall: Any permutation polytope $P(G)$ of dimension d is affinely equivalent to a subpolytope of $[0,1]^{d}$.

Classification of perm. polytopes of dimension ≤ 4 (BHNP '09)

Combin. type of $P(G)$	Isom. type of G	Effective equiv. type of G
triangle	$\mathbb{Z} / 3 \mathbb{Z}$	$\langle(123)\rangle$
square	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$\langle(12),(34)\rangle$
tetrahedron	$\mathbb{Z} / 4 \mathbb{Z}$	$\langle(12344)\rangle$
tetranedron	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$\langle(12)(34),(13)(24)\rangle$
triangular prism	\mathbb{Z} / \mathbb{Z}	$\langle(12),(435)\rangle$
cube	$(\mathbb{Z} / 2 \mathbb{Z})^{3}$	$\langle(12),(34),(56)\rangle$
4-simplex	$\mathbb{Z} / 5 \mathbb{Z}$	$\langle(12345)\rangle$
B_{3}	S_{3}	$\langle(12),(123)\rangle$
prism over tetrahedron	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$	$\langle(1234),(56)\rangle$
prism over tetrahedron	$(\mathbb{Z} / 2 \mathbb{Z})^{3}$	$\langle(12)(34),(13)(24),(56)\rangle$
4-crosspolytope	$(\mathbb{Z} / 2 \mathbb{Z})^{3}$	$\langle(12)(34),(34)(78),(56)(78)\rangle$
product of triangles	$(\mathbb{Z} / 3 \mathbb{Z})^{2}$	$\langle(123),(456)\rangle$
prism over triang. prism	$\mathbb{Z} / \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$	$\langle(12),(345),(67)\rangle$
4-cube	$(\mathbb{Z} / 2 \mathbb{Z})^{4}$	$\langle(12),(34),(56),(78)\rangle$

Faces of permutation polytopes

What about classifying faces of permutation polytopes?

Theorem (BHNP '09)

For any d, there exists a face of a permutation polytope that is combinatorially equivalent to a crosspolytope.

Faces of permutation polytopes

Let \mathcal{F}_{d} be the set of combinatorial types F of subpolytopes of $[0,1]^{d}$ such that the following condition holds: any smallest face of F containing two vertices is centrally-symmetric.

Faces of permutation polytopes

Let \mathcal{F}_{d} be the set of combinatorial types F of subpolytopes of $[0,1]^{d}$ such that the following condition holds: any smallest face of F containing two vertices is centrally-symmetric.

Theorem (BHNP '09)

For $d \leq 4$, any $F \in \mathcal{F}_{d} \backslash\left\{Q_{1}, Q_{2}\right\}$ is combinatorially a face of a permutation polytope.

CONJECTURE 3 (BHNP '09)

$Q_{1}, Q_{2} \in \mathcal{F}_{4}$ are not combinatorially equivalent to a face of a permutation polytope.

Faces of permutation polytopes

The combinatorial diameter of a polytope is the smallest k such that any two vertices can be joined using k edges.

Faces of permutation polytopes

The combinatorial diameter of a polytope is the smallest k such that any two vertices can be joined using k edges.

Theorem (Guralnick, Perkinson '05)

The combinatorial diameter of $P(G)$ is at most $\min (2 t,\lfloor n / 2\rfloor)$, where t is the number of non-trivial orbits of G on $\{1, \ldots, n\}$.

Their proof uses the classification of finite almost-simple groups.

Faces of permutation polytopes

The combinatorial diameter of a polytope is the smallest k such that any two vertices can be joined using k edges.

Theorem (Guralnick, Perkinson '05)

The combinatorial diameter of $P(G)$ is at most $\min (2 t,\lfloor n / 2\rfloor)$, where t is the number of non-trivial orbits of G on $\{1, \ldots, n\}$.

Their proof uses the classification of finite almost-simple groups.
Bound is sharp: take t copies of D_{4} as subgroup of $S_{4 t}$, then combinatorial diameter is $2 t=n / 2$.

Dimension of representation polytopes

There is a natural generalization of a permutation polytope.

Representation polytope

Given a real representation $\rho: G \rightarrow \mathrm{GL}(V)$, where V is $\operatorname{deg}(\rho)$-dimensional real vector space. Its representation polytope is defined as

$$
P(G, \rho):=\operatorname{conv}(\rho(G)) \subseteq \mathrm{GL}_{\mathbb{R}}(V) \cong \mathbb{R}^{(\operatorname{deg}(\rho))^{2}}
$$

Dimension of representation polytopes

Let $\operatorname{Irr}(G)$ be the set of pairwise non-isomorphic irreducible \mathbb{C}-representations. Any representation splits as a G-representation over \mathbb{C} into irreducible components:

$$
\rho \cong \sum_{\sigma \in \operatorname{Irr}(G)} c_{\sigma} \sigma \quad \text { for } c_{\sigma} \in \mathbb{Z}_{\geq 0}
$$

Let $\operatorname{Irr}(\rho)=\left\{\sigma \in \operatorname{Irr}(G): c_{\sigma}>0\right\}$.

Dimension of representation polytopes

Let $\operatorname{Irr}(G)$ be the set of pairwise non-isomorphic irreducible \mathbb{C}-representations. Any representation splits as a G-representation over \mathbb{C} into irreducible components:

$$
\rho \cong \sum_{\sigma \in \operatorname{Irr}(G)} c_{\sigma} \sigma \quad \text { for } c_{\sigma} \in \mathbb{Z}_{\geq 0}
$$

Let $\operatorname{Irr}(\rho)=\left\{\sigma \in \operatorname{Irr}(G): c_{\sigma}>0\right\}$.

Theorem (Guralnick, Perkinson '05)

$$
\operatorname{dim}(P(G, \rho))=\sum_{1_{G} \neq \sigma \in \operatorname{Irr}(\rho)}(\operatorname{deg}(\sigma))^{2}
$$

where 1_{G} is the trivial representation.
Proof uses standard representation theory.

Dimension of representation polytopes

Corollary (Guralnick, Perkinson '05)

Let ρ be permutation representation of G, and t the number of orbits of G. Then

$$
\operatorname{dim}(P(G, \rho)) \leq(n-t)^{2}
$$

and equality iff at most one non-trivial irreducible component.

Dimension of representation polytopes

Corollary (Guralnick, Perkinson '05)

Let ρ be permutation representation of G, and t the number of orbits of G. Then

$$
\operatorname{dim}(P(G, \rho)) \leq(n-t)^{2}
$$

and equality iff at most one non-trivial irreducible component.

Proof:

Recall: $c_{1_{G}}$ equals the number of orbits t of G. Hence,

$$
\sum_{1_{G} \neq \sigma \in \operatorname{Irr}(\rho)} \operatorname{deg}(\sigma) \leq \sum_{1_{G} \neq \sigma \in \operatorname{Irr}(\rho)} c_{\sigma} \operatorname{deg}(\sigma)=n-t
$$

Dimension of representation polytopes

Corollary (Guralnick, Perkinson '05)

Let ρ be permutation representation of G, and t the number of orbits of G. Then

$$
\operatorname{dim}(P(G, \rho)) \leq(n-t)^{2}
$$

and equality iff at most one non-trivial irreducible component.

Proof:

Recall: $c_{1_{G}}$ equals the number of orbits t of G. Hence,

$$
\sum_{1_{G} \neq \sigma \in \operatorname{Irr}(\rho)} \operatorname{deg}(\sigma) \leq \sum_{1_{G} \neq \sigma \in \operatorname{Irr}(\rho)} c_{\sigma} \operatorname{deg}(\sigma)=n-t
$$

The sum

$$
\sum_{1_{G} \neq \sigma \in \operatorname{Irr}(\rho)}(\operatorname{deg}(\sigma))^{2}=\operatorname{dim}(P(G, \rho))
$$

is maximized for one non-trivial irreducible component.

Dimension of representation polytopes

Corollary (Guralnick, Perkinson '05)

Let ρ be permutation representation of G, and t the number of orbits of G. Then

$$
\operatorname{dim}(P(G, \rho)) \leq(n-t)^{2},
$$

and equality iff at most one non-trivial irreducible component.
Corollary (Guralnick, Perkinson '05)
Let $G \leq S_{n}$ transitive. Then

$$
\operatorname{dim}(P(G)) \leq(n-1)^{2}
$$

and equality if and only if G is 2-transitive.

Equivalence of permutation polytopes

Corollary to dimension formula: Regular representation defines simplex.

Combin. type of $P(G)$	Isom. type of G
triangle	$\mathbb{Z} / 3 \mathbb{Z}$
square	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$
tetrahedron	$\mathbb{Z} / 4 \mathbb{Z}$
tetrahedron	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$

Equivalence of permutation polytopes

Observation: All these permutation groups define tetrahedron: $\langle(1234)\rangle \leq S_{4}$
$\langle(1234)(5)\rangle \leq S_{5}$ $\langle(1234)(5678)\rangle \leq S_{8}$ $\langle(1234)(57)(68)\rangle \leq S_{8}$

Equivalence of permutation polytopes

Observation: All these permutation groups define tetrahedron:
$\langle(1234)\rangle \leq S_{4}$
$\langle(1234)(5)\rangle \leq S_{5}$
$\langle(1234)(5678)\rangle \leq S_{8}$
$\langle(1234)(57)(68)\rangle \leq S_{8}$

Definition/Proposition
 (BHNP '09; Baumeister, Grüninger '15; Friese, Ladisch '16)

ρ_{1}, ρ_{2} real representations of G. Then T.F.A.E.

- ρ_{1}, ρ_{2} are stably equivalent
- $\operatorname{Irr}\left(\rho_{1}\right) \backslash\left\{1_{G}\right\}=\operatorname{Irr}\left(\rho_{2}\right) \backslash\left\{1_{G}\right\}$
- Exists $\alpha: P\left(G, \rho_{1}\right) \rightarrow P\left(G, \rho_{2}\right)$ affine equivalence s.t.

$$
\alpha\left(\rho_{1}(g) x\right)=\rho_{2}(g) \alpha(x) \quad \text { for all } x \in P\left(G, \rho_{1}\right)
$$

Equivalence of permutation polytopes

QUESTION 4 (BHNP '09)

Is there an implementable algorithm that solves the following problem?
Given finite group G and $S \subseteq \operatorname{Irr}(G) \backslash\left\{1_{G}\right\}$. Check if permutation representation with $\operatorname{Irr}(\rho) \backslash\left\{1_{G}\right\}=S$ exists, and if yes, find one.

This would allow to classify all permutation polytopes in small dimension d (as $|G| \leq 2^{d}$).

Equivalence of permutation polytopes

QUESTION 4 (BHNP '09)

Is there an implementable algorithm that solves the following problem?

Given finite group G and $S \subseteq \operatorname{Irr}(G) \backslash\left\{1_{G}\right\}$. Check if permutation representation with $\operatorname{Irr}(\rho) \backslash\left\{1_{G}\right\}=S$ exists, and if yes, find one.

This would allow to classify all permutation polytopes in small dimension d (as $|G| \leq 2^{d}$).

CONJECTURE 5 (BHNP '09)

Given permutation representation $\rho: G \rightarrow S_{n}$, there exists stably equivalent permutation representation $\rho^{\prime}: G \rightarrow S_{n^{\prime}}$ with $n^{\prime} \leq 2 \operatorname{dim}(P(G, \rho))$.

Equivalence of permutation polytopes

QUESTION 4 (BHNP '09)

Is there an implementable algorithm that solves the following problem?

Given finite group G and $S \subseteq \operatorname{Irr}(G) \backslash\left\{1_{G}\right\}$. Check if permutation representation with $\operatorname{Irr}(\rho) \backslash\left\{1_{G}\right\}=S$ exists, and if yes, find one.

This would allow to classify all permutation polytopes in small dimension d (as $|G| \leq 2^{d}$).

CONJECTURE 5 (BHNP '09)

Given permutation representation $\rho: G \rightarrow S_{n}$, there exists stably equivalent permutation representation $\rho^{\prime}: G \rightarrow S_{n^{\prime}}$ with $n^{\prime} \leq 2 \operatorname{dim}(P(G, \rho))$.

These are purely representation-theoretic challenges!

Equivalence of permutation polytopes

Stable equivalence not general enough!
Example: $G:=\left(\mathbb{Z}_{2}\right)^{2}=\{e, x, y, x y\}$ has not stably equivalent permutation representations ρ_{1}, ρ_{2} with the same permutation polytope $P\left(G, \rho_{1}\right)=P\left(G, \rho_{2}\right)$:

Equivalence of permutation polytopes

Definition/Proposition (BHNP '09; Baumeister, Grüninger '15)
$\left(G_{1}, \rho_{1}\right),\left(G_{2}, \rho_{2}\right)$ permutation representations. Then T.F.A.E.

- ρ_{1}, ρ_{2} are effectively equivalent
- Exists $\phi: G_{1} \rightarrow G_{2}$ group isomorphism s.t. ρ_{1} and $\rho_{2} \circ \phi$ are stably equivalent (on G_{1})

Equivalence of permutation polytopes

Definition/Proposition (BHNP '09; Baumeister, Grüninger '15)
$\left(G_{1}, \rho_{1}\right),\left(G_{2}, \rho_{2}\right)$ permutation representations. Then T.F.A.E.

- ρ_{1}, ρ_{2} are effectively equivalent
- Exists $\phi: G_{1} \rightarrow G_{2}$ group isomorphism s.t. ρ_{1} and $\rho_{2} \circ \phi$ are stably equivalent (on G_{1})
- Exists $\phi: G_{1} \rightarrow G_{2}$ group isomorphism and $\alpha: P\left(G, \rho_{1}\right) \rightarrow P\left(G, \rho_{2}\right)$ affine equivalence s.t.

$$
\alpha\left(\rho_{1}(g) x\right)=\rho_{2}(\phi(g)) \alpha(x) \quad \text { for all } x \in P\left(G, \rho_{1}\right), g \in G_{1}
$$

- Exists $\alpha: P\left(G_{1}, \rho_{1}\right) \rightarrow P\left(G_{2}, \rho_{2}\right)$ affine equivalence s.t. its restriction $\rho_{1}\left(G_{1}\right) \rightarrow \rho_{2}\left(G_{2}\right)$ is group homomorphism.

Equivalence of permutation polytopes

Example (Baumeister, Grüninger '15)

$G:=\left(\mathbb{Z}_{2}\right)^{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3}$ has permutation representations ρ_{1}, ρ_{2} with

- affinely equivalent permutation polytopes, but
- not effectively equivalent.

Reason: The set of faces with 24 vertices that are also subgroups have different number of combinatorial types.

Equivalence of permutation polytopes

Example (Baumeister, Grüninger '15)

$G:=\left(\mathbb{Z}_{2}\right)^{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3}$ has permutation representations ρ_{1}, ρ_{2} with

- affinely equivalent permutation polytopes, but
- not effectively equivalent.

Reason: The set of faces with 24 vertices that are also subgroups have different number of combinatorial types.

QUESTION 6 (Baumeister, Grüninger '15)

Does such an example exist if G acts transitively?

Equivalence of permutation polytopes

Extreme cases expected to be unique:

(BHNP '09): Unique effective equivalence class of $G \leq S_{n}$ if $P(G)$ is cube.

Equivalence of permutation polytopes

Let $\pi: S_{n} \rightarrow S_{n}$ standard permutation representation, ρ permutation representation of G.

Conjecture (BHNP '09)

If $P(G, \rho)$ is affinely equivalent to $B_{n}=P\left(S_{n}, \pi\right)$, then (G, ρ) and $\left(S_{n}, \pi\right)$ are effectively equivalent.

Equivalence of permutation polytopes

Let $\pi: S_{n} \rightarrow S_{n}$ standard permutation representation, ρ permutation representation of G.

Theorem (Baumeister, Ladisch '16)

If $P(G, \rho)$ is affinely equivalent to $B_{n}=P\left(S_{n}, \pi\right)$, then (G, ρ) and $\left(S_{n}, \pi\right)$ are effectively equivalent.

Proof uses symmetry group of B_{n} and the study of the Chermak-Delgado lattice of G.

Equivalence of permutation polytopes

(BHNP '09): conjectured that up to few exceptions ALWAYS

$$
\operatorname{Aut}_{\text {aff }}(P(G))>|G|
$$

Equivalence of permutation polytopes

(BHNP '09): conjectured that up to few exceptions ALWAYS

$$
\operatorname{Aut}_{\text {aff }}(P(G))>|G|
$$

Theorem (Friese, Ladisch '16)

Any elementary abelian 2-group of order $|G| \geq 2^{5}$ has permutation polytope $P(G, \rho)$ with $\operatorname{Aut}_{\text {aff }}(P(G))=|G|$.

Proof follows from new results on orbit polytopes of $G \subset \mathrm{GL}_{n}(\mathbb{R})$: the convex hull of the orbit $G v$ for $v \in \mathbb{R}^{n}$.

Equivalence of permutation polytopes

(BHNP '09): conjectured that up to few exceptions ALWAYS

$$
\operatorname{Aut}_{\mathrm{aff}}(P(G))>|G|
$$

Theorem (Friese, Ladisch '16)

Any elementary abelian 2-group of order $|G| \geq 2^{5}$ has permutation polytope $P(G, \rho)$ with $\operatorname{Aut}_{\text {aff }}(P(G))=|G|$.

Proof follows from new results on orbit polytopes of $G \subset \mathrm{GL}_{n}(\mathbb{R})$: the convex hull of the orbit $G v$ for $v \in \mathbb{R}^{n}$.

CONJECTURE 7 (Friese, Ladisch '16)

Combinatorial and affine symmetry groups of representation polytopes are equal.

