What we (don't) know about permutation polytopes

Convex set:

contains the connecting segment between any two points

Convex set:

contains the connecting segment between any two points

Convex hull: conv(S) is smallest convex set containing set S

Convex set:

contains the connecting segment between any two points

Convex hull: conv(S) is smallest convex set containing set S

Polytopes: Convex hull of finite number of points

Faces: The intersection with hyperplanes with the polytope on one side

Vertices: 0-dimensional faces

Edges: 1-dimensional faces

Faces: The intersection with hyperplanes with the polytope on one side

Vertices: 0-dimensional faces

Edges: 1-dimensional faces

Faces: The intersection with hyperplanes with the polytope on one side

Vertices: 0-dimensional faces

Edges: 1-dimensional faces

Faces: The intersection with hyperplanes with the polytope on one side

Vertices: 0-dimensional faces

Edges: 1-dimensional faces

Symmetries of polytopes

Polytope ~~> Symmetry groups

 $G \leq S_n$ subgroup.

Definition

$$P(G) := \operatorname{conv}(M(g) : g \in G) \subset \operatorname{Mat}_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$$

where M(g) is the corresponding $n \times n$ -permutation matrix.

 $G \leq S_n$ subgroup.

Definition

$$P(G) := \operatorname{conv}(M(g) : g \in G) \subset \operatorname{Mat}_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$$

where M(g) is the corresponding $n \times n$ -permutation matrix.

Examples:

•
$$P(S_2) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$

is an interval (1-dimensional polytope) in \mathbb{R}^4
• $P(\langle (1 \ 2 \ 3 \ \cdots \ d+1) \rangle)$ is *d*-simplex
• $P(\langle (1 \ 2), (3 \ 4), \ \cdots \ , (2d-1 \ 2d) \rangle)$ is *d*-cube

Two basic results:

G acts transitively by multiplication on vertices of *P*:

|Vertices(P(G))| = |G|.

2 The vertices of P(G) have only 0 or 1 coordinates:

 $|G| \leq 2^{\dim(P(G))}$, with equality if cube.

Two basic results:

G acts transitively by multiplication on vertices of *P*:

|Vertices(P(G))| = |G|.

2 The vertices of P(G) have only 0 or 1 coordinates:

 $|G| \leq 2^{\dim(P(G))}$, with equality if cube.

Guiding questions

Q1) What can we say about P(G)?

Two basic results:

G acts transitively by multiplication on vertices of *P*:

|Vertices(P(G))| = |G|.

2 The vertices of P(G) have only 0 or 1 coordinates:

 $|G| \leq 2^{\dim(P(G))}$, with equality if cube.

Guiding questions

Q1) What can we say about P(G)?

– fascinating geometric objects!

Two basic results:

G acts transitively by multiplication on vertices of *P*:

|Vertices(P(G))| = |G|.

2 The vertices of P(G) have only 0 or 1 coordinates:

 $|G| \leq 2^{\dim(P(G))}$, with equality if cube.

Guiding questions

Q1) What can we say about P(G)?

- fascinating geometric objects!

Q2) What can we deduce about G from P(G)?

Two basic results:

G acts transitively by multiplication on vertices of *P*:

|Vertices(P(G))| = |G|.

2 The vertices of P(G) have only 0 or 1 coordinates:

 $|G| \leq 2^{\dim(P(G))}$, with equality if cube.

Guiding questions

Q1) What can we say about P(G)?

- fascinating geometric objects!

Q2) What can we deduce about G from P(G)?

- challenging representation-theoretic problems!

Overview of talk

- The Birkhoff polytope
- Other special classes
- In Faces
- Oimension
- Sequivalences

Definition

 $B_n := P(S_n)$ is called **Birkhoff polytope**.

- **Overtices:** all $n \times n$ -permutation matrices
- **2** Dimension: $(n-1)^2$

Definition

$$B_n := P(S_n)$$
 is called **Birkhoff polytope**.

- **Overtices:** all $n \times n$ -permutation matrices
- **2** Dimension: $(n-1)^2$
- Volume:
 - (Canfield, McKay '09): asymptotic formula $\operatorname{vol}(B_n) = \exp\left(-(n-1)^2 \ln n + n^2 - (n-\frac{1}{2})\ln(2\pi) + \frac{1}{3} + o(1)\right)$

Definition

$$B_n := P(S_n)$$
 is called **Birkhoff polytope**.

- **Overtices:** all $n \times n$ -permutation matrices
- **2 Dimension**: $(n-1)^2$
- Volume:
 - (Canfield, McKay '09): asymptotic formula $\operatorname{vol}(B_n) = \exp\left(-(n-1)^2\ln n + n^2 - (n-\frac{1}{2})\ln(2\pi) + \frac{1}{3} + o(1)\right)$
 - (De Loera, Liu, Yoshida '09): exact combinatorial formula

$$\operatorname{vol}(B_n) = \frac{1}{((n-1)^2)!} \sum_{\sigma \in S_n} \sum_{T \in \operatorname{Arb}(\ell,n)} \frac{\langle c, \sigma \rangle^{(n-1)^2}}{\prod_{e \notin E(T)} \langle c, W^{T,e} \sigma \rangle}$$

Definition

$$B_n := P(S_n)$$
 is called **Birkhoff polytope**.

- **Overtices:** all $n \times n$ -permutation matrices
- **2 Dimension**: $(n-1)^2$
- Volume:
 - (Canfield, McKay '09): asymptotic formula $\operatorname{vol}(B_n) = \exp\left(-(n-1)^2 \ln n + n^2 - (n-\frac{1}{2})\ln(2\pi) + \frac{1}{3} + o(1)\right)$
 - (De Loera, Liu, Yoshida '09): exact combinatorial formula

$$\operatorname{vol}(B_n) = \frac{1}{((n-1)^2)!} \sum_{\sigma \in S_n} \sum_{T \in \operatorname{Arb}(\ell,n)} \frac{\langle c, \sigma \rangle^{(n-1)^2}}{\prod_{e \notin E(T)} \langle c, W^{T,e} \sigma \rangle}$$

• (Beck, Pixton '03): exact values known for $n \leq 10$:

```
\mathsf{Vol}(B_{10}) = \frac{72729128401678642097750845799012186254882326005255733386607889}{82816086010676685512567631879687272934462246353308942267798072138805573995627029375088350489282084864000000}
```

O Ehrhart polynomial:

The function $k \mapsto |(kB_n) \cap \operatorname{Mat}_n(\mathbb{Z})|$ is a polynomial e.g. for $B_3: k \mapsto 1 + \frac{9}{4}k + \frac{15}{8}k^2 + \frac{3}{4}k^3 + \frac{1}{8}k^4$

ehrhart polynomial:

The function $k \mapsto |(kB_n) \cap \operatorname{Mat}_n(\mathbb{Z})|$ is a polynomial e.g. for $B_3: k \mapsto 1 + \frac{9}{4}k + \frac{15}{8}k^2 + \frac{3}{4}k^3 + \frac{1}{8}k^4$

Counts (semi)magic squares with magic number k:

ehrhart polynomial:

The function $k \mapsto |(kB_n) \cap \operatorname{Mat}_n(\mathbb{Z})|$ is a polynomial e.g. for $B_3: k \mapsto 1 + \frac{9}{4}k + \frac{15}{8}k^2 + \frac{3}{4}k^3 + \frac{1}{8}k^4$

Counts (semi)magic squares with magic number k:

CONJECTURE 1 (De Loera et al.)

All coefficients are nonnegative.

Faces:

- There are n^2 facets (maximal proper faces).
- Face structure related to certain bipartite graphs (Brualdi, Gibson 76–77).

Faces:

- There are n^2 facets (maximal proper faces).
- Face structure related to certain bipartite graphs (Brualdi, Gibson 76–77).
- Any combinatorial type of a *d*-dimensional face of B_n appears in B_{2d} (Billera, Sarangarajan '94; Paffenholz '15).

Faces:

- There are n^2 facets (maximal proper faces).
- Face structure related to certain bipartite graphs (Brualdi, Gibson 76–77).
- Any combinatorial type of a *d*-dimensional face of *B_n* appears in *B*_{2d} (Billera, Sarangarajan '94; Paffenholz '15).

CONJECTURE 2 (Brualdi, Gibson '77)

Any two combinatorially equivalent faces of B_n are affinely equivalent.

Faces:

- There are n^2 facets (maximal proper faces).
- Face structure related to certain bipartite graphs (Brualdi, Gibson 76–77).
- Any combinatorial type of a *d*-dimensional face of *B_n* appears in *B*_{2d} (Billera, Sarangarajan '94; Paffenholz '15).

CONJECTURE 2 (Brualdi, Gibson '77)

Any two combinatorially equivalent faces of B_n are affinely equivalent.

 Symmetry group: Any combinatorial symmetry comes from left multiplication, right multiplication or transposition (Baumeister, Ladisch '16):

$$\operatorname{Aut}_{\operatorname{comb}}(B_n) \cong S_n \wr C_2$$

 P(D_n) for D_n ≤ S_n dihedral group is completely understood (Baumeister, Haase, Nill, Paffenholz '14).

- P(D_n) for D_n ≤ S_n dihedral group is completely understood (Baumeister, Haase, Nill, Paffenholz '14).
- Combinatorial type and volume of P(G) known if G ≤ S_n is
 Frobenius group (i.e. exists H ≤ G s.t. ∀x ∈ G \ H, H ∩ (xHx⁻¹) = {e}) (Burggraf, De Loera, Omar '13).

Recall: $P(S_n) = B_n$ has n^2 many facets and dimension $(n-1)^2$.

Recall: $P(S_n) = B_n$ has n^2 many facets and dimension $(n-1)^2$.

Alternating group: P(A_n) (for n ≥ 4) has dimension (n − 1)², n!/2 vertices, and exponentially many facets (Cunningham, Wang '04; Hood, Perkinson '04).

Recall: $P(S_n) = B_n$ has n^2 many facets and dimension $(n-1)^2$.

- Alternating group: P(A_n) (for n ≥ 4) has dimension (n − 1)², n!/2 vertices, and exponentially many facets (Cunningham, Wang '04; Hood, Perkinson '04).
- **Cyclic subgroup**: Let *a*, *b*, *c* coprime; *z*_{*ab*}, *z*_{*ac*}, *z*_{*bc*} disjoint cycles of lengths *ab*, *ac*, *bc*. Then

$$P(\langle z_{ab}z_{ac}z_{bc}\rangle)$$

has dimension ab + ac + bc - a - b - c,

Recall: $P(S_n) = B_n$ has n^2 many facets and dimension $(n-1)^2$.

- Alternating group: P(A_n) (for n ≥ 4) has dimension (n − 1)², n!/2 vertices, and exponentially many facets (Cunningham, Wang '04; Hood, Perkinson '04).
- **Cyclic subgroup**: Let *a*, *b*, *c* coprime; *z*_{*ab*}, *z*_{*ac*}, *z*_{*bc*} disjoint cycles of lengths *ab*, *ac*, *bc*. Then

$$P(\langle z_{ab} z_{ac} z_{bc} \rangle)$$

has dimension ab + ac + bc - a - b - c, abc vertices,

Recall: $P(S_n) = B_n$ has n^2 many facets and dimension $(n-1)^2$.

- Alternating group: P(A_n) (for n ≥ 4) has dimension (n − 1)², n!/2 vertices, and exponentially many facets (Cunningham, Wang '04; Hood, Perkinson '04).
- **Cyclic subgroup**: Let *a*, *b*, *c* coprime; *z*_{*ab*}, *z*_{*ac*}, *z*_{*bc*} disjoint cycles of lengths *ab*, *ac*, *bc*. Then

$$P(\langle z_{ab}z_{ac}z_{bc}\rangle)$$

has dimension ab + ac + bc - a - b - c, abc vertices, but at least $((2^a - 2)(2^b - 2)(2^c - 2) + ab + ac + bc)/2$ many facets. (Sontag, Jaakkola '08; Baumeister, Haase, Nill, Paffenholz '12)

Other special classes

Computational challenge

For (a, b, c) = (5, 6, 7), the permutation polytope $P(\langle z_{ab} z_{ac} z_{bc} \rangle$ has

- dimension 89,
- 210 vertices,
- $\bullet\,$ but conjecturally $>10^9$ facets.

Let $G \leq S_n$. The **stabilizer subgroup** of a partition of $\{1, \ldots, n\}$ is a **face** of P(G).

Let $G \leq S_n$. The **stabilizer subgroup** of a partition of $\{1, \ldots, n\}$ is a **face** of P(G).

Conjecture (Baumeister, Haase, Nill, Paffenholz '09)

Any subgroup of G whose permutation polytope is a face of P(G) is a stabilizer of a partition of $\{1, \ldots, n\}$.

Let $G \leq S_n$. The **stabilizer subgroup** of a partition of $\{1, \ldots, n\}$ is a **face** of P(G).

Theorem (Haase '15)

Any subgroup of G whose permutation polytope is a face of P(G) is a stabilizer of a partition of $\{1, \ldots, n\}$.

What about edges?

Proposition (Guralnick, Perkinson '05)

Let $g = z_1 \cdots z_r \in S_n$ be the decomposition into disjoint cycles. Then

$$\left\{\prod_{I\subseteq\{1,\ldots,r\}}z_i\in G\right\}$$

are the vertices of the smallest face F_g of P(G) that contains e and g.

 $\rightsquigarrow e, g$ form an edge if and only if g is 'indecomposable'.

Example 1: $G = \langle (12), (34), (56) \rangle$, $g = (12)(34)(56) \in G$. Then $F_g = P(G)$:

Example 2: $H = \langle (12)(34), (56) \rangle$, $g = (12)(34)(56) \in H$. $F_g = P(H)$:

Example 2: $H = \langle (12)(34), (56) \rangle$, $g = (12)(34)(56) \in H$. $F_g = P(H)$:

Consequences (BHNP '09):

• The smallest face containing two vertices is centrally-symmetric.

(Interchange e.g. z_1z_2 by $z_3\cdots z_r$)

Consequences (BHNP '09):

• The smallest face containing two vertices is centrally-symmetric.

(Interchange e.g. z_1z_2 by $z_3\cdots z_r$)

If P(G) is centrally-symmetric, then
 G is elementary abelian 2-group.
 (For g as above, any element and its inverse is 'subelement' of g)

Consequences (BHNP '09):

• The smallest face containing two vertices is centrally-symmetric.

(Interchange e.g. z_1z_2 by $z_3 \cdots z_r$)

- If P(G) is centrally-symmetric, then
 G is elementary abelian 2-group.
 (For g as above, any element and its inverse is 'subelement' of g)
- *P*(*G*) is a combinatorial product of two polytopes if and only if *G* is product of subgroups with disjoint support.

Consequences (BHNP '09):

• The smallest face containing two vertices is centrally-symmetric.

(Interchange e.g. z_1z_2 by $z_3\cdots z_r$)

- If P(G) is centrally-symmetric, then
 G is elementary abelian 2-group.
 (For g as above, any element and its inverse is 'subelement' of g)
- *P*(*G*) is a combinatorial product of two polytopes if and only if *G* is product of subgroups with disjoint support.
- P(G) is combinatorially a crosspolytope (*d*-dimensional 'octahedron') if and only if *d* is a power of 2.

Recall: Any permutation polytope P(G) of dimension d is affinely equivalent to a subpolytope of $[0, 1]^d$.

Recall: Any permutation polytope P(G) of dimension d is affinely equivalent to a subpolytope of $[0, 1]^d$.

Classification of perm. polytopes of dimension \leq 4 (BHNP '09)

Combin. type of $P(G)$	Isom. type of G	Effective equiv. type of G
triangle	$\mathbb{Z}/3\mathbb{Z}$	((123))
square	$(\mathbb{Z}/2\mathbb{Z})^2$	((12), (34))
tetrahedron	$\mathbb{Z}/4\mathbb{Z}$	((1234))
tetrahedron	$(\mathbb{Z}/2\mathbb{Z})^2$	((12)(34), (13)(24))
triangular prism	$\mathbb{Z}/6\mathbb{Z}$	((12), (345))
cube	$(\mathbb{Z}/2\mathbb{Z})^3$	((12), (34), (56))
4-simplex	$\mathbb{Z}/5\mathbb{Z}$	((12345))
B ₃	S_3	((12), (123))
prism over tetrahedron	$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$	((1234), (56))
prism over tetrahedron	$(\mathbb{Z}/2\mathbb{Z})^3$	((12)(34), (13)(24), (56))
4-crosspolytope	$(\mathbb{Z}/2\mathbb{Z})^3$	((12)(34), (34)(78), (56)(78))
product of triangles	$(\mathbb{Z}/3\mathbb{Z})^2$	((123), (456))
prism over triang. prism	$\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$	((12), (345), (67))
4-cube	$(\mathbb{Z}/2\mathbb{Z})^4$	((12), (34), (56), (78))

What about classifying faces of permutation polytopes?

Theorem (BHNP '09)

For any d, there exists a face of a permutation polytope that is combinatorially equivalent to a crosspolytope.

Let \mathcal{F}_d be the set of combinatorial types F of subpolytopes of $[0, 1]^d$ such that the following condition holds:

any smallest face of F containing two vertices is centrally-symmetric.

Let \mathcal{F}_d be the set of combinatorial types F of subpolytopes of $[0, 1]^d$ such that the following condition holds:

any smallest face of F containing two vertices is centrally-symmetric.

Theorem (BHNP '09)

For $d \leq 4$, any $F \in \mathcal{F}_d \setminus \{Q_1, Q_2\}$ is combinatorially a face of a permutation polytope.

CONJECTURE 3 (BHNP '09)

 $Q_1,\,Q_2\in \mathcal{F}_4$ are not combinatorially equivalent to a face of a permutation polytope.

The **combinatorial diameter** of a polytope is the smallest k such that any two vertices can be joined using k edges.

The **combinatorial diameter** of a polytope is the smallest k such that any two vertices can be joined using k edges.

Theorem (Guralnick, Perkinson '05)

The combinatorial diameter of P(G) is at most min $(2t, \lfloor n/2 \rfloor)$, where t is the number of non-trivial orbits of G on $\{1, \ldots, n\}$.

Their proof uses the classification of finite almost-simple groups.

The **combinatorial diameter** of a polytope is the smallest k such that any two vertices can be joined using k edges.

Theorem (Guralnick, Perkinson '05)

The combinatorial diameter of P(G) is at most min $(2t, \lfloor n/2 \rfloor)$, where t is the number of non-trivial orbits of G on $\{1, \ldots, n\}$.

Their proof uses the classification of finite almost-simple groups.

Bound is **sharp**: take *t* copies of D_4 as subgroup of S_{4t} , then combinatorial diameter is 2t = n/2.

There is a natural generalization of a permutation polytope.

Representation polytope

Given a real representation ρ : $G \to GL(V)$, where V is $\deg(\rho)$ -dimensional real vector space. Its representation polytope is defined as

$$P(G, \rho) := \operatorname{conv}(\rho(G)) \subseteq \operatorname{GL}_{\mathbb{R}}(V) \cong \mathbb{R}^{(\operatorname{deg}(\rho))^{2}}$$

Let Irr(G) be the set of pairwise non-isomorphic irreducible \mathbb{C} -representations. Any representation splits as a *G*-representation over \mathbb{C} into irreducible components:

$$\rho \cong \sum_{\sigma \in \operatorname{Irr}(G)} c_{\sigma} \sigma \quad \text{ for } c_{\sigma} \in \mathbb{Z}_{\geq 0}$$

Let $\operatorname{Irr}(\rho) = \{ \sigma \in \operatorname{Irr}(G) : c_{\sigma} > 0 \}.$

Let Irr(G) be the set of pairwise non-isomorphic irreducible \mathbb{C} -representations. Any representation splits as a *G*-representation over \mathbb{C} into irreducible components:

$$ho \cong \sum_{\sigma \in \operatorname{Irr}(G)} c_{\sigma} \sigma \quad \text{ for } c_{\sigma} \in \mathbb{Z}_{\geq 0}$$

Let
$$\operatorname{Irr}(\rho) = \{ \sigma \in \operatorname{Irr}(G) : c_{\sigma} > 0 \}.$$

Theorem (Guralnick, Perkinson '05)

$$\dim(P(G,\rho)) = \sum_{1_G \neq \sigma \in \operatorname{Irr}(\rho)} (\deg(\sigma))^2,$$

where 1_G is the trivial representation.

Proof uses standard representation theory.

Corollary (Guralnick, Perkinson '05)

Let ρ be permutation representation of G, and t the number of orbits of G. Then

$$\dim(P(G,\rho)) \leq (n-t)^2,$$

and equality iff at most one non-trivial irreducible component.

Corollary (Guralnick, Perkinson '05)

Let ρ be permutation representation of G, and t the number of orbits of G. Then

$$\dim(P(G,\rho)) \leq (n-t)^2,$$

and equality iff at most one non-trivial irreducible component.

Proof:

Recall: c_{1_G} equals the number of orbits t of G. Hence,

$$\sum_{\mathbf{1}_G \neq \sigma \in \operatorname{Irr}(\rho)} \deg(\sigma) \leq \sum_{\mathbf{1}_G \neq \sigma \in \operatorname{Irr}(\rho)} c_\sigma \deg(\sigma) = n - t.$$

Corollary (Guralnick, Perkinson '05)

Let ρ be permutation representation of G, and t the number of orbits of G. Then

$$\dim(P(G,\rho)) \leq (n-t)^2,$$

and equality iff at most one non-trivial irreducible component.

Proof:

Recall: c_{1_G} equals the number of orbits t of G. Hence,

$$\sum_{\mathbf{1}_G \neq \sigma \in \operatorname{Irr}(\rho)} \deg(\sigma) \leq \sum_{\mathbf{1}_G \neq \sigma \in \operatorname{Irr}(\rho)} c_\sigma \deg(\sigma) = n - t.$$

The sum

$$\sum_{\mathbf{1}_{\mathcal{G}}\neq\sigma\in\operatorname{Irr}(\rho)}(\deg(\sigma))^{2}=\dim(P(\mathcal{G},\rho)),$$

is maximized for one non-trivial irreducible component.

Corollary (Guralnick, Perkinson '05)

Let ρ be permutation representation of G, and t the number of orbits of G. Then

$$\dim(P(G,\rho)) \leq (n-t)^2,$$

and equality iff at most one non-trivial irreducible component.

Corollary (Guralnick, Perkinson '05)

Let $G \leq S_n$ transitive. Then

$$\dim(P(G)) \leq (n-1)^2,$$

and equality if and only if G is 2-transitive.

Corollary to dimension formula: Regular representation defines simplex.

Combin. type of $P(G)$	Isom. type of G
triangle	$\mathbb{Z}/3\mathbb{Z}$
square	$(\mathbb{Z}/2\mathbb{Z})^2$
tetrahedron	$\mathbb{Z}/4\mathbb{Z}$
tetrahedron	$(\mathbb{Z}/2\mathbb{Z})^2$

Observation: All these permutation groups define tetrahedron: $\langle (1234) \rangle \leq S_4$ $\langle (1234)(5) \rangle \leq S_5$ $\langle (1234)(5678) \rangle \leq S_8$ $\langle (1234)(57)(68) \rangle \leq S_8$

Observation: All these permutation groups define tetrahedron: $\langle (1234) \rangle \leq S_4$ $\langle (1234)(5) \rangle \leq S_5$ $\langle (1234)(5678) \rangle \leq S_8$ $\langle (1234)(57)(68) \rangle \leq S_8$

Definition/Proposition (BHNP '09; Baumeister, Grüninger '15; Friese, Ladisch '16)

 ρ_1, ρ_2 real representations of G. Then T.F.A.E.

ρ₁, ρ₂ are stably equivalent

•
$$\operatorname{Irr}(\rho_1) \setminus \{1_G\} = \operatorname{Irr}(\rho_2) \setminus \{1_G\}$$

• Exists α : $P(G, \rho_1) \rightarrow P(G, \rho_2)$ affine equivalence s.t.

 $\alpha(\rho_1(g)x) = \rho_2(g)\alpha(x)$ for all $x \in P(G, \rho_1)$

QUESTION 4 (BHNP '09)

Is there an implementable algorithm that solves the following problem?

Given finite group G and $S \subseteq Irr(G) \setminus \{1_G\}$. Check if permutation representation with $Irr(\rho) \setminus \{1_G\} = S$ exists, and if yes, find one.

This would allow to classify all permutation polytopes in small dimension d (as $|G| \le 2^d$).

QUESTION 4 (BHNP '09)

Is there an implementable algorithm that solves the following problem?

Given finite group G and $S \subseteq Irr(G) \setminus \{1_G\}$. Check if permutation representation with $Irr(\rho) \setminus \{1_G\} = S$ exists, and if yes, find one.

This would allow to classify all permutation polytopes in small dimension d (as $|G| \le 2^d$).

CONJECTURE 5 (BHNP '09)

Given permutation representation ρ : $G \to S_n$, there exists stably equivalent permutation representation ρ' : $G \to S_{n'}$ with $n' \leq 2 \dim(P(G, \rho))$.

QUESTION 4 (BHNP '09)

Is there an implementable algorithm that solves the following problem?

Given finite group G and $S \subseteq Irr(G) \setminus \{1_G\}$. Check if permutation representation with $Irr(\rho) \setminus \{1_G\} = S$ exists, and if yes, find one.

This would allow to classify all permutation polytopes in small dimension d (as $|G| \le 2^d$).

CONJECTURE 5 (BHNP '09)

Given permutation representation ρ : $G \to S_n$, there exists stably equivalent permutation representation ρ' : $G \to S_{n'}$ with $n' \leq 2 \dim(P(G, \rho))$.

These are purely representation-theoretic challenges!

Stable equivalence not general enough!

Example: $G := (\mathbb{Z}_2)^2 = \{e, x, y, xy\}$ has not stably equivalent permutation representations ρ_1, ρ_2 with the same permutation polytope $P(G, \rho_1) = P(G, \rho_2)$:

Definition/Proposition (BHNP '09; Baumeister, Grüninger '15)

(G_1, ρ_1), (G_2, ρ_2) permutation representations. Then T.F.A.E.

- ρ_1 , ρ_2 are effectively equivalent
- Exists ϕ : $G_1 \rightarrow G_2$ group isomorphism s.t. ρ_1 and $\rho_2 \circ \phi$ are stably equivalent (on G_1)

Definition/Proposition (BHNP '09; Baumeister, Grüninger '15)

(G_1, ρ_1), (G_2, ρ_2) permutation representations. Then T.F.A.E.

- ρ_1 , ρ_2 are effectively equivalent
- Exists ϕ : $G_1 \rightarrow G_2$ group isomorphism s.t. ρ_1 and $\rho_2 \circ \phi$ are stably equivalent (on G_1)
- Exists ϕ : $G_1 \rightarrow G_2$ group isomorphism and α : $P(G, \rho_1) \rightarrow P(G, \rho_2)$ affine equivalence s.t.

 $lpha(
ho_1(g)x) =
ho_2(\phi(g))lpha(x)$ for all $x \in P(G,
ho_1), \ g \in G_1$

Exists α : P(G₁, ρ₁) → P(G₂, ρ₂) affine equivalence s.t. its restriction ρ₁(G₁) → ρ₂(G₂) is group homomorphism.

Example (Baumeister, Grüninger '15)

 ${\mathcal G}:=({\mathbb Z}_2)^2 imes {\mathbb Z}_4 imes {\mathbb Z}_3$ has permutation representations $ho_1,
ho_2$ with

- affinely equivalent permutation polytopes, but
- not effectively equivalent.

Reason: The set of faces with 24 vertices that are also subgroups have different number of combinatorial types.

Example (Baumeister, Grüninger '15)

 ${\mathcal G}:=({\mathbb Z}_2)^2 imes {\mathbb Z}_4 imes {\mathbb Z}_3$ has permutation representations $ho_1,
ho_2$ with

- affinely equivalent permutation polytopes, but
- not effectively equivalent.

Reason: The set of faces with 24 vertices that are also subgroups have different number of combinatorial types.

QUESTION 6 (Baumeister, Grüninger '15)

Does such an example exist if G acts transitively?

Extreme cases expected to be unique:

(BHNP '09): Unique effective equivalence class of $G \leq S_n$ if P(G) is cube.

Let π : $S_n \rightarrow S_n$ standard permutation representation, ρ permutation representation of G.

Conjecture (BHNP '09)

If $P(G, \rho)$ is affinely equivalent to $B_n = P(S_n, \pi)$, then (G, ρ) and (S_n, π) are effectively equivalent.

Let π : $S_n \rightarrow S_n$ standard permutation representation, ρ permutation representation of G.

Theorem (Baumeister, Ladisch '16)

If $P(G, \rho)$ is affinely equivalent to $B_n = P(S_n, \pi)$, then (G, ρ) and (S_n, π) are effectively equivalent.

Proof uses symmetry group of B_n and the study of the Chermak-Delgado lattice of G.

(BHNP '09): conjectured that up to few exceptions ALWAYS

 $\operatorname{Aut}_{\operatorname{aff}}(P(G)) > |G|.$

(BHNP '09): conjectured that up to few exceptions ALWAYS

 $\operatorname{Aut}_{\operatorname{aff}}(P(G)) > |G|.$

Theorem (Friese, Ladisch '16)

Any elementary abelian 2-group of order $|G| \ge 2^5$ has permutation polytope $P(G, \rho)$ with $\operatorname{Aut}_{aff}(P(G)) = |G|$.

Proof follows from new results on **orbit polytopes** of $G \subset GL_n(\mathbb{R})$: the convex hull of the orbit Gv for $v \in \mathbb{R}^n$.

(BHNP '09): conjectured that up to few exceptions ALWAYS

 $\operatorname{Aut}_{\operatorname{aff}}(P(G)) > |G|.$

Theorem (Friese, Ladisch '16)

Any elementary abelian 2-group of order $|G| \ge 2^5$ has permutation polytope $P(G, \rho)$ with $\operatorname{Aut}_{aff}(P(G)) = |G|$.

Proof follows from new results on **orbit polytopes** of $G \subset GL_n(\mathbb{R})$: the convex hull of the orbit Gv for $v \in \mathbb{R}^n$.

CONJECTURE 7 (Friese, Ladisch '16)

Combinatorial and affine symmetry groups of representation polytopes are equal.