Generating sets of finite groups Joint work with Peter Cameron and Andrea Lucchini

Colva M. Roney-Dougal

12 January 2017

Colva M. Roney-Dougal Generating sets of finite groups

Fact 1: For many interesting groups

 $\mathbb{P}(\langle x_1, x_2 \rangle = G \mid x_i \text{ uniform random in } G)$

is very close to 1.

Fact 2: Inside these same groups, there exist quite a few $x_1 \in G$ such that

$$\mathbb{P}(\langle x_1, x_2 \rangle = G \mid x_2 \text{ uniform random})$$

is very close to 0.

So would like to understand the structure of generating sets.

 $V = \mathbb{F}^d$ – finite dimensional vector space.

Then

 $1. \ \mbox{Any two irredundant generating sets have the same size.}$

2. Let $v, w \in V$. Then

$$(\langle v, X \rangle = V \Leftrightarrow \langle w, X \rangle = V) \quad \forall X \subset V$$

if and only if $\langle v \rangle = \langle w \rangle$.

Throughout rest of talk, let G be a finite group.

 $\Phi(G)$ – Frattini subgroup: intersection of all maximal subgps of G. $\Phi(G) = \{g \in G : g \text{ belongs to no irredundant gen set for } G\}.$

Theorem (Burnside's basis theorem)

$$\begin{array}{l} P - p \text{-}group, \text{ with } |P : \Phi(P)| = p^d.\\ [Then \ P/\Phi(P) \cong (\mathbb{F}_p^d, +).]\\ P/\Phi(P) = \langle \Phi(P)x_i : 1 \leq i \leq n \rangle \text{ if and only if } P = \langle x_1, \ldots, x_n \rangle.\\ Furthermore, \ P = \langle x_1, \ldots, x_n \rangle \text{ if and only if there exists a subset } Y\\ of \ x_1, \ldots, x_n \text{ of size } d \text{ such that } P = \langle Y \rangle. \end{array}$$

Corollary

- 1. Any two irredundant generating sets of a finite *P*-group have the same size.
- 2. If $x, y \in P$, then

$$(\langle x,X
angle=P\Leftrightarrow\langle y,X
angle=P) \hspace{1em} orall X\subseteq P$$

if and only if $\langle \Phi(P)x \rangle = \langle \Phi(P)y \rangle$.

So in these two cases, we have a good understanding of the structure of generating sets.

Minimal generating sets for finite groups

Final reminder: *G* is always a finite group.

Write d(G) for smallest number of generators of G.

Lots known about d(G), e.g.

- 1. G almost simple $\Rightarrow d(G) \leq 3$.
- 2. If each Sylow subgroup of G can be generated by n elts, then $d(G) \le n + 1$. Lucchini '89; Guralnick '89.
- 3. $G \leq S_n$: see Gareth Tracey's talk (11.15 today)!
- 4. $G \leq GL_n(F)$: Kovacs & Robinson 91; Holt & CMRD 13.
- 5. ... much much more

Maximal irredundant generating sets for finite groups

 $\begin{array}{l} \mu(G) := \text{ maximal size of an irredundant generating set for } G.\\ \text{Diaconis & Saloff-Coste '98: } n-1 \leq \mu(\mathsf{S}_n) \leq 2n.\\ \text{Whiston '00: } \mu(\mathsf{S}_n) = n-1.\\ \text{Whiston & Saxl '02: } 3 \leq \mu(\mathsf{PSL}_2(p)) \leq 4.\\ \text{Jambor '13: } \mu(\mathsf{PSL}_2(p)) = 4 \Leftrightarrow p \in \{7, 11, 19, 31\}. \end{array}$

Theorem (Apisa & Klopsch '14)

If $d(G) = \mu(G)$, then every quotient \overline{G} of G satisfies $d(\overline{G}) = \mu(\overline{G})$ and G is solvable.

Theorem (Lucchini '13)

G – soluble. $\pi(G)$ – number of prime divisors of |G|. Then $\mu(G) - d(G) \ge \pi(G) - 2$.

A new family of relations

In the rest of the talk, we look at how elements can be interchanged between generating sets.

For $x, y \in G$, say $x \equiv_{\mathrm{m}}^{(r)} y$ if $\forall z_1, \ldots, z_{r-1} \in G$

$$(\langle x, z_1, \ldots, z_{r-1} \rangle = G \quad \Leftrightarrow \quad \langle y, z_1, \ldots, z_{r-1} \rangle = G)$$

(So x and y can be interchanged in any r-element generating set.)

Lemma

The limit of the family, and a new group invariant

For $x, y \in G$, define $x \equiv_m y$ if x and y lie in the same maximal subgroups of G.

• $x \equiv_{\mathrm{m}} y$ is the limit of $\equiv_{\mathrm{m}}^{(r)}$.

Define $\psi(G)$ to be smallest *r* for which $\equiv_{\rm m}$ coincides with $\equiv_{\rm m}^{(r)}$.

Example ($G = S_4$)

- The relation $\equiv_{m}^{(1)}$ is universal.
- The double-transpositions lie in no 2-elt gen set, so are $\equiv_{\mathrm{m}}^{(2)}$ -equivalent to 1_G . Otherwise $x \equiv_{\mathrm{m}}^{(2)} y \Leftrightarrow \langle x \rangle = \langle y \rangle$. So 14 classes.
- For r ≥ 3 the double-transpositions form one ≡^(r)_m-class; the other classes don't change. So 15 classes.
- So ψ(S₄) = 3.

Some bounds on $\psi(G)$

Lemma

 $\psi(G) \ge d(G)$, and if G has a normal subgroup N s.t. $N \not\le \Phi(G)$ and d(G/N) = d(G), then $\psi(G) \ge d(G) + 1$.

Theorem

If G is soluble, then
$$\psi(G) \leq d(G) + 1$$
.

Theorem

For all finite G, $\psi(G) \le d(G) + 5$. G simple $\Rightarrow \psi(G) \le 5$. G almost simple $\Rightarrow \psi(G) \le 7$.

Theorem

$$\psi(G) \le \mu(G)$$
. So if $G = \mathsf{PSL}_2(p)$ then $\psi(G) \le 4$.

Question Does there exist a G for which $\psi(G) > d(G) + 1$?

Efficient generation

Say that G is efficiently generated if for all $x \in G$, if $d_{\{x\}}(G) = d(G)$ then $x \in \Phi(G)$.

Lemma

If $\psi(G) = d(G)$ then G is efficiently generated.

Lemma

If d(M) < d(G) for every maximal subgroup M of G, then $\psi(G) = d(G)$.

We have a precise description of the soluble groups that are efficiently generated.

 S_4 is the smallest soluble group that is **not** efficiently generated.

Problem

Characterise the insoluble groups that are efficiently generated.

A finer relation

We define $x \equiv_{c} y \Leftrightarrow \langle x \rangle = \langle y \rangle$. Then

$$x \equiv_{\mathrm{c}} y \Leftrightarrow (\langle x, X \rangle = \langle y, X \rangle (\forall X \subseteq G)).$$

Hence if $x \equiv_{c} y$ then $x \equiv_{m} y$.

Theorem

Let G be a group for which $\equiv_{\rm c}$ coincides with $\equiv_{\rm m}.$

- 1. We have a (messy) characterisation of such soluble G.
- 2. $\Phi(G) = 1$.
- 3. G/Soc(G) is soluble, and if G has a nonabelian minimal normal subgroup $N \cong S_1 \times \cdots \times S_t$ then either t = 1 or t = 2 and $S_1 \cong P\Omega_8^+(q)$ with $q \leq 3$.

Problem: Characterise the insoluble G for which \equiv_c coincides with \equiv_m .

Theorem (Łuczak & Pyber '93)

 $G - S_n$ or A_n . Then for almost all $x \in G$, the only transitive subgroups of S_n containing x are S_n and (possibly) A_n .

Corollary

 $G-\mathsf{S}_n$ or $\mathsf{A}_n.$ For almost all $x,y\in G,$ the following are equivalent

1.
$$x \equiv_{m} y$$
.

2.
$$x \equiv_{m}^{(2)} y$$
.

3. the cycles of x and y induce the same partition of $\{1, \ldots, n\}$.

Theorem (Shalev '98)

A random element of $GL_n(q)$ lies in no proper irreducible subgroup not containing $SL_n(q)$.

So something similar should be true for linear groups.

Define $\Gamma := \Gamma(G)$ by $V(\Gamma) = G$, $x \sim y \Leftrightarrow \langle x, y \rangle = G$. Assume from now on that $d(G) \leq 2$.

Structure of Γ often corresponds to nice group-theoretic properties.

- Clique number
- Colouring number
- Total domination number
- Determines G up to isomorphism?

This project actually began with us looking at $Aut(\Gamma(G))$ for various almost simple G.

Automorphism group of $\Gamma(G)$

First observation: $Aut(\Gamma(G))$ is MASSIVE!

e.g. $|A_5| = 60$, $Aut(\Gamma(A_5)) = 2^{31} \cdot 3^7 \cdot 5$.

A graph reduction: For vertices x, y, say $x \equiv_{\Gamma} y$ if x and y have the same neighbours. Identify equivalence classes, get quotient graph $\overline{\Gamma}$. Notice if $\Gamma = \Gamma(G)$ then \equiv_{Γ} is $\equiv_{m}^{(2)}$.

Can weight $V(\overline{\Gamma})$ by number of vertices of Γ they represent: $\overline{\Gamma}_w$.

 Γ and $\overline{\Gamma}$ have same clique nr, chromatic nr, total domination nr.

Example ($G = A_5$)

$$\begin{split} \psi(G) &= 2. \text{ The relations } \equiv_{\mathrm{m}}, \equiv_{\Gamma} \text{ and } \equiv_{\mathrm{c}} \text{ are all equal.} \\ 6 &\equiv_{\Gamma}\text{-classes of elts of order 5, 10 of order 3, and 16 singletons.} \\ \text{Kernel of action on } \equiv_{\Gamma}\text{-classes has order } (4!)^6 (2!)^{10}. \\ \text{Aut}(\overline{\Gamma}_w(A_5)) &= \text{Aut}(\overline{\Gamma}(A_5)) = S_5. \end{split}$$

Spread

Spread of G is k if for all $x_1, \ldots, x_k \in G \setminus \{1\}$ there exists a $y \in G$ s.t. $\langle x_i, y \rangle = G$ for all *i*, and k is the maximal such integer. Spread $k \Rightarrow$ every k verts of $\Gamma \setminus 1$ have a common neighbour. Γ and $\overline{\Gamma}$ have same spread.

Conjecture (Breuer, Guralnick, Kantor)

 $|G| \ge 3$. The following are equivalent:

- 1. spread of $G \ge 1$
- 2. spread of $G \ge 2$
- 3. all proper quotients of G are cyclic

Work in progress of Burness, Guralnick, many others ...

Theorem

If G is soluble and has nonzero spread, then $\psi(G) \leq 2$.

Conjecture: If G has nonzero spread then $\psi(G) \leq 2$.

Theorem

Let the Γ -classes of G have sizes k_1, \ldots, k_n . Then Aut $(\Gamma(G)) = (S_{k_1} \times \cdots \times S_{k_n}) : Aut(\overline{\Gamma}_w(G)).$

Let $\operatorname{Aut}^*(G)$ be action of $\operatorname{Aut}(G)$ on $\overline{\Gamma}_w(G)$. Then $\operatorname{Aut}^*(G) \leq \operatorname{Aut}(\overline{\Gamma}_w(G)) \leq \operatorname{Aut}(\overline{\Gamma}(G))$.

Theorem

G – group with nonzero spread. Then $Aut^*(G) = Aut(G)$ if and only if G is nonabelian.

Not always the case that $\operatorname{Aut}(\overline{\Gamma}_w(G)) = \operatorname{Aut}(\overline{\Gamma}(G))$.

Soluble groups of nonzero spread

Let G be a soluble group of nonzero spread. Then G is one of

- 1. Cyclic
- 2. $C_p \times C_p$, with p prime
- 3. Semidirect product of an elementary abelian group with an irreducible subgroup of its Singer cycle.

Proposition

- 1. Let $G = C_n$, where $r = \pi(n)$. Then $\overline{\Gamma}(G)$ has 2^r vertices, and $\operatorname{Aut}(\overline{\Gamma}_w(G)) = 1$.
- 2. Let $G = C_p^2$. Then $\overline{\Gamma}(G)$ has p + 2 vertices, and Aut $(\overline{\Gamma}_w(G)) \cong S_{p+1}$.
- Let G = C^k_p : C_n be nonabelian with all proper quotients cyclic, and let r = π(n). Then Γ(G) has (2^r − 1)p^k + 2 vertices if n is squarefree, and 2^rp^k + 2 otherwise. Aut(Γ_w(G)) ≅ S_{p^k}.

The *m*-universal action of G is the perm action made by taking the disjoint union of the actions on cosets of maximal subgroups, one for each conj class.

Lemma

1.
$$x \equiv_{m} y$$
 iff $Fix(x) = Fix(y)$ in m-universal action.

2.
$$\langle x, y \rangle = G$$
 iff $Fix(x) \cap Fix(y) = \emptyset$.

Using this we found:

Theorem

G – almost simple group with socle of order < 1000 s.t. all proper quotients are cyclic. Then $Aut(\overline{\Gamma}_w(G)) = Aut(G)$.

Question: Does this pattern continue?