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A motivational question

How many subgroups does the symmetric group S, have?
For a finite group G, let Sub(G) denote the set of subgroups of G.

Suppose that every subgroup of S, can be generated by f(n)
elements..

Then
|Sub(S,)| < ntf(")

Similarly, if X is a group-theoretical property, and Subx(S,)
denotes the set of X-subgroups of S,, and every X-subgroup of S,
can be generated by fx(n) elements, we have

|Subx (S,)| < ntfx(")
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Therefore, the question now is: For a fixed property X, what is
fx(n)?

For a group G, let d(G) denote the minimal number of elements
required to generate G.

Take G < S,,. Then

d(G)<n-1



d(G) for subgroups of S,

Therefore, the question now is: For a fixed property X, what is
fx(n)?

For a group G, let d(G) denote the minimal number of elements
required to generate G.

Take G < S,,. Then

d(G) < n—#(Orbits of G) < n—1
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The general case: G is an arbitrary subgroup of S,

..So we have d(G) < n—1for G < S,.. Can we do any better
than linear in n?

Example:

Take n to be even, and let G = ((1,2),(3,4),...,(n—1,n)).
Then G = (Z/27)"/?, so d(G) = n/2.

Theorem (Mclver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n > 2, with
(G,n) # (53,3). Then

(i) d(G) < n/2.




The general case: G is an arbitrary subgroup of S,

..So we have d(G) < n—1for G < S,.. Can we do any better
than linear in n?

Example:

Take n to be even, and let G = ((1,2),(3,4),...,(n—1,n)).
Then G = (Z/27)"/?, so d(G) = n/2.

Theorem (Mclver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n, with (G, n) # (Ss, 3).
Then

(i) d(G) < n/2, and;

(ii) If G is transitive and n > 4, (G, n) # (Dg o Dg, 8), then
d(G) < n/2.
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Transitive permutation groups

Many believed that a bound of the form d(G) < (log, n)€ should
hold..

Example (Kovécs; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive
permutation groups G, of degree n = 22", such that

p22m bn
+2m=
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Transitive permutation groups

Example (Kovacs; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive
permutation groups G, of degree n = 22, such that

d(G )—>b22m+2m— bn + logy n
" V2m v/logy n 52

as m — oQ.

Theorem (Kovacs; Newman, 1989)
Let G < S, be transitive and nilpotent. Then

-0 )
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Transitive permutation groups

Theorem (Bryant; Kovécs; Robinson, 1995)
Let G < S, be transitive and soluble. Then

oY —
9e) <W>

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

Let G < S, be transitive. Then

-0 )

..But what about the constants involved?..




Transitive permutation groups

Example (Kovacs; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive
permutation groups G, of degree n = 22, such that

b22m b
d(Gm)—>7+2m:7n+log2nasm—>oo.

v2m v/logy n



Transitive permutation groups

Example (Kovacs; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive
permutation groups G, of degree n = 22, such that

d(G)—>b22m+2 bn + logy, nas m — oo
— +2m = .
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Transitive permutation groups

Example (Kovacs; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive
permutation groups G, of degree n = 22, such that

d(Gm) — +2m=

bn
v2m v/logy n
Lemma (T., 2015)

b=/2/Tr=079....

Conjecture

+ log, n as m — oo.

Let G be a transitive permutation group of degree n > 2. Then

4(G) < (b+on

~ /logyn



Transitive permutation groups

Lemma (T., 2015)
b=/2/7=079...

Let G be a transitive permutation group of degree n > 2. Then

d(6) < Lo

 /logyn

Theorem (T., 2015 (CFSG))

Let G be a transitive permutation group of degree n > 2. Then

cn

v/logo n

d(G) <

where ¢ :=+/3/2=0.86....



Transitive permutation groups

Theorem (T., 2015 (CFSG))

Let G be a transitive permutation group of degree n > 2. Then

cn

\/logo n

d(G) <

where ¢ :=+/3/2=0.86....

c= \/§/2 is the optimal value when n =8 and G = Dg o Ds.
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So how many transitive subgroups in S,7

We can deduce that

’S’Jbtransitive(s,,)‘ < n! Vlogz n

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

There exists an absolute constant ¢ such that

=2

|5Ubtransitive(5n)| < 2v loga n
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From the Mclver-Neumann “Half n” bound, we can also deduce
that
|Sub(S,)| < nl2

Theorem (Pyber, 1993)
Let Sub(S,) denote the number of subgroups of S,. Then

|Sub(S,)| < 24(s o)’

S, contains an elementary abelian subgroup
G :={((1,2),(3,4),...) of order olal,

An easy counting argument shows that

|Sub(G)| = 20 He@)n?
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Back to our original question..

Theorem (Pyber, 1993)
Let Sub(S,) denote the number of subgroups of S,. Then

255+ < |Sup(S,)| < 24lsTotNT

Thus, the order of magnitude is
\Sub(S,,)] _ 2(a+o(1))n2
for some constant «.

Conjecture (Pyber, 1993)
|Sub(S,)| = o(15+o(1))n’
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Conjecture (Pyber, 1993)
|Sub(S,)| = 2Gs+e@n*,

For a constant k > 1, let Sub(S,) denote the set of subgroups of
Sp all of whose orbits have length at most k.. Jan-Christoph
Schlage-Puchta proved the following reduction:

Theorem (Schlage-Puchta, 2016)

Assume that

e { HE1loel

G LS, transitive} — 0 as n— oo (*)
n

Then |Sub(S,)| = |Suby(Sn)[2°(™), for some absolute constant k.



A reduction theorem

Conjecture (Pyber, 1993)
|Sub(S,)| = 2GstHe@n*,

Theorem (Schlage-Puchta, 2016)

Assume that

maX{d(G) Ic;gz |G|

:G<LS, transitive} — 0 as n— oo (*)
n

Then |Sub(S,)| = |Suby(Sn)[2°(™), for some absolute constant k.

We remark that Suby(S,) consists of the subgroups of the direct
products
Sy X Sky X ... X Sy,

where . k; = n and each k; < k.
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Does the hypothesis hold true?

Sois

d(G)lI G
lim max{()0g2’| :G<S, transitive} =07

n—00 n2

Must a “large” transitive group have a “small” number of
generators?

Example:
d(S,) =2, d(An) =2

Example:

If G < S, is primitive, and is not A, or S, then log, |G| = O(n)
(Praeger; Saxl|, 1980; Maréti, 2002), and d(G) < log, n (Holt;
Roney-Dougal, 2013).
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Can a large transitive group have many generators?

Sois

n—00 n2

The maximal imprimitive transitive subgroups of S, are the wreath
products S, ¢ S». All of these are 2-generated..

lim max{d(G)bgﬂG| G <SS, transitive} =07

Example (Kovacs; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive
permutation groups Gy, of degree n = 22, such that

2m bn
d(Gp) > —+2m= ———=+logyn

V2m v/logo n

as m — oQ.



Can a large transitive group have many generators?

Sois

lim max{d(G)bgﬂG| G <SS, transitive} =07

n—00 n2

Example (Kovécs; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive
permutation groups G, of degree n = 22", such that

2m

d(Gm) — +2m =

bn
v2m y/logy n

+ logy n

as m — oQ.

The groups G, have order ~ 274, Hence

d(Gm)logy |Gm| ~ Cn?/+/log, n



Can a large transitive group have many generators?

The groups G, have order ~ 2"/4. Hence

for some absolute constant C.

Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree n > 2. Then
there exists an absolute constant C such that

n2

C
< :
logy |G|/logy n

d(G)



Can a large transitive group have many generators?

The groups G, have order ~ 2"/4. Hence

for some absolute constant C.

Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree n > 2. Then
there exists an absolute constant C such that

n2

d(G)

C
< :
logy |G|/logy n

Corollary (Schlage-Puchta, 2016 (CFSG))

|Sub(S,)| = |Subk(S,)|2°(™) for some absolute constant k.
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Minimally transitive groups

Definition

A transitive permutation group G is called minimally transitive if
every proper subgroup of G is intransitive.

Example:

Any finite group G is minimally transitive of degree |G| (via the
regular action).

Example:
G := Alt(5) in its action on the cosets of ((1,2)(3,4),(1,3)(2,4));
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d(G) for minimally transitive groups

What is the best possible upper bound of the form
d(G) < f(n) (< logy n) (Neumann; Vaughan-Lee, 1977)

on the set of minimally transitive groups G of degree n?
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Minimally transitive groups: A question of Pyber

Theorem (Pyber, 1991)

Let G be a minimally transitive permutation group of degree n,
which is either regular or nilpotent. Then d(G) < u(n) + 1.

Question (Pyber, 1991)

Is it true that d(G) < p(n) + 1 for all minimally transitive
permutation groups of degree n?

Theorem (Lucchini, 1996)

Let G be a soluble minimally transitive permutation group of
degree n. Then d(G) < p(n) + 1.

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n.
Then d(G) < u(n) + 1.
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The proof: first step

Let G be a counterexample of minimal degree n, and let M be any
nontrivial normal subgroup of G.

Also, let Q be the set of orbits of M (so Q2| < n).

Then, since M is normal in G, G acts on £, and the following hold:

@ G/K acts minimally transitive on Q, where K is the kernel of
the action of G on Q;

@ |Q| divides n.
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The proof: first step

It now follows easily, from the minimality of G as a
counterexample, and from the minimal transitivity of G, that

d(G/M) < pu(|Q) +1 < p(n) +1 < d(G)

So we have proved:
Step 1:G needs more generators than any of its proper quotients.



Finite groups which need more generators than any proper

quotient




Finite groups which need more generators than any proper

quotient

Let L be a finite group, with a unique minimal normal subgroup N.
If N is abelian, then assume further that N has a complement in L.



Finite groups which need more generators than any proper

quotient

Let L be a finite group, with a unique minimal normal subgroup N.
If N is abelian, then assume further that N has a complement in L.

For k > 1, define the following subgroup of Lk

Ly := {(x1, %, xx) : Nx; = Nix; for all i,j} = diag(L¥)N*



Finite groups which need more generators than any proper

quotient

Let L be a finite group, with a unique minimal normal subgroup N.
If N is abelian, then assume further that N has a complement in L.

For k > 1, define the following subgroup of Lk
Ly := {(x1, %, xx) : Nx; = Nix; for all i,j} = diag(L¥)N*

Theorem (Dalla Volta; Lucchini, 1998 (CFSG))

Let G be a finite group which needs more generators than any
proper quotient. Then there exists a finite group L with a unique
minimal normal subgroup N, which is either nonabelian or
complemented in L, and a positive integer k > 2, such that

G = L,.
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Thus
G = Ly := diag(L*)Nk

for some finite group L with a unique minimal normal subgroup N,
which is either nonabelian or complemented in L, and some k > 2.

Step 2:
@ If N is abelian, then k < u(n);

@ If N is nonabelian, then k < f(N)u(n) + 1, where
f(N):=r/2+1if N is a direct product of copies of Alt(r),
and f(N) := 4 otherwise.



Indices of proper subgroups in nonabelian simple groups

Lemma ((CFSG))

Let S be a nonabelian finite simple group. Then there exists a set
of primes I = ['(S) such that
Q || < f(S), where f(S) =r/2+1ifS is an alternating group
of degree r, and f(S) < 4 otherwise;
@ 7(|S: H|) (={p: pisa prime divisor of |S : H|}) intersects
I" non-trivially for every proper subgroup H of S.
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The proof of the theorem: continued

Thus
G = Ly := diag(L*)Nk

for some finite group L with a unique minimal normal subgroup N,
which is either nonabelian or complemented in L, and some k > 2.

Step 2:
@ If N is abelian, then k < u(n);

@ If N is nonabelian, then k < f(N)u(n) + 1, where
f(N):=r/2+1if Nis a direct product of copies of Alt(r),
and f(N) := 4 otherwise.

Using results of Dalla Volta and Lucchini, we can now find upper
bounds for d(Lx) > p(n) + 1 in terms of k and N..

This leads to lower bounds on k in terms of u(n) and N..
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(i) The cardinality of the smallest invariable generating set for a
finite group G is denoted by d;(G).
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Invariable generation

(i) A subset {x1,x2,...,x:} of a group G is said to invariably
generate G if G = <x1 X532, xE) for any t-tuple
(g1,82,---,8t) of elements of G.

(i) The cardinality of the smallest invariable generating set for a
finite group G is denoted by d;(G).

Clearly d(G) < d;(G) in general, but the question is:

Question

Pick a result of the form
“Let G bea____finite group. Then d(G) <...”

Does this result hold if we replace d(G) by d;(G)?



Invariable generation

Theorem (Kantor; Lubotzky; Shalev, 2011)

Let G be a finite nilpotent group. Any generating set for G is also
an invariable generating set. In particular, d(G) = d;(G).
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an invariable generating set. In particular, d(G) = d;(G).

Theorem (Kantor; Lubotzky; Shalev, 2011)

For every positive integer n, there exists a finite group G such that
d(G) =2 and d;(G) < n.




Invariable generation

Theorem (Kantor; Lubotzky; Shalev, 2011)

Let G be a finite nilpotent group. Any generating set for G is also
an invariable generating set. In particular, d(G) = d;(G).

Theorem (Kantor; Lubotzky; Shalev, 2011)

For every positive integer n, there exists a finite group G such that
d(G) =2 and d;(G) < n.

Also...

Theorem (Guralnick; Malle, 2011 and Kantor; Lubotzky; Shalev,

2011 (CFSG))
Let G be a nonabelian finite simple group. Then dj(G) = 2.
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d;(G) for permutation groups

Theorem (Mclver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n. Then d(G) < n/2,
except when n=3 and G = S3.

Theorem (Detomi; Lucchini, 2014 (CFSG))

Let G be a permutation group of degree n. Then d;(G) < n/2,
except when n =3 and G = S3.

Problem

Let G be a permutation group of degree n. Prove that
di(G) < n—1 (or indeed that d;(G) = O(n)) without using CFSG
or the O'Nan Scott Theorem.
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di(G) for transitive permutation groups

Theorem (Kovécs; Newman, 1989; Bryant; Kovacs; Robinson,

1995; Lucchini, 2000 (CFSG))

Let G be a transitive permutation group of degree n > 2. Then
cn

d(G) < ——, for some absolute constant c.
v/logs n



d;(G) for transitive permutation groups

Theorem (Kovécs; Newman, 1989; Bryant; Kovacs; Robinson,

1995; Lucchini, 2000 (CFSG))

Let G be a transitive permutation group of degree n > 2. Then
cn
d(G) <

v/logs n
Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree n > 2. Then
di(G) < cn where ¢ 1= \/3/2.

/log, n’

, for some absolute constant c.




d;(G) for minimally transitive permutation groups

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n.
Then d(G) < u(n) + 1.




d;(G) for minimally transitive permutation groups

Theorem (T., 2015 (CFSG))
Let G be a minimally transitive permutation group of degree n.
Then d(G) < u(n) + 1.

Question
Let G be a minimally transitive permutation group of degree
n>2 Isd(G) < u(n)+1?



di(G) for completely reducible linear groups

Theorem (Kovécs; Robinson, 1989 (CFSG))

Let F be a field, and let G < GL,(IF) be finite and completely
reducible. Then d(G) < 3n.




di(G) for completely reducible linear groups

Theorem (Kovdcs; Robinson, 1989 (CFSG))

Let F be a field, and let G < GL,(IF) be finite and completely
reducible. Then d(G) < 3n.

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let F be a field, and let G < GLn(F) be finite and completely
reducible. If F does not contain a primitive fourth root of unity
then d(G) < n. Furthermore, if |F| =2 then d(G) < 5 (apart
from one infinite family of exceptions B, < GLy(2)? where
d(Bn) =5 +1).




di(G) for completely reducible linear groups

Theorem (Kovécs; Robinson, 1989 (CFSG))

Let F be a field, and let G < GL,(F) be finite and completely
reducible. Then d(G) < 3n.

Theorem (T., 2015 (CFSG))

Let F be a field, and let G < GL,(F) be finite and completely
reducible. Then

(i) d/(G) < %n.




di(G) for completely reducible linear groups

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let F be a field, and let G < GL,(F) be finite and completely
reducible. If F does not contain a primitive fourth root of unity
then d(G) < n. Furthermore, if |F| =2 then d(G) < 5 (apart
from one infinite family of exceptions B, where d(B,) = 5 + 1).

Theorem (T., 2015 (CFSG))

Let F be a field, and let G < GL,(F) be finite and completely
reducible. Then
(i) di(G) < 3n;
(i) If |F| =2 then di(G) < 5 (apart from one infinite family of
exceptions B, < GLy(2)? where d;(B,) = 5 + 1, and when
G = Sps(2) = S, where d;(G) = 3).




di(G) for completely reducible linear groups

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let F be a field, and let G < GL,(F) be finite and completely
reducible. If F does not contain a primitive fourth root of unity
then d(G) < n. Furthermore, if |F| = 2 then d(G) < 5 (apart
from one infinite family of exceptions B, where d(B,) = 5 + 1).

Theorem (T., 2015 (CFSG))

Let F be a field, and let G < GL,(F) be finite and completely
reducible. Then
(i) di(G) < 3n;
(i) If |F| = 2 then di(G) < 5 (apart from one infinite family of
exceptions B,, < GL2(2)§ where di(B,) = 5 + 1, and when
G = Sps(2) = S, where d;(G) = 3), and;
(iii) If |F| = 3 then d;(G) < n.




