Transitive permutation groups：Minimal，invariable and random generation

Gareth Tracey
University of Warwick

Bielefeld，January 12th， 2017

A motivational question

How many subgroups does the symmetric group S_{n} have?

A motivational question

How many subgroups does the symmetric group S_{n} have？

For a finite group G ，let $\operatorname{Sub}(G)$ denote the set of subgroups of G ．

Suppose that every subgroup of S_{n} can be generated by $f(n)$ elements．．

A motivational question

How many subgroups does the symmetric group S_{n} have?

For a finite group G, let $\operatorname{Sub}(G)$ denote the set of subgroups of G.

Suppose that every subgroup of S_{n} can be generated by $f(n)$ elements..

Then

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq n!^{f(n)}
$$

A motivational question

How many subgroups does the symmetric group S_{n} have?

For a finite group G, let $\operatorname{Sub}(G)$ denote the set of subgroups of G.

Suppose that every subgroup of S_{n} can be generated by $f(n)$ elements..

Then

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq n!^{f(n)}
$$

Similarly, if X is a group-theoretical property, and $\operatorname{Sub} b_{X}\left(S_{n}\right)$ denotes the set of X-subgroups of S_{n}, and every X-subgroup of S_{n} can be generated by $f_{X}(n)$ elements, we have

$$
\left|\operatorname{Sub}_{X}\left(S_{n}\right)\right| \leq n!^{f_{X}(n)}
$$

$d(G)$ for subgroups of S_{n}

Therefore, the question now is: For a fixed property X, what is $f_{X}(n)$?

$d(G)$ for subgroups of S_{n}

Therefore，the question now is：For a fixed property X ，what is $f_{X}(n)$ ？

For a group G ，let $d(G)$ denote the minimal number of elements required to generate G ．

$d(G)$ for subgroups of S_{n}

Therefore，the question now is：For a fixed property X ，what is $f_{X}(n)$ ？

For a group G ，let $d(G)$ denote the minimal number of elements required to generate G ．

Take $G \leq S_{n}$ ．Then

$d(G)$ for subgroups of S_{n}

Therefore, the question now is: For a fixed property X, what is $f_{X}(n)$?

For a group G, let $d(G)$ denote the minimal number of elements required to generate G.

Take $G \leq S_{n}$. Then
$d(G) \leq n-1$

$d(G)$ for subgroups of S_{n}

Therefore, the question now is: For a fixed property X, what is $f_{X}(n)$?

For a group G, let $d(G)$ denote the minimal number of elements required to generate G.

Take $G \leq S_{n}$. Then
$d(G) \leq n-\#($ Orbits of $G) \leq n-1$

The general case: G is an arbitrary subgroup of S_{n}

.. So we have $d(G) \leq n-1$ for $G \leq S_{n}$.. Can we do any better than linear in n ?

The general case: G is an arbitrary subgroup of S_{n}

.. So we have $d(G) \leq n-1$ for $G \leq S_{n}$.. Can we do any better than linear in n ?

Example:

Take n to be even, and let $G=\langle(1,2),(3,4), \ldots,(n-1, n)\rangle$. Then $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{n / 2}$, so $d(G)=n / 2$.

The general case: G is an arbitrary subgroup of S_{n}

.. So we have $d(G) \leq n-1$ for $G \leq S_{n}$.. Can we do any better than linear in n ?

Example:

Take n to be even, and let $G=\langle(1,2),(3,4), \ldots,(n-1, n)\rangle$. Then $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{n / 2}$, so $d(G)=n / 2$.

Theorem (Mclver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree $n \geq 2$, with
$(G, n) \neq\left(S_{3}, 3\right)$. Then
(i) $d(G) \leq n / 2$.

The general case: G is an arbitrary subgroup of S_{n}

.. So we have $d(G) \leq n-1$ for $G \leq S_{n}$.. Can we do any better than linear in n ?

Example:

Take n to be even, and let $G=\langle(1,2),(3,4), \ldots,(n-1, n)\rangle$. Then $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{n / 2}$, so $d(G)=n / 2$.

Theorem (Mclver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n, with $(G, n) \neq\left(S_{3}, 3\right)$. Then
(i) $d(G) \leq n / 2$, and;
(ii) If G is transitive and $n>4,(G, n) \neq\left(D_{8} \circ D_{8}, 8\right)$, then $d(G)<n / 2$.

Transitive permutation groups

Many believed that a bound of the form $d(G) \leq\left(\log _{2} n\right)^{c}$ should hold..

Transitive permutation groups

Many believed that a bound of the form $d(G) \leq\left(\log _{2} n\right)^{c}$ should hold..

Example (Kovács; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive permutation groups G_{m} of degree $n=2^{2 m}$, such that

$$
d\left(G_{m}\right) \rightarrow \frac{b 2^{2 m}}{\sqrt{2 m}}+2 m=\frac{b n}{\sqrt{\log _{2} n}}+\log _{2} n
$$

as $m \rightarrow \infty$.

Transitive permutation groups

Example (Kovács; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive permutation groups G_{m} of degree $n=2^{2 m}$, such that

$$
d\left(G_{m}\right) \rightarrow \frac{b 2^{2 m}}{\sqrt{2 m}}+2 m=\frac{b n}{\sqrt{\log _{2} n}}+\log _{2} n
$$

as $m \rightarrow \infty$.

Theorem (Kovács; Newman, 1989)

Let $G \leq S_{n}$ be transitive and nilpotent. Then

$$
d(G)=O\left(\frac{n}{\sqrt{\log _{2} n}}\right)
$$

Transitive permutation groups

Theorem (Bryant; Kovács; Robinson, 1995)
Let $G \leq S_{n}$ be transitive and soluble. Then

$$
d(G)=O\left(\frac{n}{\sqrt{\log _{2} n}}\right)
$$

Transitive permutation groups

Theorem (Bryant; Kovács; Robinson, 1995)

Let $G \leq S_{n}$ be transitive and soluble. Then

$$
d(G)=O\left(\frac{n}{\sqrt{\log _{2} n}}\right)
$$

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

Let $G \leq S_{n}$ be transitive. Then

$$
d(G)=O\left(\frac{n}{\sqrt{\log _{2} n}}\right)
$$

Transitive permutation groups

Theorem (Bryant; Kovács; Robinson, 1995)

Let $G \leq S_{n}$ be transitive and soluble. Then

$$
d(G)=O\left(\frac{n}{\sqrt{\log _{2} n}}\right)
$$

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

Let $G \leq S_{n}$ be transitive. Then

$$
d(G)=O\left(\frac{n}{\sqrt{\log _{2} n}}\right)
$$

..But what about the constants involved?..

Transitive permutation groups

Example (Kovács; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive permutation groups G_{m} of degree $n=2^{2 m}$, such that

$$
d\left(G_{m}\right) \rightarrow \frac{b 2^{2 m}}{\sqrt{2 m}}+2 m=\frac{b n}{\sqrt{\log _{2} n}}+\log _{2} n \text { as } m \rightarrow \infty
$$

Transitive permutation groups

Example (Kovács; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive permutation groups G_{m} of degree $n=2^{2 m}$, such that

$$
d\left(G_{m}\right) \rightarrow \frac{b 2^{2 m}}{\sqrt{2 m}}+2 m=\frac{b n}{\sqrt{\log _{2} n}}+\log _{2} n \text { as } m \rightarrow \infty
$$

Lemma (T., 2015)

$b=\sqrt{2 / \pi}=0.79 \ldots$.

Transitive permutation groups

Example (Kovács; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive permutation groups G_{m} of degree $n=2^{2 m}$, such that

$$
d\left(G_{m}\right) \rightarrow \frac{b 2^{2 m}}{\sqrt{2 m}}+2 m=\frac{b n}{\sqrt{\log _{2} n}}+\log _{2} n \text { as } m \rightarrow \infty
$$

Lemma (T., 2015)

$b=\sqrt{2 / \pi}=0.79 \ldots$

Conjecture

Let G be a transitive permutation group of degree $n \geq 2$. Then

$$
d(G) \leq \frac{(b+o(1)) n}{\sqrt{\log _{2} n}}
$$

Transitive permutation groups

Lemma (T., 2015)

$b=\sqrt{2 / \pi}=0.79 \ldots$

Conjecture

Let G be a transitive permutation group of degree $n \geq 2$. Then

$$
d(G) \leq \frac{(b+o(1)) n}{\sqrt{\log _{2} n}}
$$

Theorem (T., 2015 (CFSG))

Let G be a transitive permutation group of degree $n \geq 2$. Then

$$
d(G) \leq \frac{c n}{\sqrt{\log _{2} n}}
$$

where $c:=\sqrt{3} / 2=0.86 \ldots$

Transitive permutation groups

Theorem (T., 2015 (CFSG))

Let G be a transitive permutation group of degree $n \geq 2$. Then

$$
d(G) \leq \frac{c n}{\sqrt{\log _{2} n}}
$$

where $c:=\sqrt{3} / 2=0.86 \ldots$.

Remark

$c=\sqrt{3} / 2$ is the optimal value when $n=8$ and $G \cong D_{8} \circ D_{8}$.

So how many transitive subgroups in S_{n} ？

We can deduce that

$$
\mid \text { Sub }_{\text {transitive }}\left(S_{n}\right) \left\lvert\, \leq n!\frac{c n}{\sqrt{\log _{2} n}}\right.
$$

So how many transitive subgroups in S_{n} ?

We can deduce that

$$
\mid \text { Sub }_{\text {transitive }}\left(S_{n}\right) \left\lvert\, \leq n!^{\frac{c n}{\sqrt{\log _{2} n}}}\right.
$$

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

There exists an absolute constant $\overline{\bar{c}}$ such that

$$
\mid \text { Sub }_{\text {transitive }}\left(S_{n}\right) \left\lvert\, \leq 2^{\frac{\bar{c}^{2}}{\sqrt{\log _{2} n}}}\right.
$$

Back to our original question..

From the Mclver-Neumann "Half n " bound, we can also deduce that

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq n!^{\frac{n}{2}}
$$

Back to our original question..

From the Mclver-Neumann "Half n " bound, we can also deduce that

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq n!^{\frac{n}{2}}
$$

Theorem (Pyber, 1993)

Let $\operatorname{Sub}\left(S_{n}\right)$ denote the number of subgroups of S_{n}. Then

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq 24^{\left(\frac{1}{6}+o(1)\right) n^{2}}
$$

Back to our original question..

From the Mclver-Neumann "Half n " bound, we can also deduce that

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq n!^{\frac{n}{2}}
$$

Theorem (Pyber, 1993)

Let $\operatorname{Sub}\left(S_{n}\right)$ denote the number of subgroups of S_{n}. Then

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq 24^{\left(\frac{1}{6}+o(1)\right) n^{2}}
$$

S_{n} contains an elementary abelian subgroup $G:=\langle(1,2),(3,4), \ldots\rangle$ of order $2^{\left\lfloor\frac{n}{2}\right\rfloor}$.

Back to our original question..

From the Mclver-Neumann "Half n " bound, we can also deduce that

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq n!^{\frac{n}{2}}
$$

Theorem (Pyber, 1993)

Let $\operatorname{Sub}\left(S_{n}\right)$ denote the number of subgroups of S_{n}. Then

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq 24^{\left(\frac{1}{6}+o(1)\right) n^{2}}
$$

S_{n} contains an elementary abelian subgroup $G:=\langle(1,2),(3,4), \ldots\rangle$ of order $2^{\left\lfloor\frac{n}{2}\right\rfloor}$.

An easy counting argument shows that

$$
|\operatorname{Sub}(G)|=2^{\left(\frac{1}{16}+o(1)\right) n^{2}}
$$

Back to our original question．．

Theorem（Pyber，1993）

Let $\operatorname{Sub}\left(S_{n}\right)$ denote the number of subgroups of S_{n} ．Then

$$
2^{\left(\frac{1}{16}+o(1)\right) n^{2}} \leq\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq 24^{\left(\frac{1}{6}+o(1)\right) n^{2}} .
$$

Back to our original question..

Theorem (Pyber, 1993)

Let $\operatorname{Sub}\left(S_{n}\right)$ denote the number of subgroups of S_{n}. Then

$$
2^{\left(\frac{1}{16}+o(1)\right) n^{2}} \leq\left|\operatorname{Sub}\left(S_{n}\right)\right| \leq 24^{\left(\frac{1}{6}+o(1)\right) n^{2}} .
$$

Thus, the order of magnitude is

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right|=2^{(\alpha+o(1)) n^{2}}
$$

for some constant α.

Back to our original question..

Theorem (Pyber, 1993)

Let $\operatorname{Sub}\left(S_{n}\right)$ denote the number of subgroups of S_{n}. Then

$$
2^{\left(\frac{1}{16}+o(1)\right) n^{2}} \leq\left|\operatorname{Su} b\left(S_{n}\right)\right| \leq 24^{\left(\frac{1}{6}+o(1)\right) n^{2}} .
$$

Thus, the order of magnitude is

$$
\left|\operatorname{Sub}\left(S_{n}\right)\right|=2^{(\alpha+o(1)) n^{2}}
$$

for some constant α.
Conjecture (Pyber, 1993)
$\left|\operatorname{Sub}\left(S_{n}\right)\right|=2^{\left(\frac{1}{16}+o(1)\right) n^{2}}$.

A reduction theorem

Conjecture (Pyber, 1993)
$\left|\operatorname{Sub}\left(S_{n}\right)\right|=2^{\left(\frac{1}{16}+o(1)\right) n^{2}}$.

For a constant $k \geq 1$, let $\operatorname{Sub}_{k}\left(S_{n}\right)$ denote the set of subgroups of S_{n} all of whose orbits have length at most k.. Jan-Christoph Schlage-Puchta proved the following reduction:

A reduction theorem

Conjecture (Pyber, 1993)

$\left|\operatorname{Sub}\left(S_{n}\right)\right|=2^{\left(\frac{1}{16}+o(1)\right) n^{2}}$.

For a constant $k \geq 1$, let $\operatorname{Sub}_{k}\left(S_{n}\right)$ denote the set of subgroups of S_{n} all of whose orbits have length at most k.. Jan-Christoph Schlage-Puchta proved the following reduction:

Theorem (Schlage-Puchta, 2016)

Assume that

$$
\max \left\{\frac{d(G) \log _{2}|G|}{n^{2}}: G \leq S_{n} \text { transitive }\right\} \rightarrow 0 \text { as } n \rightarrow \infty(*)
$$

Then $\left|\operatorname{Sub}\left(S_{n}\right)\right|=\left|\operatorname{Sub}_{k}\left(S_{n}\right)\right| 2^{o\left(n^{2}\right)}$, for some absolute constant k.

A reduction theorem

Conjecture (Pyber, 1993)

$\left|\operatorname{Sub}\left(S_{n}\right)\right|=2^{\left(\frac{1}{16}+o(1)\right) n^{2}}$.

Theorem (Schlage-Puchta, 2016)

Assume that

$$
\max \left\{\frac{d(G) \log _{2}|G|}{n^{2}}: G \leq S_{n} \text { transitive }\right\} \rightarrow 0 \text { as } n \rightarrow \infty(*)
$$

Then $\left|\operatorname{Sub}\left(S_{n}\right)\right|=\left|\operatorname{Sub}_{k}\left(S_{n}\right)\right| 2^{o\left(n^{2}\right)}$, for some absolute constant k.

We remark that $\operatorname{Sub}_{k}\left(S_{n}\right)$ consists of the subgroups of the direct products

$$
S_{k_{1}} \times S_{k_{2}} \times \ldots \times S_{k_{t}}
$$

where $\sum_{i} k_{i}=n$ and each $k_{i} \leq k$.

Does the hypothesis hold true?

Does the hypothesis hold true?

So is

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{d(G) \log _{2}|G|}{n^{2}}: G \leq S_{n} \text { transitive }\right\}=0 ?
$$

Does the hypothesis hold true？

So is

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{d(G) \log _{2}|G|}{n^{2}}: G \leq S_{n} \text { transitive }\right\}=0 ?
$$

Must a＂large＂transitive group have a＂small＂number of generators？

Does the hypothesis hold true?

So is

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{d(G) \log _{2}|G|}{n^{2}}: G \leq S_{n} \text { transitive }\right\}=0 ?
$$

Must a "large" transitive group have a "small" number of generators?

Example:

$$
d\left(S_{n}\right)=2, d\left(A_{n}\right)=2
$$

Does the hypothesis hold true?

So is

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{d(G) \log _{2}|G|}{n^{2}}: G \leq S_{n} \text { transitive }\right\}=0 ?
$$

Must a "large" transitive group have a "small" number of generators?

Example:

$d\left(S_{n}\right)=2, d\left(A_{n}\right)=2 ;$

Example:

If $G \leq S_{n}$ is primitive, and is not A_{n} or S_{n} then $\log _{2}|G|=O(n)$ (Praeger; Saxl, 1980; Maróti, 2002), and $d(G) \leq \log _{2} n$ (Holt; Roney-Dougal, 2013).

Can a large transitive group have many generators?

So is

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{d(G) \log _{2}|G|}{n^{2}}: G \leq S_{n} \text { transitive }\right\}=0 ?
$$

Example:

The maximal imprimitive transitive subgroups of S_{n} are the wreath products $S_{m} \backslash S_{\frac{n}{m}}$. All of these are 2-generated..

Can a large transitive group have many generators?

So is

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{d(G) \log _{2}|G|}{n^{2}}: G \leq S_{n} \text { transitive }\right\}=0 ?
$$

Example:

The maximal imprimitive transitive subgroups of S_{n} are the wreath products $S_{m} \backslash S_{\frac{n}{m}}$. All of these are 2-generated..

Example (Kovács; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive permutation groups G_{m} of degree $n=2^{2 m}$, such that

$$
d\left(G_{m}\right) \rightarrow \frac{b 2^{2 m}}{\sqrt{2 m}}+2 m=\frac{b n}{\sqrt{\log _{2} n}}+\log _{2} n
$$

as $m \rightarrow \infty$.

Can a large transitive group have many generators?

So is

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{d(G) \log _{2}|G|}{n^{2}}: G \leq S_{n} \text { transitive }\right\}=0 ?
$$

Example (Kovács; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive permutation groups G_{m} of degree $n=2^{2 m}$, such that

$$
d\left(G_{m}\right) \rightarrow \frac{b 2^{2 m}}{\sqrt{2 m}}+2 m=\frac{b n}{\sqrt{\log _{2} n}}+\log _{2} n
$$

as $m \rightarrow \infty$.
The groups G_{m} have order $\sim 2^{n / 4}$. Hence

$$
d\left(G_{m}\right) \log _{2}\left|G_{m}\right| \sim C n^{2} / \sqrt{\log _{2} n}
$$

Can a large transitive group have many generators?

The groups G_{m} have order $\sim 2^{n / 4}$. Hence

$$
d\left(G_{m}\right) \log _{2}\left|G_{m}\right| \sim \frac{C n^{2}}{\sqrt{\log _{2} n}}
$$

for some absolute constant C.

Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree $n \geq 2$. Then there exists an absolute constant C such that

$$
d(G) \leq \frac{C n^{2}}{\log _{2}|G| \sqrt{\log _{2} n}}
$$

Can a large transitive group have many generators?

The groups G_{m} have order $\sim 2^{n / 4}$. Hence

$$
d\left(G_{m}\right) \log _{2}\left|G_{m}\right| \sim \frac{C n^{2}}{\sqrt{\log _{2} n}}
$$

for some absolute constant C.

Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree $n \geq 2$. Then there exists an absolute constant C such that

$$
d(G) \leq \frac{C n^{2}}{\log _{2}|G| \sqrt{\log _{2} n}}
$$

Corollary (Schlage-Puchta, 2016 (CFSG))
$\left|\operatorname{Sub}\left(S_{n}\right)\right|=\left|\operatorname{Sub}_{k}\left(S_{n}\right)\right| 2^{o\left(n^{2}\right)}$ for some absolute constant k.

Minimally transitive groups

Minimally transitive groups

Definition

A transitive permutation group G is called minimally transitive if every proper subgroup of G is intransitive.

Minimally transitive groups

Definition

A transitive permutation group G is called minimally transitive if every proper subgroup of G is intransitive.

Example:

Any finite group G is minimally transitive of degree $|G|$ (via the regular action).

Minimally transitive groups

Definition

A transitive permutation group G is called minimally transitive if every proper subgroup of G is intransitive.

Example:

Any finite group G is minimally transitive of degree $|G|$ (via the regular action).

Example:

$G:=A l t(5)$ in its action on the cosets of $\langle(1,2)(3,4),(1,3)(2,4)\rangle$;

$d(G)$ for minimally transitive groups

$d(G)$ for minimally transitive groups

Question

What is the best possible upper bound of the form

$$
d(G) \leq f(n)
$$

on the set of minimally transitive groups G of degree n ?

$d(G)$ for minimally transitive groups

Question

What is the best possible upper bound of the form

$$
d(G) \leq f(n)\left(\leq \frac{c n}{\sqrt{\log _{2} n}}\right)
$$

on the set of minimally transitive groups G of degree n ?

$d(G)$ for minimally transitive groups

Question

What is the best possible upper bound of the form

$$
d(G) \leq f(n)\left(\leq \log _{2} n\right)(\text { Neumann; Vaughan-Lee, 1977) }
$$

on the set of minimally transitive groups G of degree n ?

Minimally transitive groups: A question of Pyber

Theorem (Pyber, 1991)
Let G be a minimally transitive permutation group of degree n, which is either regular or nilpotent. Then $d(G) \leq \mu(n)+1$.

Minimally transitive groups: A question of Pyber

Theorem (Pyber, 1991)

Let G be a minimally transitive permutation group of degree n, which is either regular or nilpotent. Then $d(G) \leq \mu(n)+1$.

Question (Pyber, 1991)

Is it true that $d(G) \leq \mu(n)+1$ for all minimally transitive permutation groups of degree n ?

Minimally transitive groups: A question of Pyber

Theorem (Pyber, 1991)

Let G be a minimally transitive permutation group of degree n, which is either regular or nilpotent. Then $d(G) \leq \mu(n)+1$.

Question (Pyber, 1991)

Is it true that $d(G) \leq \mu(n)+1$ for all minimally transitive permutation groups of degree n ?

Theorem (Lucchini, 1996)

Let G be a soluble minimally transitive permutation group of degree n. Then $d(G) \leq \mu(n)+1$.

Minimally transitive groups: A question of Pyber

Theorem (Pyber, 1991)

Let G be a minimally transitive permutation group of degree n, which is either regular or nilpotent. Then $d(G) \leq \mu(n)+1$.

Question (Pyber, 1991)

Is it true that $d(G) \leq \mu(n)+1$ for all minimally transitive permutation groups of degree n ?

Theorem (Lucchini, 1996)

Let G be a soluble minimally transitive permutation group of degree n. Then $d(G) \leq \mu(n)+1$.

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n.
Then $d(G) \leq \mu(n)+1$.

The proof: first step

The proof：first step

Let G be a counterexample of minimal degree n ，and let M be any nontrivial normal subgroup of G ．

The proof: first step

Let G be a counterexample of minimal degree n, and let M be any nontrivial normal subgroup of G.

Also, let Ω be the set of orbits of M (so $|\Omega|<n$).

The proof: first step

Let G be a counterexample of minimal degree n, and let M be any nontrivial normal subgroup of G.

Also, let Ω be the set of orbits of M (so $|\Omega|<n$).

Then, since M is normal in G, G acts on Ω, and the following hold:
(1) G / K acts minimally transitive on Ω, where K is the kernel of the action of G on Ω;
(2) $|\Omega|$ divides n.

The proof：first step

It now follows easily，from the minimality of G as a counterexample，and from the minimal transitivity of G ，that

$$
d(G / M) \leq \mu(|\Omega|)+1 \leq \mu(n)+1
$$

The proof：first step

It now follows easily，from the minimality of G as a counterexample，and from the minimal transitivity of G ，that

$$
d(G / M) \leq \mu(|\Omega|)+1 \leq \mu(n)+1<d(G)
$$

The proof：first step

It now follows easily，from the minimality of G as a counterexample，and from the minimal transitivity of G ，that

$$
d(G / M) \leq \mu(|\Omega|)+1 \leq \mu(n)+1<d(G)
$$

So we have proved：
Step 1：G needs more generators than any of its proper quotients．

Finite groups which need more generators than any proper quotient

Finite groups which need more generators than any proper quotient

Let L be a finite group，with a unique minimal normal subgroup N ． If N is abelian，then assume further that N has a complement in L ．

Finite groups which need more generators than any proper quotient

Let L be a finite group，with a unique minimal normal subgroup N ． If N is abelian，then assume further that N has a complement in L ．

For $k \geq 1$ ，define the following subgroup of L^{k} ：

$$
L_{k}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right): N x_{i}=N x_{j} \text { for all } i, j\right\}=\operatorname{diag}\left(L^{k}\right) N^{k}
$$

Finite groups which need more generators than any proper quotient

Let L be a finite group, with a unique minimal normal subgroup N. If N is abelian, then assume further that N has a complement in L.

For $k \geq 1$, define the following subgroup of L^{k} :

$$
L_{k}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right): N x_{i}=N x_{j} \text { for all } i, j\right\}=\operatorname{diag}\left(L^{k}\right) N^{k}
$$

Theorem (Dalla Volta; Lucchini, 1998 (CFSG))

Let G be a finite group which needs more generators than any proper quotient. Then there exists a finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and a positive integer $k \geq 2$, such that $G \cong L_{k}$.

The proof of the theorem: continued

The proof of the theorem: continued

Thus

$$
G \cong L_{k}:=\operatorname{diag}\left(L^{k}\right) N^{k}
$$

for some finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and some $k \geq 2$.

The proof of the theorem：continued

Thus

$$
G \cong L_{k}:=\operatorname{diag}\left(L^{k}\right) N^{k}
$$

for some finite group L with a unique minimal normal subgroup N ， which is either nonabelian or complemented in L ，and some $k \geq 2$ ．

Step 2：

（1）If N is abelian，then $k \leq \mu(n)$ ；
（2）If N is nonabelian，then $k \leq f(N) \mu(n)+1$ ，where $f(N):=r / 2+1$ if N is a direct product of copies of Alt (r) ， and $f(N):=4$ otherwise．

Indices of proper subgroups in nonabelian simple groups

Lemma ((CFSG))

Let S be a nonabelian finite simple group. Then there exists a set of primes $\Gamma=\Gamma(S)$ such that
(1) $|\Gamma| \leq f(S)$, where $f(S)=r / 2+1$ if S is an alternating group of degree r, and $f(S) \leq 4$ otherwise;
(2) $\pi(|S: H|)(=\{p: p$ is a prime divisor of $|S: H|\})$ intersects Γ non-trivially for every proper subgroup H of S.

The proof of the theorem: continued

Thus

$$
G \cong L_{k}:=\operatorname{diag}\left(L^{k}\right) N^{k}
$$

for some finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and some $k \geq 2$.

Step 2:

(1) If N is abelian, then $k \leq \mu(n)$;
(2) If N is nonabelian, then $k \leq f(N) \mu(n)+1$, where $f(N):=r / 2+1$ if N is a direct product of copies of $A / t(r)$, and $f(N):=4$ otherwise.

The proof of the theorem: continued

Thus

$$
G \cong L_{k}:=\operatorname{diag}\left(L^{k}\right) N^{k}
$$

for some finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and some $k \geq 2$.

Step 2:

(1) If N is abelian, then $k \leq \mu(n)$;
(2) If N is nonabelian, then $k \leq f(N) \mu(n)+1$, where $f(N):=r / 2+1$ if N is a direct product of copies of Alt (r), and $f(N):=4$ otherwise.

Using results of Dalla Volta and Lucchini, we can now find upper bounds for $d\left(L_{k}\right)>\mu(n)+1$ in terms of k and $N .$.

The proof of the theorem: continued

Thus

$$
G \cong L_{k}:=\operatorname{diag}\left(L^{k}\right) N^{k}
$$

for some finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and some $k \geq 2$.

Step 2:

(1) If N is abelian, then $k \leq \mu(n)$;
(2) If N is nonabelian, then $k \leq f(N) \mu(n)+1$, where $f(N):=r / 2+1$ if N is a direct product of copies of Alt (r), and $f(N):=4$ otherwise.

Using results of Dalla Volta and Lucchini, we can now find upper bounds for $d\left(L_{k}\right)>\mu(n)+1$ in terms of k and N..

This leads to lower bounds on k in terms of $\mu(n)$ and $N .$.

Invariable generation

Invariable generation

Definition

（i）A subset $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ of a group G is said to invariably generate G if $G=\left\langle x_{1}^{g_{1}}, x_{2}^{g_{2}}, \ldots, x_{t}^{g_{t}}\right\rangle$ for any t－tuple $\left(g_{1}, g_{2}, \ldots, g_{t}\right)$ of elements of G ．
（ii）The cardinality of the smallest invariable generating set for a finite group G is denoted by $d_{l}(G)$ ．

Invariable generation

Definition

(i) A subset $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ of a group G is said to invariably generate G if $G=\left\langle x_{1}^{g_{1}}, x_{2}^{g_{2}}, \ldots, x_{t}^{g_{t}}\right\rangle$ for any t-tuple $\left(g_{1}, g_{2}, \ldots, g_{t}\right)$ of elements of G.
(ii) The cardinality of the smallest invariable generating set for a finite group G is denoted by $d_{l}(G)$.

Clearly $d(G) \leq d_{l}(G)$ in general, but the question is:

Invariable generation

Definition

(i) A subset $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ of a group G is said to invariably generate G if $G=\left\langle x_{1}^{g_{1}}, x_{2}^{g_{2}}, \ldots, x_{t}^{g_{t}}\right\rangle$ for any t-tuple $\left(g_{1}, g_{2}, \ldots, g_{t}\right)$ of elements of G.
(ii) The cardinality of the smallest invariable generating set for a finite group G is denoted by $d_{l}(G)$.

Clearly $d(G) \leq d_{l}(G)$ in general, but the question is:

Question

Pick a result of the form
"Let G be a ___ finite group. Then $d(G) \leq \ldots$ "
Does this result hold if we replace $d(G)$ by $d_{l}(G)$?

Invariable generation

Theorem（Kantor；Lubotzky；Shalev，2011）
Let G be a finite nilpotent group．Any generating set for G is also
an invariable generating set．In particular，$d(G)=d_{l}(G)$ ．

Invariable generation

Theorem (Kantor; Lubotzky; Shalev, 2011)

Let G be a finite nilpotent group. Any generating set for G is also an invariable generating set. In particular, $d(G)=d_{l}(G)$.

Theorem (Kantor; Lubotzky; Shalev, 2011)

For every positive integer n, there exists a finite group G such that $d(G)=2$ and $d_{l}(G) \leq n$.

Invariable generation

Theorem (Kantor; Lubotzky; Shalev, 2011)

Let G be a finite nilpotent group. Any generating set for G is also an invariable generating set. In particular, $d(G)=d_{l}(G)$.

Theorem (Kantor; Lubotzky; Shalev, 2011)

For every positive integer n, there exists a finite group G such that $d(G)=2$ and $d_{l}(G) \leq n$.

Also...

Theorem (Guralnick; Malle, 2011 and Kantor; Lubotzky; Shalev, 2011 (CFSG))

Let G be a nonabelian finite simple group. Then $d_{l}(G)=2$.

$d_{l}(G)$ for permutation groups

$d_{l}(G)$ for permutation groups

Theorem（Mclver；Neumann， 1989 （CFSG））
Let G be a permutation group of degree n ．Then $d(G) \leq n / 2$ ， except when $n=3$ and $G \cong S_{3}$ ．

$d_{l}(G)$ for permutation groups

Theorem (Mclver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n. Then $d(G) \leq n / 2$, except when $n=3$ and $G \cong S_{3}$.

Theorem (Detomi; Lucchini, 2014 (CFSG))

Let G be a permutation group of degree n. Then $d_{l}(G) \leq n / 2$, except when $n=3$ and $G \cong S_{3}$.

$d_{I}(G)$ for permutation groups

Theorem (Mclver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n. Then $d(G) \leq n / 2$, except when $n=3$ and $G \cong S_{3}$.

Theorem (Detomi; Lucchini, 2014 (CFSG))

Let G be a permutation group of degree n. Then $d_{l}(G) \leq n / 2$, except when $n=3$ and $G \cong S_{3}$.

Problem

Let G be a permutation group of degree n. Prove that $d_{l}(G) \leq n-1$ (or indeed that $d_{l}(G)=O(n)$) without using CFSG or the O'Nan Scott Theorem.

$d_{l}(G)$ for transitive permutation groups

$d_{l}(G)$ for transitive permutation groups

Theorem（Kovács；Newman，1989；Bryant；Kovács；Robinson， 1995；Lucchini， 2000 （CFSG））

Let G be a transitive permutation group of degree $n \geq 2$ ．Then $d(G) \leq \frac{c n}{\sqrt{\log _{2} n}}$ ，for some absolute constant c ．

$d_{l}(G)$ for transitive permutation groups

Theorem (Kovács; Newman, 1989; Bryant; Kovács; Robinson, 1995; Lucchini, 2000 (CFSG))

Let G be a transitive permutation group of degree $n \geq 2$. Then $d(G) \leq \frac{c n}{\sqrt{\log _{2} n}}$, for some absolute constant c.

Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree $n \geq 2$. Then $d_{l}(G) \leq \frac{c n}{\sqrt{\log _{2} n}}$, where $c:=\sqrt{3} / 2$.

$d_{I}(G)$ for minimally transitive permutation groups

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n.
Then $d(G) \leq \mu(n)+1$.

$d_{l}(G)$ for minimally transitive permutation groups

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n.
Then $d(G) \leq \mu(n)+1$.

Question

Let G be a minimally transitive permutation group of degree $n \geq 2$. Is $d_{l}(G) \leq \mu(n)+1$?

$d_{l}(G)$ for completely reducible linear groups

Theorem (Kovács; Robinson, 1989 (CFSG))
 Let \mathbb{F} be a field, and let $G \leq G L_{n}(\mathbb{F})$ be finite and completely reducible. Then $d(G) \leq \frac{3}{2} n$.

$d_{l}(G)$ for completely reducible linear groups

Theorem (Kovács; Robinson, 1989 (CFSG))

Let \mathbb{F} be a field, and let $G \leq G L_{n}(\mathbb{F})$ be finite and completely reducible. Then $d(G) \leq \frac{3}{2} n$.

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let \mathbb{F} be a field, and let $G \leq G L_{n}(\mathbb{F})$ be finite and completely reducible. If \mathbb{F} does not contain a primitive fourth root of unity then $d(G) \leq n$. Furthermore, if $|\mathbb{F}|=2$ then $d(G) \leq \frac{n}{2}$ (apart from one infinite family of exceptions $B_{n} \leq G L_{2}(2)^{\frac{n}{2}}$ where $\left.d\left(B_{n}\right)=\frac{n}{2}+1\right)$.

$d_{l}(G)$ for completely reducible linear groups

Theorem (Kovács; Robinson, 1989 (CFSG))

Let \mathbb{F} be a field, and let $G \leq G L_{n}(\mathbb{F})$ be finite and completely reducible. Then $d(G) \leq \frac{3}{2} n$.

Theorem (T., 2015 (CFSG))

Let \mathbb{F} be a field, and let $G \leq G L_{n}(\mathbb{F})$ be finite and completely reducible. Then
(i) $d_{l}(G) \leq \frac{3}{2} n$.

$d_{l}(G)$ for completely reducible linear groups

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let \mathbb{F} be a field, and let $G \leq G L_{n}(\mathbb{F})$ be finite and completely reducible. If \mathbb{F} does not contain a primitive fourth root of unity then $d(G) \leq n$. Furthermore, if $|\mathbb{F}|=2$ then $d(G) \leq \frac{n}{2}$ (apart from one infinite family of exceptions B_{n} where $\left.d\left(B_{n}\right)=\frac{n}{2}+1\right)$.

Theorem (T., 2015 (CFSG))

Let \mathbb{F} be a field, and let $G \leq G L_{n}(\mathbb{F})$ be finite and completely reducible. Then
(i) $d_{l}(G) \leq \frac{3}{2} n$;
(ii) If $|\mathbb{F}|=2$ then $d_{l}(G) \leq \frac{n}{2}$ (apart from one infinite family of exceptions $B_{n} \leq G L_{2}(2)^{\frac{n}{2}}$ where $d_{l}\left(B_{n}\right)=\frac{n}{2}+1$, and when $G=S p_{4}(2) \cong S_{6}$, where $\left.d_{l}(G)=3\right)$.

$d_{l}(G)$ for completely reducible linear groups

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let \mathbb{F} be a field, and let $G \leq G L_{n}(\mathbb{F})$ be finite and completely reducible. If \mathbb{F} does not contain a primitive fourth root of unity then $d(G) \leq n$. Furthermore, if $|\mathbb{F}|=2$ then $d(G) \leq \frac{n}{2}$ (apart from one infinite family of exceptions B_{n} where $d\left(B_{n}\right)=\frac{n}{2}+1$).

Theorem (T., 2015 (CFSG))

Let \mathbb{F} be a field, and let $G \leq G L_{n}(\mathbb{F})$ be finite and completely reducible. Then
(i) $d_{l}(G) \leq \frac{3}{2} n$;
(ii) If $|\mathbb{F}|=2$ then $d_{l}(G) \leq \frac{n}{2}$ (apart from one infinite family of exceptions $B_{n} \leq G L_{2}(2)^{\frac{n}{2}}$ where $d_{l}\left(B_{n}\right)=\frac{n}{2}+1$, and when $G=S_{p_{4}}(2) \cong S_{6}$, where $\left.d_{l}(G)=3\right)$, and;
(iii) If $|\mathbb{F}|=3$ then $d_{l}(G) \leq n$.

