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A motivational question

How many subgroups does the symmetric group Sn have?

For a finite group G , let Sub(G ) denote the set of subgroups of G .

Suppose that every subgroup of Sn can be generated by f (n)
elements..

Then
|Sub(Sn)| ≤ n!f (n)

Similarly, if X is a group-theoretical property, and SubX (Sn)
denotes the set of X -subgroups of Sn, and every X -subgroup of Sn
can be generated by fX (n) elements, we have

|SubX (Sn)| ≤ n!fX (n)
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d(G ) for subgroups of Sn

Therefore, the question now is: For a fixed property X , what is
fX (n)?

For a group G , let d(G ) denote the minimal number of elements
required to generate G .

Take G ≤ Sn. Then

d(G ) ≤ n − 1
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d(G ) for subgroups of Sn

Therefore, the question now is: For a fixed property X , what is
fX (n)?

For a group G , let d(G ) denote the minimal number of elements
required to generate G .

Take G ≤ Sn. Then

d(G ) ≤ n −#(Orbits of G ) ≤ n − 1



The general case: G is an arbitrary subgroup of Sn

..So we have d(G ) ≤ n − 1 for G ≤ Sn.. Can we do any better
than linear in n?

Example:

Take n to be even, and let G = 〈(1, 2), (3, 4), . . . , (n − 1, n)〉.
Then G ∼= (Z/2Z)n/2, so d(G ) = n/2.

Theorem (McIver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n ≥ 2, with
(G , n) 6= (S3, 3). Then

(i) d(G ) ≤ n/2.
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The general case: G is an arbitrary subgroup of Sn

..So we have d(G ) ≤ n − 1 for G ≤ Sn.. Can we do any better
than linear in n?

Example:

Take n to be even, and let G = 〈(1, 2), (3, 4), . . . , (n − 1, n)〉.
Then G ∼= (Z/2Z)n/2, so d(G ) = n/2.

Theorem (McIver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n, with (G , n) 6= (S3, 3).
Then

(i) d(G ) ≤ n/2, and;

(ii) If G is transitive and n > 4, (G , n) 6= (D8 ◦ D8, 8), then
d(G ) < n/2.



Transitive permutation groups

Many believed that a bound of the form d(G ) ≤ (log2 n)c should
hold..

Example (Kovács; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive
permutation groups Gm of degree n = 22m, such that

d(Gm)→ b22m√
2m

+ 2m =
bn√
log2 n

+ log2 n

as m→∞.
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Example (Kovács; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive
permutation groups Gm of degree n = 22m, such that

d(Gm)→ b22m√
2m

+ 2m =
bn√
log2 n

+ log2 n

as m→∞.

Theorem (Kovács; Newman, 1989)

Let G ≤ Sn be transitive and nilpotent. Then

d(G ) = O

(
n√

log2 n

)



Transitive permutation groups

Theorem (Bryant; Kovács; Robinson, 1995)

Let G ≤ Sn be transitive and soluble. Then

d(G ) = O

(
n√

log2 n

)

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

Let G ≤ Sn be transitive. Then
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(
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log2 n

)

..But what about the constants involved?..
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Example (Kovács; Newman, 1989)

There exists an absolute constant b, and a sequence of transitive
permutation groups Gm of degree n = 22m, such that

d(Gm)→ b22m√
2m

+ 2m =
bn√
log2 n

+ log2 n as m→∞.

Lemma (T., 2015)

b =
√

2/π = 0.79 . . ..

Conjecture

Let G be a transitive permutation group of degree n ≥ 2. Then

d(G ) ≤ (b + o(1))n√
log2 n
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b =
√

2/π = 0.79 . . ..

Conjecture

Let G be a transitive permutation group of degree n ≥ 2. Then

d(G ) ≤ (b + o(1))n√
log2 n

.

Theorem (T., 2015 (CFSG))

Let G be a transitive permutation group of degree n ≥ 2. Then

d(G ) ≤ cn√
log2 n

where c :=
√

3/2 = 0.86 . . ..



Transitive permutation groups

Theorem (T., 2015 (CFSG))

Let G be a transitive permutation group of degree n ≥ 2. Then

d(G ) ≤ cn√
log2 n

where c :=
√

3/2 = 0.86 . . ..

Remark

c =
√

3/2 is the optimal value when n = 8 and G ∼= D8 ◦ D8.



So how many transitive subgroups in Sn?

We can deduce that

|Subtransitive(Sn)| ≤ n!
cn√
log2 n

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

There exists an absolute constant c such that

|Subtransitive(Sn)| ≤ 2
cn2√
log2 n
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Back to our original question..

From the McIver-Neumann “Half n” bound, we can also deduce
that

|Sub(Sn)| ≤ n!
n
2

Theorem (Pyber, 1993)

Let Sub(Sn) denote the number of subgroups of Sn. Then

|Sub(Sn)| ≤ 24(
1
6
+o(1))n2

Sn contains an elementary abelian subgroup
G := 〈(1, 2), (3, 4), . . .〉 of order 2b

n
2
c.

An easy counting argument shows that

|Sub(G )| = 2(
1
16
+o(1))n2
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A reduction theorem

Conjecture (Pyber, 1993)

|Sub(Sn)| = 2(
1
16
+o(1))n2 .

For a constant k ≥ 1, let Subk(Sn) denote the set of subgroups of
Sn all of whose orbits have length at most k.. Jan-Christoph
Schlage-Puchta proved the following reduction:

Theorem (Schlage-Puchta, 2016)

Assume that

max

{
d(G ) log2 |G |

n2
: G ≤ Sn transitive

}
→ 0 as n→∞ (∗)

Then |Sub(Sn)| = |Subk(Sn)|2o(n2), for some absolute constant k .
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A reduction theorem

Conjecture (Pyber, 1993)

|Sub(Sn)| = 2(
1
16
+o(1))n2 .

Theorem (Schlage-Puchta, 2016)

Assume that

max

{
d(G ) log2 |G |

n2
: G ≤ Sn transitive

}
→ 0 as n→∞ (∗)

Then |Sub(Sn)| = |Subk(Sn)|2o(n2), for some absolute constant k .

We remark that Subk(Sn) consists of the subgroups of the direct
products

Sk1 × Sk2 × . . .× Skt

where
∑

i ki = n and each ki ≤ k .



Does the hypothesis hold true?

So is

lim
n→∞

max

{
d(G ) log2 |G |

n2
: G ≤ Sn transitive

}
= 0?

Must a “large” transitive group have a “small” number of
generators?

Example:

d(Sn) = 2, d(An) = 2;

Example:

If G ≤ Sn is primitive, and is not An or Sn then log2 |G | = O(n)
(Praeger; Saxl, 1980; Maróti, 2002), and d(G ) ≤ log2 n (Holt;
Roney-Dougal, 2013).
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Can a large transitive group have many generators?

So is

lim
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max
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Example:

The maximal imprimitive transitive subgroups of Sn are the wreath
products Sm o S n

m
. All of these are 2-generated..
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Can a large transitive group have many generators?

The groups Gm have order ∼ 2n/4. Hence

d(Gm) log2 |Gm| ∼
Cn2√
log2 n

for some absolute constant C .

Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree n ≥ 2. Then
there exists an absolute constant C such that

d(G ) ≤ Cn2

log2 |G |
√

log2 n
.

Corollary (Schlage-Puchta, 2016 (CFSG))

|Sub(Sn)| = |Subk(Sn)|2o(n2) for some absolute constant k.
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Minimally transitive groups

Definition

A transitive permutation group G is called minimally transitive if
every proper subgroup of G is intransitive.

Example:

Any finite group G is minimally transitive of degree |G | (via the
regular action).

Example:

G := Alt(5) in its action on the cosets of 〈(1, 2)(3, 4), (1, 3)(2, 4)〉;
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d(G ) for minimally transitive groups

Question

What is the best possible upper bound of the form

d(G ) ≤ f (n) (≤ log2 n) (Neumann; Vaughan-Lee, 1977)

on the set of minimally transitive groups G of degree n?



Minimally transitive groups: A question of Pyber

Theorem (Pyber, 1991)

Let G be a minimally transitive permutation group of degree n,
which is either regular or nilpotent. Then d(G ) ≤ µ(n) + 1.

Question (Pyber, 1991)

Is it true that d(G ) ≤ µ(n) + 1 for all minimally transitive
permutation groups of degree n?

Theorem (Lucchini, 1996)

Let G be a soluble minimally transitive permutation group of
degree n. Then d(G ) ≤ µ(n) + 1.

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n.
Then d(G ) ≤ µ(n) + 1.
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Let G be a minimally transitive permutation group of degree n.
Then d(G ) ≤ µ(n) + 1.



The proof: first step

Let G be a counterexample of minimal degree n, and let M be any
nontrivial normal subgroup of G .

Also, let Ω be the set of orbits of M (so |Ω| < n).

Then, since M is normal in G , G acts on Ω, and the following hold:

1 G/K acts minimally transitive on Ω, where K is the kernel of
the action of G on Ω;

2 |Ω| divides n.
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So we have proved:
Step 1:G needs more generators than any of its proper quotients.
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Finite groups which need more generators than any proper
quotient

Let L be a finite group, with a unique minimal normal subgroup N.
If N is abelian, then assume further that N has a complement in L.

For k ≥ 1, define the following subgroup of Lk :

Lk := {(x1, x2, . . . , xk) : Nxi = Nxj for all i , j} = diag(Lk)Nk

Theorem (Dalla Volta; Lucchini, 1998 (CFSG))

Let G be a finite group which needs more generators than any
proper quotient. Then there exists a finite group L with a unique
minimal normal subgroup N, which is either nonabelian or
complemented in L, and a positive integer k ≥ 2, such that
G ∼= Lk .
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The proof of the theorem: continued

Thus
G ∼= Lk := diag(Lk)Nk

for some finite group L with a unique minimal normal subgroup N,
which is either nonabelian or complemented in L, and some k ≥ 2.

Step 2:

1 If N is abelian, then k ≤ µ(n);

2 If N is nonabelian, then k ≤ f (N)µ(n) + 1, where
f (N) := r/2 + 1 if N is a direct product of copies of Alt(r),
and f (N) := 4 otherwise.
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Indices of proper subgroups in nonabelian simple groups

Lemma ((CFSG))

Let S be a nonabelian finite simple group. Then there exists a set
of primes Γ = Γ(S) such that

1 |Γ| ≤ f (S), where f (S) = r/2 + 1 if S is an alternating group
of degree r , and f (S) ≤ 4 otherwise;

2 π(|S : H|) (= {p : p is a prime divisor of |S : H|}) intersects
Γ non-trivially for every proper subgroup H of S .



The proof of the theorem: continued

Thus
G ∼= Lk := diag(Lk)Nk

for some finite group L with a unique minimal normal subgroup N,
which is either nonabelian or complemented in L, and some k ≥ 2.

Step 2:

1 If N is abelian, then k ≤ µ(n);

2 If N is nonabelian, then k ≤ f (N)µ(n) + 1, where
f (N) := r/2 + 1 if N is a direct product of copies of Alt(r),
and f (N) := 4 otherwise.

Using results of Dalla Volta and Lucchini, we can now find upper
bounds for d(Lk) > µ(n) + 1 in terms of k and N..

This leads to lower bounds on k in terms of µ(n) and N..

..which, combined with Step 2 above, yields the required
contradiction.
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Invariable generation

Definition

(i) A subset {x1, x2, . . . , xt} of a group G is said to invariably
generate G if G = 〈xg11 , x

g2
2 , . . . , x

gt
t 〉 for any t-tuple

(g1, g2, . . . , gt) of elements of G .

(ii) The cardinality of the smallest invariable generating set for a
finite group G is denoted by dI (G ).

Clearly d(G ) ≤ dI (G ) in general, but the question is:

Question

Pick a result of the form

“Let G be a finite group. Then d(G ) ≤ . . . ”

Does this result hold if we replace d(G ) by dI (G )?
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Invariable generation

Theorem (Kantor; Lubotzky; Shalev, 2011)

Let G be a finite nilpotent group. Any generating set for G is also
an invariable generating set. In particular, d(G ) = dI (G ).

Theorem (Kantor; Lubotzky; Shalev, 2011)

For every positive integer n, there exists a finite group G such that
d(G ) = 2 and dI (G ) ≤ n.

Also...

Theorem (Guralnick; Malle, 2011 and Kantor; Lubotzky; Shalev,
2011 (CFSG))

Let G be a nonabelian finite simple group. Then dI (G ) = 2.
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dI (G ) for permutation groups

Theorem (McIver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n. Then d(G ) ≤ n/2,
except when n = 3 and G ∼= S3.

Theorem (Detomi; Lucchini, 2014 (CFSG))

Let G be a permutation group of degree n. Then dI (G ) ≤ n/2,
except when n = 3 and G ∼= S3.

Problem

Let G be a permutation group of degree n. Prove that
dI (G ) ≤ n − 1 (or indeed that dI (G ) = O(n)) without using CFSG
or the O’Nan Scott Theorem.
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dI (G ) for transitive permutation groups

Theorem (Kovács; Newman, 1989; Bryant; Kovács; Robinson,
1995; Lucchini, 2000 (CFSG))

Let G be a transitive permutation group of degree n ≥ 2. Then

d(G ) ≤ cn√
log2 n

, for some absolute constant c .

Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree n ≥ 2. Then

dI (G ) ≤ cn√
log2 n

, where c :=
√

3/2.
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dI (G ) for minimally transitive permutation groups

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n.
Then d(G ) ≤ µ(n) + 1.

Question

Let G be a minimally transitive permutation group of degree
n ≥ 2. Is dI (G ) ≤ µ(n) + 1?



dI (G ) for minimally transitive permutation groups

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n.
Then d(G ) ≤ µ(n) + 1.

Question

Let G be a minimally transitive permutation group of degree
n ≥ 2. Is dI (G ) ≤ µ(n) + 1?



dI (G ) for completely reducible linear groups

Theorem (Kovács; Robinson, 1989 (CFSG))

Let F be a field, and let G ≤ GLn(F) be finite and completely
reducible. Then d(G ) ≤ 3

2n.

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let F be a field, and let G ≤ GLn(F) be finite and completely
reducible. If F does not contain a primitive fourth root of unity
then d(G ) ≤ n. Furthermore, if |F| = 2 then d(G ) ≤ n

2 (apart

from one infinite family of exceptions Bn ≤ GL2(2)
n
2 where

d(Bn) = n
2 + 1).
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2 (apart from one infinite family of

exceptions Bn ≤ GL2(2)
n
2 where dI (Bn) = n

2 + 1, and when
G = Sp4(2) ∼= S6, where dI (G ) = 3).
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