Transitive permutation groups: Minimal, invariable and random generation

Gareth Tracey

University of Warwick

Bielefeld, January 12th, 2017

(中) (관) (분) (분) (분) 분

For a finite group G, let Sub(G) denote the set of subgroups of G.

Suppose that every subgroup of S_n can be generated by f(n) elements..

For a finite group G, let Sub(G) denote the set of subgroups of G.

Suppose that every subgroup of S_n can be generated by f(n) elements..

Then

$$|Sub(S_n)| \leq n!^{f(n)}$$

For a finite group G, let Sub(G) denote the set of subgroups of G.

Suppose that every subgroup of S_n can be generated by f(n) elements..

Then

$$|Sub(S_n)| \leq n!^{f(n)}$$

Similarly, if X is a group-theoretical property, and $Sub_X(S_n)$ denotes the set of X-subgroups of S_n , and every X-subgroup of S_n can be generated by $f_X(n)$ elements, we have

 $|Sub_X(S_n)| \le n!^{f_X(n)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For a group G, let d(G) denote the minimal number of elements required to generate G.

For a group G, let d(G) denote the minimal number of elements required to generate G.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

Take $G \leq S_n$. Then

For a group G, let d(G) denote the minimal number of elements required to generate G.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Take $G \leq S_n$. Then

 $d(G) \leq n-1$

For a group G, let d(G) denote the minimal number of elements required to generate G.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Take $G \leq S_n$. Then

 $d(G) \leq n - \#(\text{Orbits of } G) \leq n - 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example:

Take *n* to be even, and let $G = \langle (1,2), (3,4), \dots, (n-1,n) \rangle$. Then $G \cong (\mathbb{Z}/2\mathbb{Z})^{n/2}$, so d(G) = n/2.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Example:

Take *n* to be even, and let $G = \langle (1,2), (3,4), \dots, (n-1,n) \rangle$. Then $G \cong (\mathbb{Z}/2\mathbb{Z})^{n/2}$, so d(G) = n/2.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Theorem (Mclver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree $n \ge 2$, with $(G, n) \ne (S_3, 3)$. Then (i) $d(G) \le n/2$.

Example:

Take *n* to be even, and let $G = \langle (1,2), (3,4), \dots, (n-1,n) \rangle$. Then $G \cong (\mathbb{Z}/2\mathbb{Z})^{n/2}$, so d(G) = n/2.

Theorem (McIver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n, with $(G, n) \neq (S_3, 3)$. Then

(i) $d(G) \le n/2$, and;

(ii) If G is transitive and n > 4, $(G, n) \neq (D_8 \circ D_8, 8)$, then d(G) < n/2.

Many believed that a bound of the form $d(G) \leq (\log_2 n)^c$ should hold..

Many believed that a bound of the form $d(G) \leq (\log_2 n)^c$ should hold..

Example (Kovács; Newman, 1989)

There exists an absolute constant *b*, and a sequence of transitive permutation groups G_m of degree $n = 2^{2m}$, such that

$$d(G_m) \rightarrow \frac{b2^{2m}}{\sqrt{2m}} + 2m = \frac{bn}{\sqrt{\log_2 n}} + \log_2 n$$

as $m \to \infty$.

Example (Kovács; Newman, 1989)

There exists an absolute constant *b*, and a sequence of transitive permutation groups G_m of degree $n = 2^{2m}$, such that

$$d(G_m) \rightarrow \frac{b2^{2m}}{\sqrt{2m}} + 2m = \frac{bn}{\sqrt{\log_2 n}} + \log_2 n$$

as $m \to \infty$.

Theorem (Kovács; Newman, 1989)

Let $G \leq S_n$ be transitive and nilpotent. Then

$$d(G) = O\left(\frac{n}{\sqrt{\log_2 n}}\right)$$

(□) (@) (E) (E) E

Theorem (Bryant; Kovács; Robinson, 1995)

Let $G \leq S_n$ be transitive and soluble. Then

$$d(G) = O\left(\frac{n}{\sqrt{\log_2 n}}\right)$$

Theorem (Bryant; Kovács; Robinson, 1995)

Let $G \leq S_n$ be transitive and soluble. Then

$$d(G) = O\left(\frac{n}{\sqrt{\log_2 n}}\right)$$

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

Let $G \leq S_n$ be transitive. Then

$$d(G) = O\left(\frac{n}{\sqrt{\log_2 n}}\right)$$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Theorem (Bryant; Kovács; Robinson, 1995)

Let $G \leq S_n$ be transitive and soluble. Then

$$d(G) = O\left(\frac{n}{\sqrt{\log_2 n}}\right)$$

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

Let $G \leq S_n$ be transitive. Then

$$d(G) = O\left(\frac{n}{\sqrt{\log_2 n}}\right)$$

..But what about the constants involved?..

Example (Kovács; Newman, 1989)

There exists an absolute constant *b*, and a sequence of transitive permutation groups G_m of degree $n = 2^{2m}$, such that

$$d(G_m) \rightarrow rac{b2^{2m}}{\sqrt{2m}} + 2m = rac{bn}{\sqrt{\log_2 n}} + \log_2 n \text{ as } m \rightarrow \infty.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example (Kovács; Newman, 1989)

There exists an absolute constant *b*, and a sequence of transitive permutation groups G_m of degree $n = 2^{2m}$, such that

$$d(G_m) \rightarrow rac{b2^{2m}}{\sqrt{2m}} + 2m = rac{bn}{\sqrt{\log_2 n}} + \log_2 n \text{ as } m \rightarrow \infty.$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Lemma (T., 2015)

$$b=\sqrt{2/\pi}=0.79\ldots$$

Example (Kovács; Newman, 1989)

There exists an absolute constant *b*, and a sequence of transitive permutation groups G_m of degree $n = 2^{2m}$, such that

$$d(G_m)
ightarrow rac{b2^{2m}}{\sqrt{2m}} + 2m = rac{bn}{\sqrt{\log_2 n}} + \log_2 n ext{ as } m
ightarrow \infty.$$

Lemma (T., 2015)

$$b=\sqrt{2/\pi}=0.79\ldots$$

Conjecture

Let G be a transitive permutation group of degree $n \ge 2$. Then

$$d(G) \leq \frac{(b+o(1))n}{\sqrt{\log_2 n}}.$$

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Lemma (T., 2015)

$$b=\sqrt{2/\pi}=0.79\ldots$$

Conjecture

Let G be a transitive permutation group of degree $n \ge 2$. Then

$$d(G) \leq \frac{(b+o(1))n}{\sqrt{\log_2 n}}$$

Theorem (T., 2015 (CFSG))

Let G be a transitive permutation group of degree $n \ge 2$. Then

$$d(G) \leq \frac{cn}{\sqrt{\log_2 n}}$$

where
$$c := \sqrt{3}/2 = 0.86 \dots$$

Theorem (T., 2015 (CFSG))

Let G be a transitive permutation group of degree $n \ge 2$. Then

$$d(G) \leq \frac{cn}{\sqrt{\log_2 n}}$$

where $c := \sqrt{3}/2 = 0.86...$

Remark

 $c = \sqrt{3}/2$ is the optimal value when n = 8 and $G \cong D_8 \circ D_8$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

So how many transitive subgroups in S_n ?

We can deduce that

$$Sub_{transitive}(S_n)| \leq n! \frac{cn}{\sqrt{\log_2 n}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

We can deduce that

$$Sub_{transitive}(S_n)| \le n!^{\frac{cn}{\sqrt{\log_2 n}}}$$

Theorem (Lucchini; Menegazzo; Morigi, 2000 (CFSG))

There exists an absolute constant \overline{c} such that

$$|Sub_{transitive}(S_n)| \leq 2^{\frac{\overline{c}n^2}{\sqrt{\log_2 n}}}$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

 $|Sub(S_n)| \leq n!^{\frac{n}{2}}$

 $|Sub(S_n)| \leq n!^{\frac{n}{2}}$

Theorem (Pyber, 1993)

Let $Sub(S_n)$ denote the number of subgroups of S_n . Then

 $|Sub(S_n)| \le 24^{(\frac{1}{6}+o(1))n^2}$

 $|Sub(S_n)| \leq n!^{\frac{n}{2}}$

Theorem (Pyber, 1993)

Let $Sub(S_n)$ denote the number of subgroups of S_n . Then

 $|Sub(S_n)| \le 24^{(\frac{1}{6}+o(1))n^2}$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

 S_n contains an elementary abelian subgroup $G := \langle (1,2), (3,4), \ldots \rangle$ of order $2^{\lfloor \frac{n}{2} \rfloor}$.

 $|Sub(S_n)| \leq n!^{\frac{n}{2}}$

Theorem (Pyber, 1993)

Let $Sub(S_n)$ denote the number of subgroups of S_n . Then

 $|Sub(S_n)| \le 24^{(\frac{1}{6}+o(1))n^2}$

 S_n contains an elementary abelian subgroup $G := \langle (1,2), (3,4), \ldots \rangle$ of order $2^{\lfloor \frac{n}{2} \rfloor}$.

An easy counting argument shows that

$$|Sub(G)| = 2^{(\frac{1}{16} + o(1))n^2}$$

Theorem (Pyber, 1993)

Let $Sub(S_n)$ denote the number of subgroups of S_n . Then $2^{(\frac{1}{16}+o(1))n^2} < |Sub(S_n)| \le 24^{(\frac{1}{6}+o(1))n^2}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Theorem (Pyber, 1993)

Let $Sub(S_n)$ denote the number of subgroups of S_n . Then $2^{(\frac{1}{16}+o(1))n^2} \leq |Sub(S_n)| \leq 24^{(\frac{1}{6}+o(1))n^2}.$

Thus, the order of magnitude is

$$|Sub(S_n)| = 2^{(\alpha+o(1))n^2}$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

for some constant α .

Theorem (Pyber, 1993)

Let $Sub(S_n)$ denote the number of subgroups of S_n . Then $2^{(\frac{1}{16}+o(1))n^2} \leq |Sub(S_n)| \leq 24^{(\frac{1}{6}+o(1))n^2}.$

Thus, the order of magnitude is

$$|Sub(S_n)| = 2^{(\alpha+o(1))n^2}$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

for some constant α .

Conjecture (Pyber, 1993) $|Sub(S_n)| = 2^{(\frac{1}{16} + o(1))n^2}.$

Conjecture (Pyber, 1993)

 $|Sub(S_n)| = 2^{(\frac{1}{16}+o(1))n^2}.$

For a constant $k \ge 1$, let $Sub_k(S_n)$ denote the set of subgroups of S_n all of whose orbits have length at most k.. Jan-Christoph Schlage-Puchta proved the following reduction:

Conjecture (Pyber, 1993)

 $|Sub(S_n)| = 2^{(\frac{1}{16}+o(1))n^2}.$

For a constant $k \ge 1$, let $Sub_k(S_n)$ denote the set of subgroups of S_n all of whose orbits have length at most k.. Jan-Christoph Schlage-Puchta proved the following reduction:

Theorem (Schlage-Puchta, 2016)

Assume that

$$\max\left\{\frac{d(G)\log_2|G|}{n^2}: G \leq S_n \text{ transitive}\right\} \to 0 \text{ as } n \to \infty \text{ (*)}$$

Then $|Sub(S_n)| = |Sub_k(S_n)|2^{o(n^2)}$, for some absolute constant k.
A reduction theorem

Conjecture (Pyber, 1993)

 $|Sub(S_n)| = 2^{(\frac{1}{16} + o(1))n^2}.$

Theorem (Schlage-Puchta, 2016)

Assume that

$$\max\left\{\frac{d(G)\log_2|G|}{n^2}: G \leq S_n \text{ transitive}\right\} \to 0 \text{ as } n \to \infty \text{ (*)}$$

Then $|Sub(S_n)| = |Sub_k(S_n)|2^{o(n^2)}$, for some absolute constant k.

We remark that $Sub_k(S_n)$ consists of the subgroups of the direct products

$$S_{k_1} \times S_{k_2} \times \ldots \times S_{k_t}$$

where $\sum_{i} k_i = n$ and each $k_i \leq k$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … 釣��

So is

$$\lim_{n \to \infty} \max \left\{ \frac{d(G) \log_2 |G|}{n^2} : \ G \leq S_n \text{ transitive} \right\} = 0?$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

So is

$$\lim_{n \to \infty} \max \left\{ \frac{d(G) \log_2 |G|}{n^2} : \ G \leq S_n \text{ transitive} \right\} = 0?$$

Must a "large" transitive group have a "small" number of generators?

So is

$$\lim_{n \to \infty} \max \left\{ \frac{d(G) \log_2 |G|}{n^2} : \ G \leq S_n \text{ transitive} \right\} = 0?$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

Must a "large" transitive group have a "small" number of generators?

Example:

 $d(S_n) = 2, \ d(A_n) = 2;$

So is

$$\lim_{n\to\infty} \max\left\{\frac{d(G)\log_2|G|}{n^2}: \ G\leq S_n \text{ transitive}\right\}=0?$$

Must a "large" transitive group have a "small" number of generators?

Example:

$$d(S_n) = 2, \ d(A_n) = 2;$$

Example:

If $G \leq S_n$ is primitive, and is not A_n or S_n then $\log_2 |G| = O(n)$ (Praeger; Saxl, 1980; Maróti, 2002), and $d(G) \leq \log_2 n$ (Holt; Roney-Dougal, 2013).

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

So is

$$\lim_{n\to\infty} \max\left\{\frac{d(G)\log_2|G|}{n^2}: \ G\leq S_n \text{ transitive}\right\}=0?$$

Example:

The maximal imprimitive transitive subgroups of S_n are the wreath products $S_m \wr S_{\frac{n}{m}}$. All of these are 2-generated..

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

So is

$$\lim_{n\to\infty} \max\left\{\frac{d(G)\log_2|G|}{n^2}: \ G\leq S_n \text{ transitive}\right\}=0?$$

Example:

The maximal imprimitive transitive subgroups of S_n are the wreath products $S_m \wr S_{\frac{n}{m}}$. All of these are 2-generated..

Example (Kovács; Newman, 1989)

There exists an absolute constant *b*, and a sequence of transitive permutation groups G_m of degree $n = 2^{2m}$, such that

$$d(G_m) \rightarrow \frac{b2^{2m}}{\sqrt{2m}} + 2m = \frac{bn}{\sqrt{\log_2 n}} + \log_2 n$$

as $m \to \infty$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

So is

$$\lim_{n\to\infty} \max\left\{\frac{d(G)\log_2|G|}{n^2}: \ G\leq S_n \text{ transitive}\right\}=0?$$

Example (Kovács; Newman, 1989)

There exists an absolute constant *b*, and a sequence of transitive permutation groups G_m of degree $n = 2^{2m}$, such that

$$d(G_m) \rightarrow \frac{b2^{2m}}{\sqrt{2m}} + 2m = \frac{bn}{\sqrt{\log_2 n}} + \log_2 n$$

as $m \to \infty$.

The groups G_m have order $\sim 2^{n/4}$. Hence

$$d(G_m)\log_2|G_m| \sim Cn^2/\sqrt{\log_2 n}$$

The groups G_m have order $\sim 2^{n/4}$. Hence

$$d(G_m)\log_2|G_m|\sim rac{Cn^2}{\sqrt{\log_2 n}}$$

for some absolute constant C.

Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree $n \ge 2$. Then there exists an absolute constant C such that

$$d(G) \leq \frac{Cn^2}{\log_2|G|\sqrt{\log_2 n}}.$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

The groups G_m have order $\sim 2^{n/4}$. Hence

$$d(G_m)\log_2|G_m|\sim rac{Cn^2}{\sqrt{\log_2 n}}$$

for some absolute constant C.

Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree $n \ge 2$. Then there exists an absolute constant C such that

$$d(G) \leq \frac{Cn^2}{\log_2|G|\sqrt{\log_2 n}}.$$

Corollary (Schlage-Puchta, 2016 (CFSG))

 $|Sub(S_n)| = |Sub_k(S_n)|2^{o(n^2)}$ for some absolute constant k.

Minimally transitive groups

Definition

A transitive permutation group G is called *minimally transitive* if every proper subgroup of G is intransitive.

Definition

A transitive permutation group G is called *minimally transitive* if every proper subgroup of G is intransitive.

Example:

Any finite group G is minimally transitive of degree |G| (via the regular action).

(中) (문) (문) (문) (문)

Definition

A transitive permutation group G is called *minimally transitive* if every proper subgroup of G is intransitive.

Example:

Any finite group G is minimally transitive of degree |G| (via the regular action).

Example:

G := Alt(5) in its action on the cosets of $\langle (1,2)(3,4), (1,3)(2,4) \rangle$;

(中) (문) (문) (문) (문)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣��

Question

What is the best possible upper bound of the form

$$d(G) \leq f(n)$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

on the set of minimally transitive groups G of degree n?

Question

What is the best possible upper bound of the form

$$d(G) \leq f(n) \left(\leq \frac{cn}{\sqrt{\log_2 n}} \right)$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

on the set of minimally transitive groups G of degree n?

Question

What is the best possible upper bound of the form

 $d(G) \leq f(n) \ (\leq \log_2 n)$ (Neumann; Vaughan-Lee, 1977)

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

on the set of minimally transitive groups G of degree n?

Theorem (Pyber, 1991)

Let G be a minimally transitive permutation group of degree n, which is either regular or nilpotent. Then $d(G) \le \mu(n) + 1$.

Theorem (Pyber, 1991)

Let G be a minimally transitive permutation group of degree n, which is either regular or nilpotent. Then $d(G) \le \mu(n) + 1$.

Question (Pyber, 1991)

Is it true that $d(G) \le \mu(n) + 1$ for all minimally transitive permutation groups of degree n?

Theorem (Pyber, 1991)

Let G be a minimally transitive permutation group of degree n, which is either regular or nilpotent. Then $d(G) \le \mu(n) + 1$.

Question (Pyber, 1991)

Is it true that $d(G) \le \mu(n) + 1$ for all minimally transitive permutation groups of degree n?

Theorem (Lucchini, 1996)

Let G be a soluble minimally transitive permutation group of degree n. Then $d(G) \le \mu(n) + 1$.

(中) (문) (문) (문) (문)

Theorem (Pyber, 1991)

Let G be a minimally transitive permutation group of degree n, which is either regular or nilpotent. Then $d(G) \le \mu(n) + 1$.

Question (Pyber, 1991)

Is it true that $d(G) \le \mu(n) + 1$ for all minimally transitive permutation groups of degree n?

Theorem (Lucchini, 1996)

Let G be a soluble minimally transitive permutation group of degree n. Then $d(G) \le \mu(n) + 1$.

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n. Then $d(G) \le \mu(n) + 1$.

The proof: first step

| ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

Let G be a counterexample of minimal degree n, and let M be any nontrivial normal subgroup of G.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

Let G be a counterexample of minimal degree n, and let M be any nontrivial normal subgroup of G.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

Also, let Ω be the set of orbits of M (so $|\Omega| < n$).

Let G be a counterexample of minimal degree n, and let M be any nontrivial normal subgroup of G.

Also, let Ω be the set of orbits of M (so $|\Omega| < n$).

Then, since M is normal in G, G acts on Ω , and the following hold:

 G/K acts minimally transitive on Ω, where K is the kernel of the action of G on Ω;

2 $|\Omega|$ divides *n*.

It now follows easily, from the minimality of G as a counterexample, and from the minimal transitivity of G, that

$$d(G/M) \leq \mu(|\Omega|) + 1 \leq \mu(n) + 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

It now follows easily, from the minimality of G as a counterexample, and from the minimal transitivity of G, that

$$d(G/M) \leq \mu(|\Omega|) + 1 \leq \mu(n) + 1 < d(G)$$

(□) (@) (E) (E) E

It now follows easily, from the minimality of G as a counterexample, and from the minimal transitivity of G, that

$$d(G/M) \leq \mu(|\Omega|) + 1 \leq \mu(n) + 1 < d(G)$$

So we have proved:

Step 1:G needs more generators than any of its proper quotients.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへで

Let L be a finite group, with a unique minimal normal subgroup N. If N is abelian, then assume further that N has a complement in L.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let L be a finite group, with a unique minimal normal subgroup N. If N is abelian, then assume further that N has a complement in L.

For $k \ge 1$, define the following subgroup of L^k :

$$L_k := \{(x_1, x_2, \dots, x_k) : Nx_i = Nx_j \text{ for all } i, j\} = diag(L^k)N^k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let L be a finite group, with a unique minimal normal subgroup N. If N is abelian, then assume further that N has a complement in L.

For $k \ge 1$, define the following subgroup of L^k :

$$L_k := \{(x_1, x_2, \dots, x_k) : Nx_i = Nx_j \text{ for all } i, j\} = diag(L^k)N^k$$

Theorem (Dalla Volta; Lucchini, 1998 (CFSG))

Let G be a finite group which needs more generators than any proper quotient. Then there exists a finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and a positive integer $k \ge 2$, such that $G \cong L_k$.

The proof of the theorem: continued

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣��

Thus

$$G \cong L_k := diag(L^k)N^k$$

for some finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and some $k \ge 2$.
$$G \cong L_k := diag(L^k)N^k$$

for some finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and some $k \ge 2$.

Step 2:

• If N is abelian, then $k \leq \mu(n)$;

 If N is nonabelian, then k ≤ f(N)µ(n) + 1, where f(N) := r/2 + 1 if N is a direct product of copies of Alt(r), and f(N) := 4 otherwise.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Indices of proper subgroups in nonabelian simple groups

Lemma ((CFSG))

Let S be a nonabelian finite simple group. Then there exists a set of primes $\Gamma = \Gamma(S)$ such that

- $|\Gamma| \le f(S)$, where f(S) = r/2 + 1 if S is an alternating group of degree r, and $f(S) \le 4$ otherwise;
- π(|S: H|) (= {p : p is a prime divisor of |S : H|}) intersects
 Γ non-trivially for every proper subgroup H of S.

$$G \cong L_k := diag(L^k)N^k$$

for some finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and some $k \ge 2$.

Step 2:

- If N is abelian, then $k \leq \mu(n)$;
- If N is nonabelian, then k ≤ f(N)µ(n) + 1, where f(N) := r/2 + 1 if N is a direct product of copies of Alt(r), and f(N) := 4 otherwise.

$$G \cong L_k := diag(L^k)N^k$$

for some finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and some $k \ge 2$.

Step 2:

- If N is abelian, then $k \leq \mu(n)$;
- If N is nonabelian, then k ≤ f(N)µ(n) + 1, where f(N) := r/2 + 1 if N is a direct product of copies of Alt(r), and f(N) := 4 otherwise.

Using results of Dalla Volta and Lucchini, we can now find upper bounds for $d(L_k) > \mu(n) + 1$ in terms of k and N..

$$G \cong L_k := diag(L^k)N^k$$

for some finite group L with a unique minimal normal subgroup N, which is either nonabelian or complemented in L, and some $k \ge 2$.

Step 2:

- If N is abelian, then $k \leq \mu(n)$;
- If N is nonabelian, then k ≤ f(N)µ(n) + 1, where f(N) := r/2 + 1 if N is a direct product of copies of Alt(r), and f(N) := 4 otherwise.

Using results of Dalla Volta and Lucchini, we can now find upper bounds for $d(L_k) > \mu(n) + 1$ in terms of k and N..

・ロト ・母 ・ ・ キョ ・ ・ モー・ つんぐ

This leads to lower bounds on k in terms of $\mu(n)$ and N..

Definition

- (i) A subset $\{x_1, x_2, \ldots, x_t\}$ of a group G is said to *invariably* generate G if $G = \langle x_1^{g_1}, x_2^{g_2}, \ldots, x_t^{g_t} \rangle$ for any t-tuple (g_1, g_2, \ldots, g_t) of elements of G.
- (ii) The cardinality of the smallest invariable generating set for a finite group G is denoted by $d_I(G)$.

Definition

- (i) A subset $\{x_1, x_2, \ldots, x_t\}$ of a group G is said to *invariably* generate G if $G = \langle x_1^{g_1}, x_2^{g_2}, \ldots, x_t^{g_t} \rangle$ for any t-tuple (g_1, g_2, \ldots, g_t) of elements of G.
- (ii) The cardinality of the smallest invariable generating set for a finite group G is denoted by $d_I(G)$.

Clearly $d(G) \leq d_I(G)$ in general, but the question is:

Definition

- (i) A subset {x₁, x₂,..., x_t} of a group G is said to *invariably* generate G if G = ⟨x₁^{g₁}, x₂^{g₂},..., x_t^{g_t}⟩ for any t-tuple (g₁, g₂,..., g_t) of elements of G.
- (ii) The cardinality of the smallest invariable generating set for a finite group G is denoted by $d_I(G)$.

Clearly $d(G) \leq d_I(G)$ in general, but the question is:

Question

Pick a result of the form

"Let G be a _____ finite group. Then $d(G) \leq \dots$ "

2

Does this result hold if we replace d(G) by $d_I(G)$?

Theorem (Kantor; Lubotzky; Shalev, 2011)

Let G be a finite nilpotent group. Any generating set for G is also an invariable generating set. In particular, $d(G) = d_I(G)$.

Theorem (Kantor; Lubotzky; Shalev, 2011)

Let G be a finite nilpotent group. Any generating set for G is also an invariable generating set. In particular, $d(G) = d_I(G)$.

Theorem (Kantor; Lubotzky; Shalev, 2011)

For every positive integer n, there exists a finite group G such that d(G) = 2 and $d_I(G) \le n$.

《曰》 《聞》 《臣》 《臣》 三臣

Theorem (Kantor; Lubotzky; Shalev, 2011)

Let G be a finite nilpotent group. Any generating set for G is also an invariable generating set. In particular, $d(G) = d_I(G)$.

Theorem (Kantor; Lubotzky; Shalev, 2011)

For every positive integer n, there exists a finite group G such that d(G) = 2 and $d_I(G) \le n$.

Also...

Theorem (Guralnick; Malle, 2011 and Kantor; Lubotzky; Shalev, 2011 (CFSG))

Let G be a nonabelian finite simple group. Then $d_I(G) = 2$.

$d_I(G)$ for permutation groups

▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで

Theorem (Mclver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n. Then $d(G) \le n/2$, except when n = 3 and $G \cong S_3$.

Theorem (McIver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n. Then $d(G) \le n/2$, except when n = 3 and $G \cong S_3$.

Theorem (Detomi; Lucchini, 2014 (CFSG))

Let G be a permutation group of degree n. Then $d_I(G) \le n/2$, except when n = 3 and $G \cong S_3$.

Theorem (McIver; Neumann, 1989 (CFSG))

Let G be a permutation group of degree n. Then $d(G) \le n/2$, except when n = 3 and $G \cong S_3$.

Theorem (Detomi; Lucchini, 2014 (CFSG))

Let G be a permutation group of degree n. Then $d_I(G) \le n/2$, except when n = 3 and $G \cong S_3$.

Problem

Let G be a permutation group of degree n. Prove that $d_I(G) \le n-1$ (or indeed that $d_I(G) = O(n)$) without using CFSG or the O'Nan Scott Theorem.

$d_I(G)$ for transitive permutation groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Kovács; Newman, 1989; Bryant; Kovács; Robinson, 1995; Lucchini, 2000 (CFSG))

Let G be a transitive permutation group of degree $n \ge 2$. Then $d(G) \le \frac{cn}{\sqrt{\log_2 n}}$, for some absolute constant c.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Kovács; Newman, 1989; Bryant; Kovács; Robinson, 1995; Lucchini, 2000 (CFSG))

Let G be a transitive permutation group of degree $n \ge 2$. Then $d(G) \le \frac{cn}{\sqrt{\log_2 n}}$, for some absolute constant c.

Theorem (T., 2016 (CFSG))

Let G be a transitive permutation group of degree $n \ge 2$. Then $d_I(G) \le \frac{cn}{\sqrt{\log_2 n}}$, where $c := \sqrt{3}/2$.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

$d_I(G)$ for minimally transitive permutation groups

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n. Then $d(G) \le \mu(n) + 1$.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

$d_I(G)$ for minimally transitive permutation groups

Theorem (T., 2015 (CFSG))

Let G be a minimally transitive permutation group of degree n. Then $d(G) \le \mu(n) + 1$.

Question

Let G be a minimally transitive permutation group of degree $n \ge 2$. Is $d_I(G) \le \mu(n) + 1$?

Theorem (Kovács; Robinson, 1989 (CFSG))

Let \mathbb{F} be a field, and let $G \leq GL_n(\mathbb{F})$ be finite and completely reducible. Then $d(G) \leq \frac{3}{2}n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Kovács; Robinson, 1989 (CFSG))

Let \mathbb{F} be a field, and let $G \leq GL_n(\mathbb{F})$ be finite and completely reducible. Then $d(G) \leq \frac{3}{2}n$.

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let \mathbb{F} be a field, and let $G \leq GL_n(\mathbb{F})$ be finite and completely reducible. If \mathbb{F} does not contain a primitive fourth root of unity then $d(G) \leq n$. Furthermore, if $|\mathbb{F}| = 2$ then $d(G) \leq \frac{n}{2}$ (apart from one infinite family of exceptions $B_n \leq GL_2(2)^{\frac{n}{2}}$ where $d(B_n) = \frac{n}{2} + 1$).

Theorem (Kovács; Robinson, 1989 (CFSG))

Let \mathbb{F} be a field, and let $G \leq GL_n(\mathbb{F})$ be finite and completely reducible. Then $d(G) \leq \frac{3}{2}n$.

Theorem (T., 2015 (CFSG))

Let $\mathbb F$ be a field, and let $G\leq GL_n(\mathbb F)$ be finite and completely reducible. Then

(i) $d_I(G) \leq \frac{3}{2}n$.

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let \mathbb{F} be a field, and let $G \leq GL_n(\mathbb{F})$ be finite and completely reducible. If \mathbb{F} does not contain a primitive fourth root of unity then $d(G) \leq n$. Furthermore, if $|\mathbb{F}| = 2$ then $d(G) \leq \frac{n}{2}$ (apart from one infinite family of exceptions B_n where $d(B_n) = \frac{n}{2} + 1$).

Theorem (T., 2015 (CFSG))

Let $\mathbb F$ be a field, and let $G\leq GL_n(\mathbb F)$ be finite and completely reducible. Then

- (i) $d_I(G) \leq \frac{3}{2}n;$
- (ii) If $|\mathbb{F}| = 2$ then $d_I(G) \leq \frac{n}{2}$ (apart from one infinite family of exceptions $B_n \leq GL_2(2)^{\frac{n}{2}}$ where $d_I(B_n) = \frac{n}{2} + 1$, and when $G = Sp_4(2) \cong S_6$, where $d_I(G) = 3$).

$d_I(G)$ for completely reducible linear groups

Theorem (Holt; Roney-Dougal, 2013 (CFSG))

Let \mathbb{F} be a field, and let $G \leq GL_n(\mathbb{F})$ be finite and completely reducible. If \mathbb{F} does not contain a primitive fourth root of unity then $d(G) \leq n$. Furthermore, if $|\mathbb{F}| = 2$ then $d(G) \leq \frac{n}{2}$ (apart from one infinite family of exceptions B_n where $d(B_n) = \frac{n}{2} + 1$).

Theorem (T., 2015 (CFSG))

Let $\mathbb F$ be a field, and let $G\leq GL_n(\mathbb F)$ be finite and completely reducible. Then

(i)
$$d_I(G) \leq \frac{3}{2}n;$$

(ii) If |𝔅| = 2 then d₁(G) ≤ n/2 (apart from one infinite family of exceptions B_n ≤ GL₂(2)^{n/2} where d₁(B_n) = n/2 + 1, and when G = Sp₄(2) ≅ S₆, where d₁(G) = 3), and;
(iii) If |𝔅| = 3 then d₁(G) ≤ n.