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Approximate subgroups, growth and normal growth
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The unbearable easiness of generating FSG

d(G ) = minimal number of generators of a �nite group G

FSG = nonabelian �nite simple group

Assume CFSG:

Every FSG is Alternating An (n ≥ 5), or

Classical of Lie type, e.g. PSLn(q), or
Exceptional of Lie type, e.g. E8(q), or
one of 26 Sporadic Groups, e.g. Fischer Groups Fi22,Fi23,Fi

′
24
.

Steinberg, Aschbacher-Guralnick 1984: d(G ) = 2 for all FSG G .

Can we deduce this from simplicity without CFSG? Probably not

Malle-Saxl-Weigel 1994: Every FSG is generated by an involution

and another element.

Guralnick-Kantor 2000: For any FSG G and any 1 6= x ∈ G there is

y ∈ G s.t. 〈x , y〉 = G (3/2-generation)

Proofs use counting and probabilistic methods
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1882 Netto's conjecture: An is randomly generated by 2 elements.

1969 Dixon's conjecture: Same for all FSG.

Dixon, Kantor-Lubotzky, Liebeck-Sh 1995:

Dixon's conjecture holds.

Proof idea: study ζG
1

(s) =
∑

M max G |G : M|−s and its abscissa of

convergence. Show ζG
1

(2)→ 0 as |G | → ∞.

G is randomly (2,3)-generated if random x , y ∈ G with

x2 = y3 = 1 generate G with probability → 1 as |G | → ∞.

Liebeck-Sh 1996 (Annals), Guralnick-Sh 2006 (unpublished):

FSG 6= Sz(q),PSp4(q) are randomly (2,3)-generated.

Main step in proof: show ζG
1

(66/65)→ 0 as |G | → ∞.

Liebeck-Martin-Sh 2005: Same for ζG
1

(s) for any s > 1.

Consequence: All large FSG except Sz(2k), PSp4(2k), PSp4(3k)
are images of the modular group PSL2(Z).

Lübeck-Malle 1997: Exceptional groups of Lie type.
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Subgroups of FSG

For subgroups H of FSG G , d(H) may be arbitrarily large.

Theorem (Burness-Liebeck-Sh 2013)

All maximal subgroups of FSG are generated by ≤ 4 elements.

4 is best possible

Application to permutation groups:

If G is a �nite permutation group, H < G a point-stabilizer, then

d(G )− 1 ≤ d(H) ≤ d(G ) + 4.

Theorem (Burness-Liebeck-Sh 2013)

For every ε > 0 there exists c = c(ε) such that if M is a maximal

subgroup of a FSG then the probability that c random elements of

M generate M exceeds 1− ε.

Do non-maximal subgroups of FSG share similar properties?

Go down the subgroup lattice. De�nition: M ≤ G is t-maximal

if M = Mt < Mt−1 < . . . < M0 = G such that Mi max Mi−1.
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Second maximal subgroups

Second maximal = 2-maximal

Bad Example:

G = L2(2k) = PSL2(2k) with 2k − 1 a Mersenne prime

B = Borel subgroup of G . H = C k
2
is a maximal subgroup of B .

So H is second maximal in G , and d(H) = k .

Conclusion:

If there are in�nitely many Mersenne primes, then the numbers of

generators of second maximal subgroups of FSG are unbounded.

Largest currently known prime is a Mersenne prime with

k = 74207281.

Hence there exists a second maximal subgroup H of a FSG with

d(H) = 74207281.
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New joint work with Tim Burness and Martin Liebeck

If G is a FSG of rank > 1 then the numbers of generators of second

maximal subgroups of G are bounded.

Theorem (Burness-Liebeck-Sh 2016+)

Let G be a FSG and let H be a second maximal subgroup of G .

Then one of the following holds:

(i) d(H) ≤ 12;

(ii) d(H) ≤ 70, G is exceptional of Lie type, and H is a maximal

subgroup of a parabolic subgroup of G ;

(iii) G0 = L2(q), 2B2(q) or 2G2(q), and H is maximal in a Borel

subgroup of G .

Long proof using subgroup structure of FSG, e.g. Aschbacher's

Theorem, representations and other tools.

We also show: if H is not as in (iii) then H is randomly generated

by boundedly many elements.
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Special Primes

Can d(H) be arbitrarily large for the groups in part (iii)?

We show this depends on a formidable open problem in Number

Theory:

(*) Are there in�nitely many k for which there is a prime power q
such that (qk − 1)/(q − 1) is prime?

It is believed that (*) holds, but no clue how to prove it.

It's not even known whether qk−1
q−1 has a large prime divisor.

Theorem (Burness-Liebeck-Sh 2016+)

The following are equivalent.

(i) There is a constant c such that all second maximal subgroups of

FSG are generated by ≤ c elements.

(ii) There is a constant c such that all second maximal subgroups

of L2(q) (q a prime power) are generated by ≤ c elements.

(iii) Question (*) has a negative answer.
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Third maximal subgroups

In view of the di�culty of question (*), the validity of part (i) of

the Theorem is likely to remain open.

However, if we go further down the subgroup lattice and consider

third maximal subgroups, we can show unconditionally:

For each c there is a third maximal subgroup H of a FSG such that

d(H) > c .
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Growth and approximate subgroups

G a group, X ⊂ G , X k = {x1 · · · xk : xi ∈ X}.
Growth of |X k |? In particular, for k = 2, 3.
X is c-approximate subgroup if |X 3| ≤ c |X |.

2008 Helfgott: Let G = SL2(p) and A any generating set for G .

Then either A3 = G or |A3| ≥ |A|1+ε, where ε > 0 is some absolute

constant.

Generalize to other matrix groups? E.g. SLr (q)?
Helfgott: r = 3, q = p, very long proof

The Product Theorem:

Theorem (Pyber-Szabó, Breuillard-Green-Tao)

Let G be any �nite simple group of Lie type, and A any generating

set for G . Then either A3 = G or |A3| ≥ |A|1+ε, where ε > 0

depends only on the rank of G .

The proof of BGT also rely on related results of Hrushovski using

model theory.
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The proof of BGT also rely on related results of Hrushovski using

model theory.
10 / 21



Normal growth

A ⊆ G is normal if it's closed under conjugation by elements of G
(i.e. A is a union of conjugacy classes).

Rapid 2-step growth for such subsets:

Theorem (Liebeck-Schul-Sh 2016+)

Given any ε > 0, there exists δ > 0 such that if A is a normal subset

of a �nite simple group G satisfying |A| ≤ |G |δ, then |A2| ≥ |A|2−ε.

Remarks:

1. |A2| ≤ |A|2, so A grows almost as fast as possible.

2. Normality assumption is essential: otherwise |A2| may be very

close to |A|.
3. Strengthens a result of Gill-Pyber-Short-Szabó 2013 yielding

|A2| ≥ |A|1+ε.

4. A version for two normal subsets: |A1A2| ≥ (|A1||A2|)1−ε.
5. A version for simple algebraic groups: dimA2 ≥ (2− ε) dimA.
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Proof ideas

Want to prove |A2| ≥ |A|2−ε.

Stage 1: Enough to show this for alternating groups of large degree

and for classical group of large rank.

Stage 2: Reduction to the case where A is a conjugacy class.

This is done by showing that a normal subset A ⊆ G contains a

conjugacy class C of comparable size: |C | ≥ |A|1−ε.
Main tool: a "zeta function" ζG

2
(s) =

∑
C class of G |C |−s

encoding class sizes and its abscissa of convergence.

Stage 3: connect the class size |C | with the "support" of its

elements.

Stage 4: �nd a class C ⊆ A2 of large enough support and use stage

3 to show |C | ≥ |A|2−ε.
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Ore's Conjecture 1951: Every element of a FSG is a commutator.

Liebeck-O'Brien-Sh-Tiep 2010: Ore's Conjecture holds.

Thompson's Conjecture: Every FSG G has a conjugacy class C
such that C 2 = G . This implies Ore's Conjecture:

C 2 = G ⇒ 1 ∈ C 2 ⇒ C = C−1 ⇒ C−1C = G so each g ∈ G is

x−1xy = [x , y ] for some x ∈ C .

WIDE OPEN for classical groups over small �elds.

Larsen-Sh-Tiep (Annals 2011, large G )

Guralnick-Malle (JAMS 2012, all G ):

There are classes C1,C2 ⊂ G with C1C2 ⊇ G \ {1}
Probabilistic approximations to Thompson's Conjecture:

Theorem (Sh 2008, 2016)

Let G be a FSG. For random x ∈ G we have

|(xG )2| = (1− o(1))|G |. Moreover, for any ε > 0 there is r(ε) such

that, if r ≥ r(ε) and G is classical group of rank r over the �eld

with q elements, then there exists a conjugacy class C of G such

that |C 2| ≥ (1− q−(2−ε)r )|G |.
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Proof ideas

For x , y , g ∈ G de�ne px ,y (g) = probability that g is a product of

a random conjugate of x with a random conjugate of y .
px ,y is a distribution on G . Study ||px ,y ||22 :=

∑
g∈G px ,y (g)2.

Theorem (Sh 2016)

Let G be a �nite simple group. Choose uniformly x , y ∈ G possibly

dependent (e.g. we may have x = y). Then, with probability

1− o(1), we have ||px ,y ||22 = |G |−1(1 + o(1)),
where the o(1) is explicit.

For most x , y px ,y is almost uniform so |xGyG | = (1− o(1))|G |.
The character connection:

||px ,y ||22 = |G |−1
∑

χ∈Irr(G)

|χ(x)|2|χ(y)|2/χ(1)2.

Bounding character values and using the Witten zeta function

ζG
3

(s) =
∑

χ∈Irr(G) χ(1)−s and its abscissa of convergence we

prove the theorem.
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Complexity and Gowers-Viola conjecutres

G a �nite group, t ≥ 2, a = (a1, . . . , at), b = (b1, . . . , bt) ∈ G t .

Their interleaved product is de�ned by

a • b = a1b1a2b2 · · · atbt ∈ G .

1984 Even-Selman-Yacobi: Alice receives a ∈ G t , Bob receives

b ∈ G t . Suppose a • b ∈ {g , h} for given g , h ∈ G . Alice and Bob

have to decide whether a • b = g or a • b = h. What is the

communication complexity of this problem?

Trivial upper bound: O(t log |G |) (Alice sends a to Bob).

Various partial results over the years

Theorem (Gowers-Viola 2015)

The above communication complexity is at least Ω(t log |G |) for

G = SL2(q).

Namely, complexity ≥ ct log |G | for some c > 0.
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This is deduced from: Let G = SL2(q). Let P : G t × G t → {0, 1}
be a (randomized public-coin) c-bit communication protocol. For

g ∈ G pg := the probability that P(a, b) = 1 assuming a • b = g .
Then for g , h ∈ G we have |pg − ph| ≤ 2c |G |−Ω(t).

Long tricky proof, using trace method for SL2, Lang-Weil etc

Conjecture (Gowers-Viola 2015)

Let G be any FSG.

(i) With the above notation |pg − ph| ≤ 2c(log |G |)−Ω(t).

(ii) The above communication complexity is ≥ Ω(t log log |G |).

Theorem

(i) Both conjectures hold.

(ii) Any FSG G of Lie type of bounded rank behaves like SL2(q),
namely, |pg − ph| ≤ 2c |G |−Ω(t), and the communication complexity

is ≥ Ω(t log |G |).

These bounds are tight.
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Stages of proofs:

1. A reduction by Gowers and Viola to a certain mixing

phenomenon:

Recall: px ,y (g) = probability that g is a product of a random

conjugate of x with a random conjugate of y .

It su�ces to show that, �xing any a ∈ G , and choosing x ∈ G
uniformly, ||px ,x−1a||2 is small with high probability.

In bounded rank we have to show that, for some c > 0, the

probability that ||px ,x−1a||22 ≤ |G |−1(1 + |G |−c) is ≥ 1− |G |−c .

2. A proof of this mixing phenomenon using our previous Theorem,

which was meant to help proving Thompson's Conjecture, but

instead helped proving Gowers-Viola's Conjectures.
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Quasi-Random Groups

G a �nite group, k the minimal dimension of a non-trivial

irreducible character of G .

Gowers 2008: G is quasi-random if k is large.

If A,B,C ⊆ G with |A|, |B|, |C | > |G |k−1/3 then ABC = G .

This is known as Gowers' trick, deduced by Nikolov-Pyber 2011,

and widely used by them and others since then.

Example: G = SL2(q) of size ∼ q3. k ∼ q.
Hence |A|, |B|, |C | > cq8/3 implies ABC = G .

However, we may have AB 6= G even if |A| = α|G |, |B| = β|G | for
�xed α, β > 0 and |G | � 0.

Question: When can we conclude that A • B = G for A,B ⊆ G t

where t ≥ 2?

Gowers-Viola 2015: If t ≥ 2, G = SL2(q), A,B have positive

proportions in G t and |G | � 0, then A • B = G almost uniformly

in `∞.
Extension to all �nite simple groups:

18 / 21



Quasi-Random Groups

G a �nite group, k the minimal dimension of a non-trivial

irreducible character of G .

Gowers 2008: G is quasi-random if k is large.

If A,B,C ⊆ G with |A|, |B|, |C | > |G |k−1/3 then ABC = G .

This is known as Gowers' trick, deduced by Nikolov-Pyber 2011,

and widely used by them and others since then.

Example: G = SL2(q) of size ∼ q3. k ∼ q.
Hence |A|, |B|, |C | > cq8/3 implies ABC = G .

However, we may have AB 6= G even if |A| = α|G |, |B| = β|G | for
�xed α, β > 0 and |G | � 0.

Question: When can we conclude that A • B = G for A,B ⊆ G t

where t ≥ 2?

Gowers-Viola 2015: If t ≥ 2, G = SL2(q), A,B have positive

proportions in G t and |G | � 0, then A • B = G almost uniformly

in `∞.
Extension to all �nite simple groups:

18 / 21



Quasi-Random Groups

G a �nite group, k the minimal dimension of a non-trivial

irreducible character of G .

Gowers 2008: G is quasi-random if k is large.

If A,B,C ⊆ G with |A|, |B|, |C | > |G |k−1/3 then ABC = G .

This is known as Gowers' trick, deduced by Nikolov-Pyber 2011,

and widely used by them and others since then.

Example: G = SL2(q) of size ∼ q3. k ∼ q.
Hence |A|, |B|, |C | > cq8/3 implies ABC = G .

However, we may have AB 6= G even if |A| = α|G |, |B| = β|G | for
�xed α, β > 0 and |G | � 0.

Question: When can we conclude that A • B = G for A,B ⊆ G t

where t ≥ 2?

Gowers-Viola 2015: If t ≥ 2, G = SL2(q), A,B have positive

proportions in G t and |G | � 0, then A • B = G almost uniformly

in `∞.
Extension to all �nite simple groups:

18 / 21



Quasi-Random Groups

G a �nite group, k the minimal dimension of a non-trivial

irreducible character of G .

Gowers 2008: G is quasi-random if k is large.

If A,B,C ⊆ G with |A|, |B|, |C | > |G |k−1/3 then ABC = G .

This is known as Gowers' trick, deduced by Nikolov-Pyber 2011,

and widely used by them and others since then.

Example: G = SL2(q) of size ∼ q3. k ∼ q.
Hence |A|, |B|, |C | > cq8/3 implies ABC = G .

However, we may have AB 6= G even if |A| = α|G |, |B| = β|G | for
�xed α, β > 0 and |G | � 0.

Question: When can we conclude that A • B = G for A,B ⊆ G t

where t ≥ 2?

Gowers-Viola 2015: If t ≥ 2, G = SL2(q), A,B have positive

proportions in G t and |G | � 0, then A • B = G almost uniformly

in `∞.
Extension to all �nite simple groups:

18 / 21



Uniformity of interleaved products

Theorem

Let G be a FSG and t ≥ 2. Let A,B ⊆ G t with |A|/|G |t = α > 0

and |B|/|G |t = β > 0. Choose a ∈ A and b ∈ B uniformly. Then

for each g ∈ G , Prob(a • b = g) = (1 + o(1))|G |−1.
In particular, if G is su�ciently large (given α and β), then
A • B = G .

Thus a • b (for a ∈ A and b ∈ B) is almost uniformly distributed in

the `∞-norm.

Quantitative bounds:

For G = An, |Prob(a • b = g)− |G |−1| ≤ (αβ)−1n−ct |G |−1.
For G of Lie type of rank r over a �eld with q elements

|Prob(a • b = g)− |G |−1| ≤ (αβ)−1q−crt |G |−1.
Moreover, it follows from these bounds that if G has bounded rank,

then there is ε > 0 such that |A|, |B| ≥ |G |t−ε already implies that

A • B = G almost uniformly in `∞.
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Summary

We discussed:

1. Generation miracles � so easy to generate FSG

Even their maximal subgroups require few generators

Second maximal subgroups: open, reduction to PSL2(q)

2. Growth miracles (from SL2(p) to all FSG of bounded rank)

Fastest normal growth (for all FSG)

3. Commutator miracles (Ore's Conjecture)

4. Complexity miracles (from SL2(q) to all FSG of bounded rank)

Potential cryptography applications

Fast mixing miracles (in all FSG)

Leitmotiv: What's true for SL2(q) is true for all �nite simple groups

(sometimes of bounded rank)
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Most importantly

Happy Birthday Professor Fischer!
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