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In this chapter we consider functions

f : Rn → R

of n ≥ 1 variables (multivariate functions). Such functions are the basic building block

of formal economic models.
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2 Differential Calculus for Functions of n Variables

2.1 Partial Derivatives

Everywhere below: U ⊆ Rn will be an open set in the space (Rn, ‖ · ‖) (with the

Euclidean norm ‖ · ‖) and f : U → R,

U 3 (x1, . . . , xn)→ f(x1, . . . , xn) ∈ R.

Definition 2.1.1. The function f is partially differentiable with respect to the i-th

coordinate (or variable) xi, at a given point x ∈ U , if the following limit exists

Dif(x) : = lim
h→0

f(x+ hei)− f(x)

h

= lim
h→0

1

h
[f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x1, . . . , xn)] ,

where ei := {0, . . . , 0︸ ︷︷ ︸,
i−1

1, 0, . . . , 0} is the basis vector in Rn.

Since U is open, there exists an open ball Bε(x) ⊆ U . In the definition of lim
h→0

one

considers only “small” h with |h| < ε.

Dif(x) is called the i-th partial derivative of f at point x.

Notation: We also write Dxif(x), ∂if(x), ∂f(x)/∂xi.

The partial derivative Dif(x) can be interpreted as a usual derivative w.r.t. the i-

th coordinate, whereby all the other n − 1 coordinates are kept fixed. Namely, in the

ε−neighbourhood of xi, let us define a function

(xi − ε, xi + ε) 3 ξ → gi(ξ) := f(x1,i−1 , ξ, xi+1, . . . , xn).

Then by Definition 2.1.1,

Dif(x) := lim
h→0

gi(xi + h)− gi(xi)
h

= g′i(xi).

Definition 2.1.2. A function f : U → R is called partially differentiable if Dif(x)

exists for all x ∈ U and all 1 ≤ i ≤ n. Furthermore, f is called continuously partially

differentiable, if all partial derivatives

Dif : U → R, 1 ≤ i ≤ n

are continuous functions.
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Example 2.1.3.

(i) Distance function

r(x) := |x| =
√
x21 + . . .+ x2n, x ∈ Rn

Let us show that r(x) is partially differentiable at all points x ∈ Rn\{0}.

ξ → gi(ξ) :=
√
x21 + . . .+ ξ2 + . . .+ x2n ∈ R.

Use the chain rule for the derivatives of real-valued functions (cf. standard courses

in Calculus) =⇒
∂r

∂xi
(x) =

1

2

2xi√
x21 + . . .+ ξ2+2

n

=
xi
r(x)

.

Generalization: Let f : R+ → R be differentiable, then Rn 3 x → f(r(x)) is

partially differentiable at all points x ∈ Rn\{0} and

∂

∂xi
f(r) = f ′(r) · ∂r

∂xi
= f ′(r) · xi

r
.

(ii) Cobb–Douglas production function with n inputs

f(x) := xα1
1 x

α2
2 . . . xαnn for αi > 0, 1 ≤ i ≤ n,

defined on

U := {(x1, . . . , xn)| xi > 0, 1 ≤ i ≤ n} .

Calculate the so-called marginal-product function of input i

∂f

∂xi
(x) = αix

α1
1
αi−1
i . . . xαnn = αi

f(x)

xi
.

Mathematicians will say: multiplicative functions with separable variables, polynomi-

als. Economists are especially interested in the case αi ∈ (0, 1).

This is an example of homogeneous functions of order (degree)

a = α1 + . . .+ αn, which means

f(λx) = λaf(x), ∀λ > 0, x ∈ U.

Moreover, the Cobb–Douglas function is log−linear:

log f(x) = α1 log x1 + . . .+ αn log xn.
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(iii) Quasilinear utility function:

f(m,x) := m+ u(x)

with m ∈ R+ (i.e., m ≥ 0) and some u : R→ R.
∂f

∂m
= 1,

∂f

∂x
= u′(x).

(iv) Constant elasticity of substitution (CES) production function with n

inputs, which describes aggregate consumption for n types of goods.

f(x1, . . . , xn) := (δ1x
α
1 + . . .+ δnx

α
n)1/α ,

with α > 0, δi > 0 and
∑

1≤i≤n
δi = 1,

defined on the open domain

U := {(x1, . . . , xn) | xi > 0, 1 ≤ i ≤ n}.

We calculate the marginal-product function

∂f

∂xi
(x) =

1

α
(δ1x

α
1 + . . .+ δnx

α
n)

1
α
−1 · αδixα−1i

= δix
α−1
i (δ1x

α
1 + . . .+ δnx

α
n)

1−α
α .

Note that f is homogeneous : f(λx) = λf(x).

Definition 2.1.4. Let U ⊆ Rn be open and f : U → R be partially differentiable. Then,

the vector

∇f(x) := gradf(x) :=

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
∈ Rn

is called the gradient of f at point x ∈ U .

Example 2.1.5.

(i) Distance function r(x)

gradr(x) =
x

r(x)
∈ Rn, x ∈ U := Rn\{0}.

(ii) Let f, g : U → R be partially differentiable. Then

∇(f · g) = f · ∇g + g · ∇f.

Proof. This follows from the product rule

∂

∂xi
(fg) = f

∂g

∂xi
+ g

∂f

∂xi
.

4



2.2 Directional Derivatives

Fix a directional vector v ∈ Rn with |v| = 1 (of unit length!).

Definition 2.2.1. The directional derivative of f : U → R at a point x ∈ U along the

unit vector v ∈ Rn (i.e., with |v| = 1) is given by

∂vf(x) := Dvf(x) := lim
h→0

f(x+ hv)− f(x)

h
.

Remark 2.2.2.

(i) Define a new function

h→ gv(h) := f(x+ hv).

If gv(h) is differentiable at h = 0, then f(x) is differentiable at point x ∈ U along

direction v and

Dvf(x) = g′v(0).

(ii) From the above definitions it is clear that the partial derivatives = directional deriva-

tives along the basis vectors ei, 1 ≤ i ≤ n,

∂f

∂xi
(x) = Deif(x), 1 ≤ i ≤ n.

Example 2.2.3. Consider the “saddle” function in R2

f(x1, x2) := −x21 + x22,

and find Dvf(x) along the direction v :=
(√

2/2,
√

2/2
)
, |v| = 1. Define

gv(h) : = −
(
x1 + h

√
2/2
)2

+
(
x2 + h

√
2/2
)2

= −x21 + x22 +
√

2h(x2 − x1).

Then Dvf(x) = g′v(0) =
√

2(x2 − x1). Note that Dvf(x) = 0 if x1 = x2. The function f

has its minimum at the diagonal x1 = x2.

Relation between ∇f(x) and Dvf(x):

Dvf(x) = 〈∇f(x), v〉Rn =
n∑
i=1

∂if(x) · vi. (∗)

Proof. will be done later, as soon as we prove the chain rule for ∇f .

5



2.3 Higher Order Partials

Let f : U → R be partially differentiable, i.e.,

∃ ∂

∂xi
f : U → R 1 ≤ i ≤ n.

Analogously, for 1 ≤ j ≤ n we can define (if it exists)

∂

∂xj

(
∂

∂xi
f

)
: U → R.

Notation:
∂2f

∂xj∂xi
or

∂2f

∂x2i
if i = j.

Warning: In general,
∂2f

∂xj∂xi
6= ∂2f

∂xj∂xi
if i 6= j.

Theorem 2.3.1 ((A. Schwarz); also known as Young’s theorem). Let U ⊆ Rn be open

and f : U → R be twice continuously differentiable, f ∈ C2(U), (i.e., all derivatives
∂2f

∂xj∂xi
, 1 ≤ i, j ≤ n, are continuous). Then for all x ∈ U and 1 ≤ i, j ≤ n

∂2f(x)

∂xj∂xi
=
∂2f(x)

∂xj∂xi
,

i.e., for cross-partial derivatives, the order of differentiation in their computing is irrele-

vant.

Example: (i) The above theorem works:

f(x1, x2) := x21 + bx1x2 + x22, (x1, x2) ∈ R2.

Counterexample: (ii) The above theorem does not work:

f(x1, x2) :=

x1x2
x21 − x22
x21 + x22

, (x1, x2) ∈ R2 \ {(0, 0)}

0, (x1, x2) = (0, 0).

We calculate
∂2f

∂x1∂x2
(0, 0) = −1 6= 1 =

∂2f

∂x2∂x1
(0, 0).

Reason: f /∈ C2(U).
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Notation:

Dik i1f,
∂kf

∂xik . . . ∂xi1
,

for any i1, . . . , ik ∈ {1, . . . n}.

In general, for any v ∈ Rn with |v| = 1, we have by (∗)

|Dvf(x)| ≤ |∇f(x)|Rn .

Geometrical interpretation of ∇f : Define the normalized vector

v :=
∇f(x)

|∇f(x)|
Rn

∈ Rn.

Then, for this v

Dvf(x) = 〈∇f(x), v〉Rn = |∇f(x)|Rn .

In other words, the gradient ∇f(x) of f at point x is the direction in which the slope of f

is the largest in absolute value.

2.4 Total Differentiability

Intuition: Repetition of the 1-dim case

Definition 2.4.1. A function g : R → R is differentiable at point x ∈ R if the following

limit exists

lim
h→0

g(x+ h)− g(x)

h
=: g′(x) ∈ R. (∗)

Geometrical picture: Locally, i.e., for small |h| → 0, we can approximate the values

of g(x+ h) by the linear function g(x) + ah with a := g′(x) ∈ R. Indeed, the limit (∗) can

be rewritten as

lim
h→0

g(x+ h)− [g(x) + ah]

h
= 0.

The approximation error Eg(h) equals

Eg(h) := g(x+ h)− [g(x) + ah] ∈ R

and it goes to zero with h:

lim
h→0

Eg(h)

h
= 0 i.e., lim

h→0

|Eg(h)|
|h|

= 0.
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The latter can be written as

Eg(h) = o(h) as h→ 0,

g(x+ h) ∼ g(x) + ah as h→ 0.

Summary: g : R→ R is differentiable at x ∈ R if, for points x+ h sufficiently close to

x, the values g(x + h) admit a “nice” approximation by a linear function g(x) + ah, with

an error

Eg(h) := g(x+ h)− g(x)− ah
that goes to zero “faster” than h itself, i.e.,

lim
h→0

|Eg(h)|
|h|

= 0.

Now we extend the notion of differentiability to functions f : Rn → Rm, for arbitrary

n,m ≥ 1 :

Rn 3 x = (x1, . . . , xn)→ f(x) =

 f1(x)
...

fm(x)

 =

 f1(x1, . . . , xn)
...

fm(x1, . . . , xn)

 ∈ Rm.

Definition 2.4.2. Let U ⊂ Rn be open, and let f : U → Rm. The function f is (totally)

differentiable at a point x ∈ U if there exists a linear mapping

A : Rn → Rm

such that in some neighbourhood of x, (i.e., for small enough h ∈ Rn with |h| < ε), there

is a presentation

f(x+ h) = f(x) + Ah+ Ef (h), (∗∗)
where the error term

Ef (h) := f(x+ h)− f(x)− Ah ∈ Rm

obeys

lim
h→0

‖Ef (h)‖Rm
‖h‖Rn

= 0.

The derivative Df(x) of f at point x is the matrix A.

Remark 2.4.3.

(i) Each linear map A : Rn → Rm can be represented by the m×nmatrix (with m rows

and n columns)

(aij)1≤i≤m
1≤j≤n

=


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 ,
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which describes the action of the linear map A on the canonical basis (ej)1≤j≤n in

Rn, ej = (0, . . . , 0, 1︸ ︷︷ ︸
j

, 0, . . . , 0)t (vertical column or n× 1matrix),

Aej =


a1j
a2j
...

amj

 ∈ Rm, 1 ≤ j ≤ n.

Below we always identify the linear mapping A : Rn → Rm with this matrix, which

acts as

Ah :=


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn




h1
h2
...

hn

 =


a11h1 + . . .+ a1nhn
a21h1 + . . .+ a2nhn

...

am1h1 + . . .+ amnhn

 ∈ Rm,

whereby the vector h = (h1, . . . , hn) ∈ Rn is considered as an n× 1 matrix.

The identity (∗∗) can be rewritten in coordinate form as{
fi(x+ h) = fi(x) +

∑n
j=1 aijhj + Ei(h),

i = 1, . . . ,m,

with

lim
h→0

|Ei(h)|
‖h‖Rn

= 0.

It is obvious that the vector-valued function f : U → Rm is differentiable at a point

x ∈ U if and only if all coordinate mappings fi : U → R, 1 ≤ i ≤ m, are differentiable.

(ii) Symbolically we write

Ef (h) = o (‖h‖Rn) , as h→ 0.

(iii) Let f : Rn → R (i.e., m = 1). Then

A =
(
a1, a2, . . . , an

)
= (aj)

n
j=1 (1× n-matrix)

and

f(x+ h) = f(x) +
n∑
j=1

ajhj + Ef (h),

where Ef (h) ∈ R is such that

lim
h→0

|Ef (h)|
‖h‖

= 0.
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Theorem 2.4.4. Let f : U → Rm be differentiable at a point x ∈ U , i.e.,

f(x+ h) = f(x) + Ah+ o (‖h‖Rn)

with a matrix

A = (aij)1≤i≤m
1≤j≤n

.

Then:

(i) f is continuous at x

(ii) All components fi : U → R, 1 ≤ i ≤ m, are partially differentiable at the point x

and
∂fi(x)

∂xj
= aij, 1 ≤ j ≤ n.

In other words, the derivative Df(x) of f at x is the matrix of first partial deriva-

tives ∂fi(x)
∂xj

of the component functions fi:

Df(x) =


∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xn

...
...

...
∂fm(x)
∂x1

∂fm(x)
∂x2

. . . ∂fm(x)
∂xn

 .

Such a matrix is called the Jacobian matrix of the function f . Notation:

Df(x) =
∂(f1, . . . , fm)

∂(x1, . . . , xn)
(x) =

(
∂fi
∂xj

(x)

)
1≤i≤m
1≤j≤n

.

Proof of Theorem 2.4.4.

(i) We have

f(x+ h) = f(x) + Ah+ o (‖h‖) , as h→ 0.

Since limh→0Ah = 0 and limh→0 o (‖h‖) = 0, finally

lim
h→0

f(x+ h) = f(x).

(ii) For each 1 ≤ i ≤ m

fi(x+ h) = fi(x) +
n∑
j=1

aijhj + Ei(h), with Ei(h) = o (‖h‖) as h→ 0.

Hence for

h := tej ∈ Rn, ‖h‖ = |t| , t ∈ R, 1 ≤ j ≤ n,
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with ej = (0, . . . , 0, 1︸ ︷︷ ︸
j

, 0, . . . , 0) being the canonical basis vector in Rn, it holds

fi(x+ tej) = fi(x) + taij + Ei(tej),

∂fi
∂xj

(x) : = lim
t→0

fi(x+ tej)− fi(x)

t
= aij + lim

t→0

Ei(tej)

t
= aij.

Warning: The inverse statement is not true! Partial differentiability alone does not

imply total differentiability. However, the continuity of all x 7→ ∂fi
∂xj

(x) would be sufficient

to guarantee total differentiability (cf. Theorem 2.4.5 below).

For functions of real variables f : U → Rm, x ∈ U ⊆ R with n = 1, the notions of

partial and total differentiability coincide. So, the total differentiability is a new concept

only in the multidimensional case n > 1.

Theorem 2.4.5 (without proof here). Let U ⊂ Rn be open, and let f : U → Rm be

partially differentiable. If all partial derivatives

∂fi
∂xj

, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

are continuous at the point x ∈ U , then f is (totally) differentiable at x.

We summarize: For f : U → Rm the following implications hold:

continuously partially differentiable

⇓
totally differentiable

⇓
partially differentiable.

Example 2.4.6. Let C := (cij)1≤i,j≤n be a symmetric n× n matrix, i.e.,

cij = cij, for all i, j,

and let

f(x) := 〈Cx, x〉Rn :=
n∑

i,j=1

cijxixj, f : Rn → R,
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be the corresponding quadratic form. Then

f(x+ h) = 〈C(x+ h), x+ h〉Rn
= 〈Cx, x〉+ 〈Cx, h〉+ 〈Ch, x〉+ 〈Ch, h〉
= 〈Cx, x〉+ 2〈Cx, h〉+ 〈Ch, h〉
= f(x) + 〈a, h〉+ E(h),

with

a = 2Cx, E(h) = 〈Ch, h〉Rn , |E(h)| ≤ ‖C‖ · ‖h‖Rn2,

‖C‖ : = ‖C‖Rn→Rn := max
1≤i≤n

( ∑
1≤j≤n

c2ij

)1/2

.

Since

lim
h→0

|Ef (h)|
‖h‖

= 0,

we conclude that

∃Df(x) = 2Cx ∈ Rn.

Alternatively, we can calculate the partial derivatives

∂f

∂xj
(x) = 2

n∑
i=1

cijxi = 2
n∑
i=1

cjixi = 2(Cx)j ∈ R,

which are continuous functions of x. So, by Theorem 2.4.5

∃Df(x) = 2Cx = 2 ((Cx)j)
n
j=1 ∈ Rn (1× n−matrix) .

Remark 2.4.7 (Remark to Theorem 2.4.5). Partially differentiable functions need not

be continuous! The reason is that we consider limits along the axes, but not arbitrary

sequences (xk)k≥1 ⊂ U converging to a given point x ∈ U .

Exercise 2.4.8. Let f : R2 → R be defined by

f(x, y) =

{
y
x2
e−

y

x2 , x 6= 0,

0, x = 0.

Show that:

(i) f is continuous on every line drawn through (0, 0);

(ii) f is not continuous at (0, 0).

(Hint: Consider yk := cx2k with xk → 0 as k →∞.)
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2.5 Chain Rule

Theorem 2.5.1 (Chain Rule, without proof). Let us be given two functions,

f : U → Rm and g : V → Rp,

where U ⊂ Rn, V ⊂ Rm are open and f(U) ⊆ V . Suppose that f is differentiable at some

x ∈ U and g respectively at y := f(x). Then the composite function

h := g ◦ f : U → Rp

is differentiable at x, and its derivative is given by (via matrix multiplication)

Dh(x) = Dg(f(x))︸ ︷︷ ︸
p×m

Df(x)︸ ︷︷ ︸
m×n

. (p× n-matrix) (∗)

Idea of the proof. For any x, x̃ ∈ U

h(x)− h(x̃) = g(f(x))− g(f(x̃));

g diff. ⇒ h(x)− h(x̃) ∼ Dg(f(x)) (f(x)− f(x̃)), as f(x̃)→ f(x),

f diff. ⇒ h(x)− h(x̃) ∼ Dg(f(x)) Df(x) (x− x̃), as x̃→ x.

A rigorous proof should take into account the error terms.

In (∗) we have the product of two matrices: Let B be a p × m matrix and A be an

m× n matrix,

A = (aij)1≤i≤m
1≤j≤n

=


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 (m× n),

B = (bki)1≤k≤p
1≤i≤m

=


b11 b12 . . . b1m
b21 b22 . . . b2m
...

...
...

ap1 ap2 . . . apm

 (p×m).

Then their product C := BA is a p× n matrix defined as follows:

BA =: C = (ckj)1≤k≤p
1≤j≤n

=


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
...

cp1 cp2 . . . cpn

 ,

with the entries

ckj :=
m∑
i=1

bki · aij, 1 ≤ k ≤ p, 1 ≤ j ≤ n.
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Typical applications of the Chain Rule

(i) Let f : R→ Rn and g : Rn → R, we define

h := g ◦ f : R→ R.

R 3 t→

 f1(t)
...

fn(t)

 =: x ∈ Rn,

Rn 3 x = (x1, . . . , xn)→ g(x1, . . . , xn) ∈ R,
R 3 t→ h(t) := g(f1(t), . . . , fn(t)).

Then

Df(t) =

 f ′1(t)
...

f ′n(t)

 ∈ Rn,

Dg(x) = ∇g(x) =

(
∂g

∂x1
(x), . . . ,

∂g

∂xn
(x)

)
∈ Rn.

By Theorem 2.5.1

h′(t) = Dg[f(t)]Df(t)

=

(
∂g

∂x1
(f(t)), . . . ,

∂g

∂xn
(f(t))

)
×

 f ′1(t)
...

f ′n(t)


= 〈∇xg(f(t)),∇f(t)〉Rn =

n∑
i=1

∂g

∂xi
(f(t)) · f ′i(t) ∈ R.

Example 2.5.2 (Numerical Example). Let

f(t) =

(
t

t2

)
=:

(
x1
x2

)
= x ∈ R2, g(x) = g(x1, x2) := x1 − x22.

Then

h(t) = g(f(t)) = t− t4, h′(t) = 1− 4t3, t ∈ R.

On the other hand

f ′(t) =

(
1

2t

)
, ∇g(x1, x2) = (1,−2x2),

and hence (substituting x2 by t2)

h′(t) = (1,−2t2)×
(

1

2t

)
= 1− 4t3.
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(ii) Applications to directional derivatives (Section 2.2 revisited)

Let U ⊂ Rn be open, and let f : U → R be differentiable. Choose some unit vector

v ∈ Rn with |v| = 1. Then the directional derivative along v is defined by

∂vf(x) : = lim
t→0

f(x+ tv)− f(x)

t

=
df(x+ tv)

dt

∣∣∣
t=0
.

Theorem 2.5.3. Let f : U → R be totally differentiable and let v ∈ Rn with |v| = 1.

Then, for any x ∈ U

∂vf(x) = 〈∇f(x), v〉Rn =
n∑
i=1

∂f

∂xi
(x) · vi.

Proof. By the above definition

∂vf(x) = g′v(t)
∣∣
t=0
,

with a scalar function

gv : I → R I := (−ε, ε) ⊂ R (i.e.n = m = 1) ,

I 3 t→ gv(t) = f(x+ tv) ∈ R,

where ε > 0 is small enough such that Bε(x) ⊂ U . But

gv(t) = f(ϕ(t)),

where we set

I 3 t→ ϕ(t) := x+ tv ∈ Rn, ϕ(0) := x.

Obviously, ϕ is differentiable and ϕ′(t) = v ∈ Rn for all t ∈ I. By the chain rule

(Theorem 2.5.1)

g′v(t) = Df(ϕ(t)) · ϕ′(t) =
n∑
i=1

∂f

∂xi
(ϕ(t)) · vi = 〈∇f(ϕ(t)), v〉Rn ,

and for t = 0

∂vf(x) = g′v(0) =
n∑
i=1

∂f

∂xi
(x) · vi = 〈∇f(x), v〉.
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(iii) Further rules: Linearity, i.e., for any f, g : U → Rm

D(f + g) = Df +Dg,

D(αf) = αDf, α ∈ R.

Example: Polar coordinates

x =

(
r cosϕ

r sinϕ

)
, r > 0, ϕ ∈ R.

Let us be given a differentiable function f : R2 → R, (x1, x2)→ f(x1, x2) ∈ R. Then,

g(r, ϕ) := f

(
r cosϕ

r sinϕ

)
, r > 0, ϕ ∈ R,

defines a differential function g : (0,+∞)× R→ R with partial derivatives

∂g(r, ϕ)

∂r
=
∂f(r, ϕ)

∂x1
cosϕ+

∂f(r, ϕ)

∂x2
sinϕ,

∂g(r, ϕ)

∂ϕ
= −r∂f(r, ϕ)

∂x1
sinϕ+ r

∂f(r, ϕ)

∂x2
cosϕ.

2.6 Taylor’s Formula

Intuition: Review of 1-dim

Let us recall the following:

Theorem 2.6.1 (Mean value theorem). Let f : R → R be a continuously differentiable

function (i.e.,f ∈ C1(R)). Then for each a, b ∈ R, a < b, there exists θ ∈ (a, b) such that

f(b)− f(a) = f ′(θ) · (b− a). (∗)

Taylor’s formula is a generalization of (∗) to (k + 1)−times differentiable functions

(k = 0, 1, 2, . . .). As a result we get a (finite) series expansion of a function f about a

fixed point, up to the (k + 1)−th Taylor remainder. The following is well known from

Calculus:

Definition 2.6.2 (Taylor’s Formula). Let f : R → R be a (k + 1)−times continuously

differentiable function on an open interval I ⊂ R. Then for all x, x + h ∈ I, we have the

Taylor approximation of f

f(x+ h) = f(x) +
k∑
l=1

f (l)(x)

l!
hl + Ek+1, (∗∗)
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where the (k + 1)−th error term Ek+1 can be represented by

Ek+1(x, h) =
f (k+1)(x+ λh)

(k + 1)!
hk+1

for some λ = λ(x, h) ∈ (0, 1). Recall that l! := l · (l − 1) · . . . · 2 · 1 and 0! := 1.

This is the so-called Lagrange form of the remainder term Ek+1. Of course, Ek+1 and

λ depend on the point x, around which we write the expansion, as well as on the increment

h. Since λ ∈ (0, 1), we see that x + λh is some intermediate point between x and x + λh.

Obviously, limh→0Ek+1(x, h)/hk = 0 and hence Ek+1(x, h) = o(hk), h→ 0.

Sometimes, Taylor’s formula is written in the equivalent form

f(x+ h) = f(x) +
k∑
l=1

f (l)(x)

l!
hl + o(hk), h→ 0.

If k = 0, we just get the mean value theorem (∗)

f(x+ h)− f(x) = f ′(x+ λh)h, λ ∈ (0, 1).

Generalization to several variables

Theorem 2.6.3 (Multi-dimensional Taylor’s Formula). Let U ⊆ Rn be open; let x ∈ U

and hence Bδ(x) ⊂ U for some δ > 0. Let

f : U → R

be (k + 1)−times continuously differentiable (i.e.,f ∈ Ck+1(U))Ṫhen for any h ∈ Rn with

‖h‖Rn < δ there exists θ = θ(x, h) ∈ (0, 1) such that

f(x+ h) =
∑

0≤|α|≤k

Dαf(x)

α!
hα + Ek+1 (∗ ∗ ∗)

with Ek+1(x, h) =
∑
|α|=k+1

Dαf(x+θh)
|α|! hα, where the summation is over all (i.e., with all

possible permutations) multi-indices

α = (α1, . . . , αn) ∈ (Z+)n with order (degree) |α| ≤ k.

Multi-index notation:

|α| := α1 + . . .+ αn, αi ∈ Z+ := {0, 1, 2, . . .},
k! := k · (k − 1) · . . . · 2 · 1, 0! := 1,

hα = hα1
1 h

α2
2 · · · hαnn , h = (h1, h2, · · ·, hn) ∈ Rn,

Dαf(x) = Dα1
x1
Dα2
x2
· · ·Dαn

xn f(x) :=
∂|α|f(x)

∂xα1
1 . . . ∂xαnn

.

Proof will be done below.
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Corollary 2.6.4. Under the above conditions

f(x+ h) =
∑

0≤|α|≤k

Dαf(x)

|α|!
hα + o(‖h‖k), h→ 0.

Remark 2.6.5.

(i) Actually, the later formula with o(‖h‖k) is true if we just know that f is k-times

differentiable at the point x. But for the Lagrange representation of the error term

Ek+1(x, h) in Theorem 2.6.3, we have to assume that f ∈ Ck+1(U).

(ii) If we do not allow permutations of indexes, then in Taylor’s formula instead of |α|!
we should take α1! . . . αn!.

Example 2.6.6 (Particular Cases).

(i) Taylor approximation of order k = 2 for f ∈ C2(U)

f(x+ h) = f(x) +
n∑
i=1

∂if(x) · hi +
1

2

n∑
i,j=1

∂2i,jf(x) · hihj + o(‖h‖2)

= f(x) + 〈gradf(x), h〉Rn +
1

2
〈h,Hessf(x) · h〉Rn + o(‖h‖2), h→ 0.

We here use the gradient of f

gradf(x) := ∇f(x) := Df(x) := (∂1f(x), . . . , ∂nf(x)) ∈ Rn

and the Hessian of f (i.e., its matrix of second derivatives)

Hessf(x) := D2f(x) :=


∂2f(x)

∂x21

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x22
. . . ∂2f(x)

∂x2∂xn
...

...
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2n

 .

For shorthand,

Hessf(x) :=
(
∂xi∂xjf(x)

)
1≤i≤n,
1≤j≤n

,

which is a symmetric n× n matrix by Theorem 2.3.1.

(ii) For n = k = 2 we have in the coordinate form

f(x1 + h1, x2 + h2) = f(x1, x2) + ∂x1f(x1, x2)h1 + ∂x2f(x1, x2)h2

+
1

2
∂2x1f(x1, x2)h

2
1 + ∂2x1x2f(x1, x2)h1h2

+
1

2
∂2x2f(x1, x2)h

2
2 + o(h21 + h22).
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Proof of Theorem 2.6.3. Set

g(t) = f(x+ th), t ∈ I ⊇ [0, 1].

Applying the one-dimensional Taylor formula to the function g on an open interval I ⊂ R,

we get with some λ = λ(t) ∈ (0, 1)

g(t) = g(0) + g′(0)t+
1

2
g′′(0)t2 +

1

6
g′′′(0)t3 + . . .

+
1

k!
g(k)(0)tk +

1

(k + 1)!
g(k+1)(λ)tk+1.

By the chain rule

g′(t) = 〈Df(x+ th), h〉Rn , g′′(t) = 〈D2f(x+ th)h, h〉Rn , . . .
and hence g′(0) = 〈Df(x), h〉Rn , g′′(0) = 〈D2f(x)h, h〉Rn , . . .

Finally we put t = 1 and get the required expression for g(1) = f(x+ h).

Example 2.6.7. Compute the Taylor approximation of order two (k = n = 2) of the

Cobb-Douglas function

f(x, y) = x1/4y3/4 at point (1, 1).

Solution 2.6.8. In the open domain U = {x > 0, y > 0} ⊂ R2

∂f

∂x
=

1

4
x−3/4y3/4,

∂f

∂y
=

3

4
x1/4y−1/4,

∂2f

∂x2
= − 3

16
x−7/4y3/4,

∂2f

∂y2
= − 3

16
x1/4y−5/4,

∂2f

∂x∂y
=

∂2f

∂y∂x
=

3

16
x−3/4y−1/4.

Evaluating these derivatives at x = y = 1 gives

∂f

∂x
=

1

4
,

∂f

∂y
=

3

4
,

∂2f

∂x2
=
∂2f

∂y2
= − 3

16
,

∂2f

∂x∂y
=

3

16
.

Therefore,

f(x+ th, y + tg) = 1 +
1

4
h+

3

4
g − 3

32
(h2 + g2) +

3

16
hg + o(h2 + g2), as h, g → 0.

19



2.7 Implicit Functions

Before we studied explicit functions

f : U → Rm,

Rn ⊃ U︸︷︷︸
open

3 x→ f(x) =: y ∈ Rm,

 y1
...

ym

 =

 f1(x1, . . . , xn)
...

fm(x1, . . . , xn)

 ∈ Rm.

This ideal situation does not always occur in economic models. Frequently, such models

are described by “mixed” equations like

F (x, y) = 0, F : U1
⊂Rn
× U2
⊂Rm
→ Rm, (∗)

i.e., in coordinate form 
F1(x1, . . . , xn; y1, . . . , ym) = 0,

...

Fm(x1, . . . , xn; y1, . . . , ym) = 0,

where x1, . . . , xn ∈ R are called exogenous variables and y1, . . . , ym ∈ R resp. endogenous

variables.

In particular, for m = n = 1 we have

F (x, y) = 0, x, y ∈ R.

As a rule, we cannot solve (∗) by some explicit formula separating the independent

variables x1, . . . , xn on one side and y1, . . . , ym on the other.

Interpretation: x = (x1, . . . , xn) is a vector of parameters and y = (y1, . . . , ym) is the

output vector we seek to describe the model. If for each (x1, . . . , xn) ∈ U the equation (∗)
determines a unique value (y1, . . . , ym) ∈ Rm, we say that we have an implicit function

y = g(x) ∈ Rm, x ∈ U.

Below we study existence and differentiability properties of implicit functions.

Intuition: 1-dim case:

Let U ⊂ R2 be open, and consider a differentiable function

F : U → R, (x, y)→ F (x, y).
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Fix some point (x0, y0) ∈ U such that F (x0, y0) = 0, and suppose (!!!) that there

exists a differentiable function

g : I → R, x→ g(x), g(x0) = y0,

defined on some open interval I 3 x0 such that

(x, g(x)) ∈ U and F (x, g(x)) = 0 for all x ∈ I.

Differentiating the equation F (x, g(x)) = 0, we get by the Chain Rule that

∂

∂x
F (x, g(x)) +

∂

∂y
F (x, g(x)) · g′(x) = 0, x ∈ I.

Assuming that
∂

∂y
F (x0, y0) 6= 0,

we conclude that

g′(x0) = −
∂
∂x
F (x0, y0)

∂
∂y
F (x0, y0)

.

Indeed we have the following classical theorem from Calculus.

Theorem 2.7.1 (1-dim Implicit Function Theorem, IFT). Suppose that F (x, y) is a con-

tinuously differentiable function on an open domain U ⊂ R2, (i.e., F ∈ C1(U), which

means that ∂xF, ∂yF : U → R are continuous). Let a point (x0, y0) ∈ U be such that

F (x0, y0) = 0. If
∂

∂y
F (x0, y0) 6= 0,

then there exist open intervals

I 3 x0, J 3 y0, I × J ⊂ U,

and a continuously differentiable function

g : I → J , g(x0) = y0,

such that F (x, g(x)) = 0 for all x ∈ I and

g′(x0) = −
∂
∂x
F (x0, y0)

∂
∂y
F (x0, y0)

.

Furthermore, such g is unique: if (x, y) ∈ I × J and F (x, y) = 0, then surely y = g(x).
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Remark 2.7.2. The proof of the existence of g in Theorem 2.7.1 is based on the Banach

Contraction Theorem (Th. 1.12) and is highly non-trivial. This is a local result since it

is stated on some (probably very small) open intervals I 3 x0, J 3 y0.

Interpretation in economics: Comparative Statistics:

The IFT allows to study in what direction does the equilibrium y(x) change in a control

variable x. The equilibrium is typically described by some equation F (x, y) = 0.

Example 2.7.3.

(i) Let I = (−a, a), consider the function describing an upper half-circle

y := g(x) =
√
a2 − x2, x ∈ I.

By direct calculations

∃g′(x) = − x√
a2 − x2

, x ∈ I.

Let us check that IFT gives the same result. We have

y2 := g2(x) = a2 − x2 ⇐⇒
F (x, y) := x2 + y2 − a2 = 0

on the open domain U := {(x, y)| x ∈ I, y > 0} ⊂ R2. So, for any (x, y) ∈ U
∂F

∂x
= 2x,

∂F

∂y
= 2y 6= 0, and

∃g′(x) = − 2x

2
√
a2 − x2

= − x√
a2 − x2

.

(ii) A cubic implicit function

F (x, y) = x2 − 3xy + y3 − 7 = 0, (x, y) ∈ R2,

with

(x0, y0) = (4, 3) and F (x0, y0) = 0.

Indeed,

∂F

∂x
= 2x− 3y = −1 at (x0, y0),

∂F

∂y
= −3x+ 3y2 = 15 at (x0, y0).

Theorem 2.7.1 tells us that F (x, y) = 0 indeed defines y = g(x) as a C1 function of

x around the point with coordinates x0 = 4 and y0 = 3. Furthermore,

y′(x0) = g′(x0) = −
∂F
∂x

(x0, y0)
∂F
∂y

(x0, y0)
=

1

15
.
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(iii) A unit circle is described by

F (x, y) = x2 + y2 − 1 = 0

with
∂F

∂x
= 2x,

∂F

∂y
= 2y.

(a) Let first (x0, y0) = (0, 1), so that ∂F
∂x

(x0, y0) = 0, ∂F
∂y

(x0, y0) = 2 6= 0. By Theorem

2.7.1 the implicit function y = g(x) exists around x0 = 0 and y0 = 1, with

g′(x0) = −0/2 = 0. In this case we have an explicit formula

y2(x) = 1− x2 ⇒
y(x) =

√
1− x2 > 0.

We also can compute directly

y′(x) =
1

2

−2x√
1− x2

, y′(x0) = 0.

(b) On the other hand, no nice function y = g(x) exists around the initial point

(x0, y0) = (1, 0). Actually, Theorem 2.7.1 does not apply since ∂F
∂y

(x0, y0) = 0.

On the picture we can see two branches tending to the point (1, 0) :

y(x) = ±
√

1− x2.

IFT, Multidimensional Case

Theorem 2.7.4 (Multidimensional IFT). Let U1 ⊂ Rn and U2 ⊂ Rm be open domains

and let

F : U1 × U2 → Rm, (x, y)→ F (x, y),

be continuously differentiable, i.e., F ∈ C1(U1 × U2), which means that all ∂Fi
∂xj
, ∂Fi
∂yk

:

U1 × U2 → R are continuous, 1 ≤ j ≤ n, 1 ≤ i, k ≤ m. Let a point (x0, y0) ∈ U1 × U2

be such that F (x0, y0) = 0. Suppose that the m × m-matrix of partial derivatives w.r.t.

y = (y1, . . . , ym)

∂F

∂y
=

∂(F1, . . . , Fm)

∂(y1, . . . , ym)
=


∂F1

∂y1

∂F1

∂y2
. . . ∂F1

∂ym
∂F2

∂y1

∂F2

∂y2
. . . ∂F2

∂ym
...

...
...

∂Fm
∂y1

∂Fm
∂y2

. . . ∂Fm
∂ym


is invertible at the point (x0, y0), i.e., its determinant

det
∂F

∂y
(x0, y0) 6= 0.

Then, there exist:
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(i) open neighbourhoods V1 ⊆ U1 of x0 resp. V2 ⊆ U2 of y0 (in general, they can be

smaller than U1 resp. U2),

(ii) a continuously differentiable function

g : V1 → V2, with g(x0) = y0,

such that

F (x, g(x)) = 0 for all x ∈ V1.

Such function is unique in the following sense: if (x, y) ∈ V1 × V2 obey F (x, y) = 0, then

y = g(x). Furthermore, the derivative at point x0 equals

Dg(x0)︸ ︷︷ ︸
m×n

= −
[
∂F

∂y
(x0, y0)

]−1
︸ ︷︷ ︸

m×m

.
∂F

∂x
(x0, y0)︸ ︷︷ ︸
m×n

.

Example 2.7.5 (Special Cases).

(i) m = 1, i.e., F : Rn × R→ R,

F (x1, . . . , xn; y1) = 0.

The implicit function

y = g(x1, . . . , xn) ∈ R

exists under the sufficient condition

∂F

∂y
(x0, y0) 6= 0.

Then Dg(x0) = ∇g(x0) = (∂ig(x0))
n
i=1, whereby the partial derivatives ∂jg(x0) w.r.t.

xj are given by

∂jg(x0) = −∂jF (x0, y0)
∂F
∂y

(x0, y0)
, 1 ≤ j ≤ n.

(ii) n = 1, m = 2, i.e., F : R× R2 → R2,{
F1(x, y1, y2) = 0,

F2(x, y1, y2) = 0.

The sufficient condition is stated in terms of

∂F

∂y
=

(
∂F1

∂y1

∂F1

∂y2
∂F2

∂y1

∂F2

∂y2

)
,
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namely,

det
∂F

∂y
(x0, y0) =

(
∂F1

∂y1
· ∂F2

∂y2
− ∂F1

∂y2
· ∂F2

∂y1

)
(x0, y0) 6= 0.

Then there exists g(x) = (g1(x), g2(x)) ∈ R2 around x0 and

Dg(x0) =

(
g′1(x0)

g′2(x0)

)
= −

(
∂F

∂y
(x0, y0)

)−1
·
(

∂F1

∂x
(x0, y0)

∂F2

∂x
(x0, y0)

)
.

Numerical Example: n = 1, m = 2, i.e., F : R× R2 → R2,

F (x, y1, y2) =

{
−2x2 + y21 + y22 = 0,

x2 + ey1−1 − 2y2 = 0

at point x0 = 1, y0 = (1, 1). After calculations

DyF (x, y1, y2) =

(
2y1 2y2
ey1−1 −2

)
,

and at the point (x0, y0) ∈ R× R2

DyF (x0, y0) =

(
2 2

1 −2

)
,

detDyF (x0, y0) = 2 · (−2)− 1 · 2 = −6 6= 0.

The inverse matrix(
∂F

∂y
(x0, y0)

)−1
=

1

−6
·
(
−2 −2

−1 2

)
=

(
1/3 1/3

1/6 −1/3

)
.

Also, by direct calculations

DxF (x0, y0) =

(
−4

2

)
.

Thus,
dg

dx
(x0) =

(
1/3 1/3

1/6 −1/3

)
·
(
−4

2

)
=

(
−2/3

−2

)
.

Reminder: Let

A =

(
a b

c d

)
with detA := ad− bc 6= 0.

Then, the inverse matrix is calculated by

A−1 =
1

detA
·
(

d −b
−c a

)
.
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2.8 Inverse Functions

Let f : U → Rn, U ⊂ Rn – open set (now m = n !).

Problem: Does there exist an inverse mapping

g := f−1 : f(U)→ U?

Theorem 2.8.1. Let U ⊂ Rn be open domains and let f : U → Rn be continuously

differentiable, i.e., f ∈ C1(U). Let x0 ∈ U and y0 := f(x0). Suppose that the Jacobi

matrix of partial derivatives

Df =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

...
∂fn
∂x1

∂fm
∂x2

. . . ∂fn
∂xn


is invertible at point x0, i.e., its determinant 6= 0. Then, there exist open neigh-

bourhoods U0 ⊆ U of x0 resp. V0 ⊆ Rn of y0 such that the mapping

f : U0 → V0

is one-to-one (bijection) and the inverse function

g : = f−1 : V0 → U0, acting by

(f−1 ◦ f)(x) = x, (f ◦ f−1)y = y, ∀x ∈ U0, ∀y ∈ V0,

is continuously differentiable on V0. Furthermore, the following holds:

Dg(y0) = [Df(x0)]
−1 .

Proof. Define the function

F : U × Rn → Rn,

F (x, y) := y − f(x).

Then F (x0, y0) = 0 and

∂F

∂x
(x, y) = −Df(x),

∂F

∂x
(x0, y0) = −Df(x0) 6= 0,

∂F

∂y
(x, y) = IdRn ,

where IdRn is the identity n× n-matrix. We claim that the equation

F (x, y) := y − f(x) = 0
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locally defines the implicit function x := g(y) = f−1(y). Indeed, by Theorem 2.8.1 there

exist V0 ⊆ Rn and a function g : V0 → Rn, g ∈ C1(V0), such that

x = g(y), y = f(g(y)), y ∈ V0.

So,

g = f−1 on V0

and

Dg(y0) = −
[
∂F

∂x
(x0, y0)

]−1
· IdRn = − [Df(x0)]

−1 .

Special case: n = 1 and f : U → R. The sufficient condition is

f ′(x0) 6= 0.

Then, g′(y0) =
1

f ′(x0)
.

Example 2.8.2. Let

f

(
x

y

)
:=

(
x2 − y2

2xy

)
∈ R2, x, y ∈ R. Then,

Df(x, y) =
∂f(x, y)

∂(x, y)
=

(
2x −2y

2y 2x

)
, detDf(x, y) = 4(x2 + y2).

By IFT, f is (locally) invertible at every point (x, y) ∈ R2 except (0, 0). But globally f is

not one-to-one, since for all (x, y) ∈ R2

f

(
x

y

)
= f

(
−x
−y

)
.

2.9 Unconstrained Optimization

We now turn to study of optimization theory under assumptions of differentiability.

Definition 2.9.1. Let U ⊂ Rn be an open domain and let

f : U → R

be an objective function whose extrema we would like to analyse.

(i) A point x∗ ∈ U is a local maximum (resp. minimum) of f if there exists a ball

Bε(x
∗) ⊂ U such that for all x ∈ Bε(x

∗)

f(x∗) ≥ f(x)( resp. f(x∗) ≤ f(x)).

Local max or min are called local extrema.
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(ii) A point x∗ ∈ U is a global (or absolute) maximum (resp.minimum) of f if for

all x ∈ U
f(x∗) ≥ f(x)( resp. f(x∗) ≤ f(x)).

(iii) A point x∗ ∈ U is a strict local maximum (resp. minimum) of f if there exists

a ball Bε(x
∗) ⊂ U such that for all x 6= x∗ in Bε(x

∗)

f(x∗) > f(x)( resp. f(x∗) < f(x)).

Remark 2.9.2. In the definition of the global extrema, the function f : U → Rn can be

defined on any domain U , which is not necessarily open.

We want to use methods of Calculus to find local extrema. So, we need smoothness

(i.e., differentiability) of f .

2.10 First-Order Conditions

Aim: To find necessary conditions for local extrema.

Theorem 2.10.1 (Necessary Condition for Local Extrema). Let U ⊂ Rn be an open

domain and f : U → R be partially differentiable on U (i.e., all its partial derivatives

∂f/∂xi : U → R, 1 ≤ i ≤ n, exist). Then,

x∗ ∈ U is a local extremum for f

=⇒ gradf(x∗) := ∇f(x∗) =

(
∂f

∂x1
(x∗), . . . ,

∂f

∂xn
(x∗)

)
= 0.

Proof. For i = 1, . . . , n define a function

t→ gi(t) := f(x∗ + tei), where

ei = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0) ∈ Rn is a unit basis vector in Rn.

Here t ∈ (−ε, ε) with a sufficiently small ε > 0 such that

{x∗ + tei | − ε < t < ε} ⊂ Bε(x
∗) ⊂ U for all 1 ≤ i ≤ n.

If x∗ is a local extremum for f(x1, . . . , xn), then clearly each real function gi(t) : (−ε, ε)→ R
has a local extremum at t = 0. Applying the one-dimensional necessary condition for

extrema (well known from Calculus), we conclude that

∂f

∂xi
(x∗) = g′i(0) = 0.
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2.11 Second-Order Conditions

Aim: To find sufficient conditions for local extrema.

Definition 2.11.1. Any point x∗ ∈ U satisfying the 1st condition ∇f(x∗) = 0 is called a

critical point of f on U .

The 1st order conditions for local optima do not distinguish between maxima and

minima. To determine whether some critical point x∗ ∈ U is a local max or min, we need

to examine the behaviour of the second derivative D2f(x∗). To this end, we assume that

f is twice continuously differentiable on U , i.e., f ∈ C2(U), which means that all
∂2f(x)
∂xi∂xj

: U → R are continuous, 1 ≤ i, j ≤ n. To formulate the sufficient conditions we need

to use the Hessian of f , which is the n× n matrix of 2nd partial derivatives:

Hessf(x) := D2f(x) :=


∂2f(x)

∂x21

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x22
. . . ∂2f(x)

∂x2∂xn
...

...
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2n

 .

Since f ∈ C2(U), by Theorem 2.3.1

∂2f(x)

∂xi∂xj
=

∂2f(x)

∂xj∂xi
, 1 ≤ i, j ≤ n,

so that D2f(x) is a symmetric matrix. By Taylor’s approximation of the 2nd order

f(x∗ + h) = f(x∗) + 〈gradf(x∗), h〉Rn +
1

2
〈h,Hessf(x∗) · h〉Rn + o(‖h‖2), h→ 0.

Since ∇f(x∗) = 0,

f(x∗ + h) ∼ f(x∗) +
1

2
〈h,Hessf(x∗) · h〉Rn , h→ 0.

If Hessf(x∗) is a negative definite matrix, i.e.,

〈y,Hessf(x∗) y〉Rn < 0 for all 0 6= y ∈ Rn,

then f(x∗ + h) < f(x∗), i.e., x∗ is a strict local max.

If Hessf(x∗) is a positive definite matrix, i.e.,

〈y,Hessf(x∗) y〉Rn > 0 for all 0 6= y ∈ Rn,

then f(x∗ + h) > f(x∗), i.e., x∗ is a strict local min.

We summarize the above analysis in the following theorem:
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Theorem 2.11.2 (Sufficient Conditions for Local Extrema). Let U ⊂ Rn be open, the

function f : U → R be twice continuously differentiable on U , and let x∗ ∈ U obey

∇f(x∗) = 0. Then:

(i) Hessf(x∗) is positive definite (i.e., Hessf(x∗) > 0 as a symmetric n × n matrix)

=⇒ x∗ is a strict local min.

The positive definiteness of Hessf(x∗) is equivalent to the positivity of all n lead-

ing principal minors of D2f(x∗) :

∂21,1f(x∗) > 0,

∣∣∣∣ ∂21,1f(x∗) ∂21,2f(x∗)

∂22,1f(x∗) ∂22,2f(x∗)

∣∣∣∣ > 0,∣∣∣∣∣∣
∂21,1f(x∗) ∂21,2f(x∗) ∂21,3f(x∗)

∂22,1f(x∗) ∂22,2f(x∗) ∂22,3f(x∗)

∂23,1f(x∗) ∂23,2f(x∗) ∂23,3f(x∗)

∣∣∣∣∣∣ > 0, . . . , |D2f(x∗)| = detD2f(x∗) > 0.

(ii) Hessf(x∗) is negative definite (i.e., Hessf(x∗) > 0 as a symmetric n× n matrix)

=⇒ x∗ is a strict local max.

The negative definiteness of Hessf(x∗) means that the leading principal minors

alternate in sign:

∂21,1f(x∗) < 0,

∣∣∣∣ ∂21,1f(x∗) ∂21,2f(x∗)

∂22,1f(x∗) ∂22,2f(x∗)

∣∣∣∣ > 0,∣∣∣∣∣∣
∂21,1f(x∗) ∂21,2f(x∗) ∂21,3f(x∗)

∂22,1f(x∗) ∂22,2f(x∗) ∂22,3f(x∗)

∂23,1f(x∗) ∂23,2f(x∗) ∂23,3f(x∗)

∣∣∣∣∣∣ < 0, . . . , (−1)n
∣∣D2f(x∗)

∣∣ > 0.

(iii) Hessf(x∗) is indefinite, i.e., for some vectors y1 6= 0, y2 6= 0

〈y1,Hessf(x∗)y1〉Rn > 0 but 〈y2,Hessf(x∗)y2〉Rn < 0,

=⇒ x∗ is not a local extremum (i.e., x∗ is a saddle point )

Remark 2.11.3. A saddle point x∗ is a min of f in some direction h1 6= 0 and a max of

f in other direction h2 6= 0 (such that 〈h1,Hessf(x∗)h1〉Rn > 0, 〈h2,Hessf(x∗)h2〉Rn < 0).

Warning: The positive semidefiniteness Hessf(x∗) ≥ 0, i.e.,

〈y,Hessf(x∗) y〉Rn ≥ 0 for all y ∈ Rn,

or the negative semidefiniteness Hessf(x∗) ≤ 0, i.e.,

〈y,Hessf(x∗) y〉Rn ≤ 0 for all y ∈ Rn,
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does not imply in general that x∗ is a local ( non-strict) minimum, or respectively, maxi-

mum. Now we cannot ignore the terms o(‖h‖2) in Taylor’s formula.

Unlike Theorem 2.10.1, the conditions of Theorem 2.11.2 are not necessary conditions!

Remember a standard Counterexample:

f1(x) = x4, f2(x) = −x4,

f ′1(0) = f ′′1 (0) = 0, f ′2(0) = f ′′2 (0) = 0.

But f1 (resp. f2) has a strict global min (rep. max) at x = 0.

Numerical Examples: f : R2 → R, (x, y)→ f(x, y)

(i) f(x, y) := x2 + y2,

∇f(x) = (2x, 2y) = 0 ⇐⇒ x = y = 0.

D2f(0) =

(
2 0

0 2

)
, the same for all (x, y),

detD2f(0) = 4 > 0

Answer: (0, 0) is a strict local min.

(ii) f(x, y) := x2 − y2,
∇f(x) = (2x,−2y) = 0 ⇐⇒ x = y = 0.

D2f(0) =

(
2 0

0 −2

)
,

detD2f(0) = −4 < 0.

Answer: (0, 0) is a saddle point.

(iii) Hessf(x∗) is semidefinite, but we cannot say something about critical points.

Consider functions

f1(x, y) := x2 + y4, f2(x, y) := x2,

f3(x, y) := x2 + y3.

For each i = 1, 2, 3, we have fi(0) = 0,∇f(0) = 0,

Hessf(0) =

(
2 0

0 0

)
is positive semidefinite,

i.e., 〈h,Hessf(x∗)h〉Rn ≥ 0 for any h ∈ R2.

But, the point (0, 0) is:
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(1) strict local min for f1;

(2) a non-strict local min for f2 (since f2(0, y) = 0,∀y ∈ R);

(3) not a local extremum for f3 (f3(t, 0) = t2 > 0, f3(0, t) = t3 < 0 if t < 0).

——————————————————-

Reminder from Linear Algebra:

Proposition 2.11.4. A symmetric 2× 2 matrix

A =

(
a11 a12
a21 a22

)
, a12 = a21,

is positive definite if and only if

a11 > 0 and detA := a11a22 − a212 > 0.

The matrix A is negative definite if and only if

a11 < 0 and detA = a11a22 − a212 > 0.

If detA < 0, the matrix A is surely indefinite.

Indeed, for any vector y = (y1, y2) ∈ R2:

〈Ay, y〉 = a11y
2
1 + a22y

2
2 + 2a12y1y2.

Let us assume that y2 6= 0 and set z = y1/y2, then the quadratic polynomial

〈Ay, y〉
y22

= P (z) = a11z
2 + 2a12z + a22, z ∈ R,

takes only positive (resp. negative) values for all z ∈ R iff its discriminant ∆ := a212 −
a11a22 = −detA < 0.

2.12 A Rough Guide: How to Find the Global Maxima/Minima

Problem: to find global maxima (minima) for

f : D → R, D ⊆ Rn (arbitrary set, not necessary open).

(i) Find and compare the local maxima (minima) in intD – interior of D – and choose

the best.

(ii) Compare with the boundary values f(x), x ∈ D \ intD.
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Numerical Example: Find the max/min of

f(x) = 4x3 − 5x2 + 2x over x ∈ [0, 1].

Since I := [0, 1] is compact and f is continuous on I, the Weierstrass theorem

guarantees that f has a global max on this interval. There are 2 possibilities: either the

maximum is a local maximum attained on the open interval (0, 1), or it occurs at one of

the boundary points x = 0, 1. In the first case we should meet the 1st order condition:

f ′(x) = 12x2 − 10x+ 2 = 0

=⇒ x1 = 1/2 or x2 = 1/3.

So, we have two critical points x1 and x2. The 2nd order condition says that

f ′′(x) = 24x− 10

=⇒ f ′′(x1) = 2 > 0 and f ′′(x2) = −2 < 0.

Thus, x = 1/2 is local min and x = 1/3 is local max. Evaluating f at the four points 0,

1/3, 1/2, and 1 shows that

f(0) = 0, f(1/3) = 7/27, f(1/2) = 1/4, f(1) = 1;

so x = 1 is the global max resp. x = 1/2 is the global min for f(x), x ∈ [0, 1].

Literature: Chapters 16, 17 of C. Simon, L. Blume “Mathematics for Economists”.

Example 2.12.1 (Economical Example: Cobb–Douglas Function).

Cobb–Douglas production function: f(x, y) = xayb, x, y > 0.

Find the maximum of the profit V (x, y) = pxayb − kxx− kyy. 1st order conditions:{
paxa−1yb = kx,

pbxayb−1 = ky.
(∗)

After dividing the 1st line by the 2nd one, we get

a

b
· y
x

=
kx
ky

=⇒ y =
bkx
aky

x.

Putting back in (∗), we have

kx = paxa−1
(
bkx
aky

x

)b
= pa1−bbb

(
kx
ky

)b
xa+b−1
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which allows us to find a unique critical point (x∗, y∗)

x∗ =

(
k1−bx kby
pa1−bbb

) 1
a+b−1

=
p

1
1−(a+b)a1−

a
1−(a+b) b

b
1−(a+b)

k
1− a

1−(a+b)
b

x k
1− b

1−(a+b)
y

,

y∗ =
bkx
aky

x∗.

Is it a maximum? Calculate

HessV (x, y) = Hessf(x, y) = p

(
a(a− 1)xa−2yb abxa−1yb−1

abxa−1yb−1 b(b− 1)xayb−2

)
,

det HessV (x, y) =
[
a(a− 1)b(b− 1)− a2b2

]
x2a−2y2b−2 > 0

if (a− 1)(b− 1) > ab or a+ b < 1. We also have that

∂2f

∂x2
(x, y) < 0 if a < 1.

So, a sufficient condition for max is a+ b < 1.

2.13 Envelope Theorems

The Envelope Theorem (Umhüllenden-Theorem) is a general principle describing how

the optimal value of the objective function in a parametrized optimization problem

changes as the parameters of the problem change. In economics, such parameters can

be prices, tax rates, income levels, etc. Such problems constitute the subject of Com-

parative Statistics.

In microeconomic theory, the envelope theorem is used, e.g., to prove Hotelling’s lemma

(1932), Shepard’s lemma (1953) and Roy’s identity (1947).

In applications, it is usually stated non-rigorously, i.e., without the suitable assumptions

which guarantee the differentiability of the so-called optimal value function.

Let

f : Rn × Rm → R

be a continuously differentiable function. We call it the objective function f(x, α),

it depends on the choice variable x ∈ Rn and the parameter α ∈ Rm. We consider the

unconstrained maximization problem for f , i.e.,

maximize f(x;α) w.r.t. x ∈ Rn.

Let x∗(α) ∈ Rn be a solution of the above problem, i.e.,

f(x∗(α);α) ≥ f(x;α) for all x ∈ Rn.
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Here we assume that, at each α ∈ Rm, such a solution x∗(α) ∈ Rn exists ;

in the case of non-uniqueness we take for x∗(α) any one of the maximum points x for

f(x;α). Then,

V (α) := max
x∈Rn

f(x;α) = f(x∗(α);α)

is the corresponding (optimal) value function.

We are interested in how V (α) depends on α ∈ Rm .

Note that V (α) = f(x∗(α);α) changes for 2 reasons:

(i) directly w.r.t. α, because α is the 2nd variable in f(x;α);

(ii) indirectly, since x∗(α) itself nontrivially depends on α.

Theorem 2.13.1 (Envelope Theorem). Suppose that f(x;α) is continuously differen-

tiable w.r.t. x ∈ Rn and α ∈ Rm. Suppose additionally that x∗(α) is a continuously

differentiable function of α ∈ Rm. Then V (α) is also continuously differentiable

and for any α ∈ Rm and 1 ≤ i ≤ m

∂V

∂αi
(α) =

∂f

∂αi
(x∗(α);α).

Proof. By our assumption we have

V (α) = f(x∗(α);α), ∀α ∈ Rm.

Therefore, by the chain rule

∂V

∂αi
(α) =

∂f

∂αi
(x∗(α);α) +

n∑
j=1

∂f

∂xj
(x∗(α);α)

∂xj
∂αi

(α), 1 ≤ i ≤ m.

The second sum vanishes since by the 1st order condition for extrema (cf. Theorem 2.10.1)

∂f

∂xj
(x∗(α);α) = 0, for all 1 ≤ j ≤ n.

Thus we get
∂V

∂αi
(α) =

∂f

∂αi
(x∗(α);α).

Remark 2.13.2. The same inequality holds if we minimize f(x;α).
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Simplified rule: When calculating ∂V/∂αi, just forget the maxx∈Rn and take the

derivatives of f(x;α) w.r.t. αi, and then plug in the optimal solution x∗(α). So, we need

to consider only the direct effect of α on V (α), ignoring the indirect effect of

x∗(α).

At this point it would be useful to know when x∗(α) exists and is continuously

differentiable w.r.t. α. To answer this question we can use the Implicit Function

Theorem (IFT).

Assume that f ∈ C2(Rn × Rm). We know that x∗(α) is a solution to

∇xf(x, α) = 0

(the necessary condition for extrema), i.e.,
∂f
∂x1

(x, α) = 0,

. . . . . .
∂f
∂xn

(x, α) = 0.

Consider a function

g : Rn × Rm → Rn,

(x;α)→
(
∂f

∂xj
(x;α)

)
1≤j≤n

.

The IFT (cf. Theorem 2.8.1) tells us that x∗(α) exists as an implicit function and is

continuously differentiable w.r.t. α if the n × n-matrix of partial derivatives of g w.r.t.

x = (x1, . . . , xn) is invertible, i.e., detDxg(x, α) 6= 0, where

Dxg =


∂g1
∂x1

. . . ∂g1
∂xn

...
...

∂gn
∂x1

∂gn
∂x1

 =


∂2f
∂x21

. . . ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

. . . ∂2f
∂x2n

 ,

Dxg = Hessxf = D2
xf.

Assume that Hessxf at point (x∗(α);α) is a negative definite matrix (which is the

sufficient condition for a strict local maximum w.r.t. x). Hence detDxg(x∗(α);α) > 0

if n = 2, 4, 6, . . . (or < 0 if respectively, n = 1, 3, 5, . . .). These arguments lead to the

following result.

Theorem 2.13.3 (Deep Envelope Theorem, Sammuelson (1947), Auspitz–Lieben (1889)).

Let U1 ⊂ Rn and U2 ⊂ Rm be open domains and let

f : U1 × U2 → R, (x, α)→ f(x;α),
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be twice continuously differentiable (i.e., f ∈ C2(U1×U2)). Suppose that Hessxf(x;α)

is negative definite for all x ∈ U1, α ∈ U2. Fix some α ∈ U2, and let x∗(α) ∈ U1 be a

maximum of f(x;α) on U1, i.e.,

f(x∗(α);α) = max
x∈U1

f(x;α)

⇓ which, by Theorem 2.11.2, implies ⇓
∇xf((x∗(α);α) = 0.

Then there exists a continuously differentiable function x∗ : V2 → Rn defined on some

open set V2 ⊆ U2 such that

V (α) := max
x∈U1

f(x;α) = f(x∗(α);α)

and
∂V

∂αi
(α) =

∂f

∂αi
(x∗(α);α).

Geometrical picture: The curve Rm 3 α 7→ y = V (α) := f(x∗(α);α) is the envelope

of the family of curves Rm 3 α 7→ y = Vx(α) := f(x;α), indexed by the parameter x ∈ Rn.

Indeed, for each x and α we have

f(x;α) ≤ V (α).

None of the Vx(α)−curves can lie above the curve y = V (α). On the other hand, for each

value of α there exists at least one value x∗(α) of x such that f(x∗(α);α) = V (α). The

curve α 7→ Vx∗(α)(α) will just touch the curve α 7→ y = V (α) at the point (x∗(α), V (α)),

and so must have exactly the same tangent as the graph of V at this point, i.e.,

∂V

∂αi
(α) =

∂f

∂αi
(x∗(α);α).

So, the graph of V (α) is like an envelope that is used to “wrap” or cover all the curves

y = Vx(α).

Example 2.13.4 (Hotelling’s Lemma). A competitive firm cannot change:

(i) output prices p (if you increase p, you lose customers);

(ii) wages w (workers will go to other firms).

But the firm can chose x – the number of workers it uses. Let f(x) is the corresponding

production function. The profit of the firm at given x, p, w is given by

π(x; p, w) = pf(x)− wx.
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The maximum profit function (also called the firm’s profit function)

V (p, w) = max
x≥0
{pf(x)− wx}.

It is important to know how the profit of the firm changes if p, w change:

∂V

∂p
,
∂V

∂w
?

By the Envelope Theorem, if the model is “nice” (i.e., we have a continuously differentiable

function x∗(p, w)), then formally

∂V

∂p
= f(x∗(p, w)),

∂V

∂w
= −x∗(p, w),

where x∗(p, w) is the optimal number of workers.

Conclusion: when wages are increasing, the maximum profit will be decreasing pro-

portionally to the number of workers.

Formally x∗ obeys

g(x,w, p) = pf ′(x∗)− w = 0

By the IFT, a “nice” solution exists if f ′′(x∗) < 0.

2.14 Gâteaux and Fréchet Differentials

The notions of directional and total differentiability can be naturally extended to infinite

dimensional spaces.

Let (X, ‖ · ‖) be a normed space, U ⊂ X – open set and f : U → R.

Definition 2.14.1 (Gâteaux differentiability). The function f : U → R is Gâteaux differ-

entiable at a point x ∈ U along direction v ∈ X, ‖v‖ = 1, if the following limit exists:

lim
t→0

1

t
[f(x+ tv)− f(x)] =: Dvf(x).

Dvf(x) ∈ X is called the Gâteaux derivative.

Definition 2.14.2 (Fréchet differentiability). The function f : U → R is Fréchet differ-

entiable at a point x ∈ U if there exists a linear continuous mapping Df(x) : X → X such

that

lim
‖h‖→0

1

‖h‖
[f(x+ h)− f(x)−Df(x)h] = 0;

Df(x) ∈ L(X,X) is called the Fréchet derivative.
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Fréchet differentiability =⇒ Gâteaux differentiability along all directions v ∈ X, ‖v‖ = 1.

Proposition 2.14.3 (Sufficient condition for Fréchet differentiability). If all directional

derivatives

Dvf(x), ∀v ∈ X, ‖v‖ = 1,

exist in all points x ∈ U and can be represented as

Dvf(x) = L(x)v

with a linear bounded operator L(x) : X → X and the mapping

U 3 x→ L(x) ∈ L(X,X)

is continuous (in the operator norm), then f : U → R is also Fréchet differentiable at all

points x ∈ U and

Df(x) = L(x).

Proposition 2.14.4 (Necessary condition for extrema). If f has a local extrema in U ,

then each Dvf(x) = 0 for v ∈ X, ‖v‖ = 1, (provided this directional derivative exists).
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