QE Optimization, WS 2016/17
Part 2. Differential Calculus for Functions of n Variables(about 5 Lectures)
Supporting Literature: Angel de la Fuente, "Mathematical Methods and Modelsfor Economists", Chapter 2
C. Simon, L. Blume, "Mathematics for Economists"
Contents
2 Differential Calculus for Functions of \boldsymbol{n} Variables 2
2.1 Partial Derivatives 2
2.2 Directional Derivatives 5
2.3 Higher Order Partials 6
2.4 Total Differentiability 7
2.5 Chain Rule 13
2.6 Taylor's Formula 16
2.7 Implicit Functions 20
2.8 Inverse Functions 26
2.9 Unconstrained Optimization 27
2.10 First-Order Conditions 28
2.11 Second-Order Conditions 29
2.12 A Rough Guide: How to Find the Global Maxima/Minima 32
2.13 Envelope Theorems 34
2.14 Gâteaux and Fréchet Differentials 38

In this chapter we consider functions

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

of $n \geq 1$ variables (multivariate functions). Such functions are the basic building block of formal economic models.

2 Differential Calculus for Functions of \boldsymbol{n} Variables

2.1 Partial Derivatives

Everywhere below: $U \subseteq \mathbb{R}^{n}$ will be an open set in the space $\left(\mathbb{R}^{n},\|\cdot\|\right.$) (with the Euclidean norm $\|\cdot\|)$ and $f: U \rightarrow \mathbb{R}$,

$$
U \ni\left(x_{1}, \ldots, x_{n}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}
$$

Definition 2.1.1. The function f is partially differentiable with respect to the \boldsymbol{i}-th coordinate (or variable) x_{i}, at a given point $x \in U$, if the following limit exists

$$
\begin{aligned}
D_{i} f(x): & =\lim _{h \rightarrow 0} \frac{f\left(x+h e_{i}\right)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[f\left(x_{1}, \ldots, x_{i-1}, x_{i}+h, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)\right]
\end{aligned}
$$

where $e_{i}:=\{\underbrace{0, \ldots, 0}_{i-1}, 1,0, \ldots, 0\}$ is the basis vector in \mathbb{R}^{n}.
Since U is open, there exists an open ball $B_{\varepsilon}(x) \subseteq U$. In the definition of $\lim _{h \rightarrow 0}$ one considers only "small" h with $|h|<\varepsilon$.
$D_{i} f(x)$ is called the \boldsymbol{i}-th partial derivative of f at point x.
Notation: We also write $D_{x_{i}} f(x), \partial_{i} f(x), \partial f(x) / \partial x_{i}$.
The partial derivative $D_{i} f(x)$ can be interpreted as a usual derivative w.r.t. the i th coordinate, whereby all the other $n-1$ coordinates are kept fixed. Namely, in the $\varepsilon-$ neighbourhood of x_{i}, let us define a function

$$
\left(x_{i}-\varepsilon, x_{i}+\varepsilon\right) \ni \xi \rightarrow g_{i}(\xi):=f\left(x_{1, i-1}, \xi, x_{i+1}, \ldots, x_{n}\right)
$$

Then by Definition 2.1.1,

$$
D_{i} f(x):=\lim _{h \rightarrow 0} \frac{g_{i}\left(x_{i}+h\right)-g_{i}\left(x_{i}\right)}{h}=g_{i}^{\prime}\left(x_{i}\right)
$$

Definition 2.1.2. A function $f: U \rightarrow \mathbb{R}$ is called partially differentiable if $D_{i} f(x)$ exists for all $x \in U$ and all $1 \leq i \leq n$. Furthermore, f is called continuously partially differentiable, if all partial derivatives

$$
D_{i} f: U \rightarrow \mathbb{R}, 1 \leq i \leq n
$$

are continuous functions.

Example 2.1.3.

(i) Distance function

$$
r(x):=|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}, \quad x \in \mathbb{R}^{n}
$$

Let us show that $r(x)$ is partially differentiable at all points $x \in \mathbb{R}^{n} \backslash\{0\}$.

$$
\xi \rightarrow g_{i}(\xi):=\sqrt{x_{1}^{2}+\ldots+\xi^{2}+\ldots+x_{n}^{2}} \in \mathbb{R}
$$

Use the chain rule for the derivatives of real-valued functions (cf. standard courses in Calculus) \Longrightarrow

$$
\frac{\partial r}{\partial x_{i}}(x)=\frac{1}{2} \frac{2 x_{i}}{\sqrt{x_{1}^{2}+\ldots+\xi^{2}+{ }_{n}^{2}}}=\frac{x_{i}}{r(x)} .
$$

Generalization: Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be differentiable, then $\mathbb{R}^{n} \ni x \rightarrow f(r(x))$ is partially differentiable at all points $x \in \mathbb{R}^{n} \backslash\{0\}$ and

$$
\frac{\partial}{\partial x_{i}} f(r)=f^{\prime}(r) \cdot \frac{\partial r}{\partial x_{i}}=f^{\prime}(r) \cdot \frac{x_{i}}{r} .
$$

(ii) Cobb-Douglas production function with n inputs

$$
f(x):=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \text { for } \alpha_{i}>0, \quad 1 \leq i \leq n
$$

defined on

$$
U:=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i}>0,1 \leq i \leq n\right\} .
$$

Calculate the so-called marginal-product function of input i

$$
\frac{\partial f}{\partial x_{i}}(x)=\alpha_{i} x_{1}^{\alpha_{1} \alpha_{i}-1} \ldots x_{n}^{\alpha_{n}}=\alpha_{i} \frac{f(x)}{x_{i}} .
$$

Mathematicians will say: multiplicative functions with separable variables, polynomials. Economists are especially interested in the case $\alpha_{i} \in(0,1)$.

This is an example of homogeneous functions of order (degree) $a=\alpha_{1}+\ldots+\alpha_{n}$, which means

$$
f(\lambda x)=\lambda^{a} f(x), \forall \lambda>0, x \in U .
$$

Moreover, the Cobb-Douglas function is log-linear:

$$
\log f(x)=\alpha_{1} \log x_{1}+\ldots+\alpha_{n} \log x_{n}
$$

(iii) Quasilinear utility function:

$$
f(m, x):=m+u(x)
$$

with $m \in \mathbb{R}_{+}$(i.e., $m \geq 0$) and some $u: \mathbb{R} \rightarrow \mathbb{R}$.

$$
\frac{\partial f}{\partial m}=1, \frac{\partial f}{\partial x}=u^{\prime}(x) .
$$

(iv) Constant elasticity of substitution (CES) production function with n inputs, which describes aggregate consumption for n types of goods.

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}\right):=\left(\delta_{1} x_{1}^{\alpha}+\ldots+\delta_{n} x_{n}^{\alpha}\right)^{1 / \alpha}, \\
& \text { with } \alpha>0, \quad \delta_{i}>0 \text { and } \sum_{1 \leq i \leq n} \delta_{i}=1,
\end{aligned}
$$

defined on the open domain

$$
U:=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i}>0,1 \leq i \leq n\right\} .
$$

We calculate the marginal-product function

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}}(x) & =\frac{1}{\alpha}\left(\delta_{1} x_{1}^{\alpha}+\ldots+\delta_{n} x_{n}^{\alpha}\right)^{\frac{1}{\alpha}-1} \cdot \alpha \delta_{i} x_{i}^{\alpha-1} \\
& =\delta_{i} x_{i}^{\alpha-1}\left(\delta_{1} x_{1}^{\alpha}+\ldots+\delta_{n} x_{n}^{\alpha}\right)^{\frac{1-\alpha}{\alpha}} .
\end{aligned}
$$

Note that f is homogeneous : $f(\lambda x)=\lambda f(x)$.
Definition 2.1.4. Let $U \subseteq \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}$ be partially differentiable. Then, the vector

$$
\nabla f(x):=\operatorname{grad} f(x):=\left(\frac{\partial f}{\partial x_{1}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right) \in \mathbb{R}^{n}
$$

is called the gradient of f at point $x \in U$.

Example 2.1.5.

(i) Distance function $r(x)$

$$
\operatorname{grad} r(x)=\frac{x}{r(x)} \in \mathbb{R}^{n}, \quad x \in U:=\mathbb{R}^{n} \backslash\{0\} .
$$

(ii) Let $f, g: U \rightarrow \mathbb{R}$ be partially differentiable. Then

$$
\nabla(f \cdot g)=f \cdot \nabla g+g \cdot \nabla f
$$

Proof. This follows from the product rule

$$
\frac{\partial}{\partial x_{i}}(f g)=f \frac{\partial g}{\partial x_{i}}+g \frac{\partial f}{\partial x_{i}} .
$$

2.2 Directional Derivatives

Fix a directional vector $v \in \mathbb{R}^{n}$ with $|v|=1$ (of unit length!).
Definition 2.2.1. The directional derivative of $f: U \rightarrow \mathbb{R}$ at a point $x \in U$ along the unit vector $v \in \mathbb{R}^{n}$ (i.e., with $|v|=1$) is given by

$$
\partial_{v} f(x):=D_{v} f(x):=\lim _{h \rightarrow 0} \frac{f(x+h v)-f(x)}{h} .
$$

Remark 2.2.2.

(i) Define a new function

$$
h \rightarrow g_{v}(h):=f(x+h v) .
$$

If $g_{v}(h)$ is differentiable at $h=0$, then $f(x)$ is differentiable at point $x \in U$ along direction v and

$$
D_{v} f(x)=g_{v}^{\prime}(0)
$$

(ii) From the above definitions it is clear that the partial derivatives $=$ directional derivatives along the basis vectors $e_{i}, 1 \leq i \leq n$,

$$
\frac{\partial f}{\partial x_{i}}(x)=D_{e_{i}} f(x), 1 \leq i \leq n
$$

Example 2.2.3. Consider the "saddle" function in \mathbb{R}^{2}

$$
f\left(x_{1}, x_{2}\right):=-x_{1}^{2}+x_{2}^{2},
$$

and find $D_{v} f(x)$ along the direction $v:=(\sqrt{2} / 2, \sqrt{2} / 2),|v|=1$. Define

$$
\begin{aligned}
g_{v}(h): & =-\left(x_{1}+h \sqrt{2} / 2\right)^{2}+\left(x_{2}+h \sqrt{2} / 2\right)^{2} \\
& =-x_{1}^{2}+x_{2}^{2}+\sqrt{2} h\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Then $D_{v} f(x)=g_{v}^{\prime}(0)=\sqrt{2}\left(x_{2}-x_{1}\right)$. Note that $D_{v} f(x)=0$ if $x_{1}=x_{2}$. The function f has its minimum at the diagonal $x_{1}=x_{2}$.

Relation between $\nabla f(x)$ and $D_{v} f(x)$:

$$
\begin{equation*}
D_{v} f(x)=\langle\nabla f(x), v\rangle_{\mathbb{R}^{n}}=\sum_{i=1}^{n} \partial_{i} f(x) \cdot v_{i} . \tag{*}
\end{equation*}
$$

Proof. will be done later, as soon as we prove the chain rule for ∇f.

2.3 Higher Order Partials

Let $f: U \rightarrow \mathbb{R}$ be partially differentiable, i.e.,

$$
\exists \frac{\partial}{\partial x_{i}} f: U \rightarrow \mathbb{R} 1 \leq i \leq n
$$

Analogously, for $1 \leq j \leq n$ we can define (if it exists)

$$
\frac{\partial}{\partial x_{j}}\left(\frac{\partial}{\partial x_{i}} f\right): U \rightarrow \mathbb{R}
$$

Notation:

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} \text { or } \frac{\partial^{2} f}{\partial x_{i}^{2}} \quad \text { if } i=j
$$

Warning: In general,

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} \neq \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} \quad \text { if } i \neq j
$$

Theorem 2.3.1 ((A. Schwarz); also known as Young's theorem). Let $U \subseteq \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}$ be twice continuously differentiable, $f \in C^{2}(U)$, (i.e., all derivatives $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}, 1 \leq i, j \leq n$, are continuous). Then for all $x \in U$ and $1 \leq i, j \leq n$

$$
\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{i}}=\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{i}}
$$

i.e., for cross-partial derivatives, the order of differentiation in their computing is irrelevant.

Example: (i) The above theorem works:

$$
f\left(x_{1}, x_{2}\right):=x_{1}^{2}+b x_{1} x_{2}+x_{2}^{2}, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

Counterexample: (ii) The above theorem does not work:

$$
f\left(x_{1}, x_{2}\right):= \begin{cases}x_{1} x_{2} \frac{x_{1}^{2}-x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}, & \left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \backslash\{(0,0)\} \\ 0, & \left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

We calculate

$$
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(0,0)=-1 \neq 1=\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(0,0) .
$$

Reason: $f \notin C^{2}(U)$.

Notation:

$$
\begin{gathered}
D_{i_{k} i_{1}} f, \frac{\partial^{k} f}{\partial x_{i_{k}} \ldots \partial x_{i_{1}}}, \\
\text { for any } i_{1}, \ldots, i_{k} \in\{1, \ldots n\} .
\end{gathered}
$$

In general, for any $v \in \mathbb{R}^{n}$ with $|v|=1$, we have by $(*)$

$$
\left|D_{v} f(x)\right| \leq|\nabla f(x)|_{\mathbb{R}^{n}}
$$

Geometrical interpretation of ∇f : Define the normalized vector

$$
v:=\frac{\nabla f(x)}{|\nabla f(x)|_{\mathbb{R}^{n}}} \in \mathbb{R}^{n} .
$$

Then, for this v

$$
D_{v} f(x)=\langle\nabla f(x), v\rangle_{\mathbb{R}^{n}}=|\nabla f(x)|_{\mathbb{R}^{n}}
$$

In other words, the gradient $\nabla f(x)$ of f at point x is the direction in which the slope of f is the largest in absolute value.

2.4 Total Differentiability

Intuition: Repetition of the 1-dim case
Definition 2.4.1. A function $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at point $x \in \mathbb{R}$ if the following limit exists

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=: g^{\prime}(x) \in \mathbb{R} . \tag{*}
\end{equation*}
$$

Geometrical picture: Locally, i.e., for small $|h| \rightarrow 0$, we can approximate the values of $g(x+h)$ by the linear function $g(x)+a h$ with $a:=g^{\prime}(x) \in \mathbb{R}$. Indeed, the limit (*) can be rewritten as

$$
\lim _{h \rightarrow 0} \frac{g(x+h)-[g(x)+a h]}{h}=0 .
$$

The approximation error $E_{g}(h)$ equals

$$
E_{g}(h):=g(x+h)-[g(x)+a h] \in \mathbb{R}
$$

and it goes to zero with h :

$$
\lim _{h \rightarrow 0} \frac{E_{g}(h)}{h}=0 \quad \text { i.e., } \quad \lim _{h \rightarrow 0} \frac{\left|E_{g}(h)\right|}{|h|}=0 .
$$

The latter can be written as

$$
\begin{aligned}
E_{g}(h) & =o(h) \quad \text { as } \quad h \rightarrow 0, \\
g(x+h) & \sim g(x)+a h \quad \text { as } \quad h \rightarrow 0 .
\end{aligned}
$$

Summary: $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $x \in \mathbb{R}$ if, for points $x+h$ sufficiently close to x, the values $g(x+h)$ admit a "nice" approximation by a linear function $g(x)+a h$, with an error

$$
E_{g}(h):=g(x+h)-g(x)-a h
$$

that goes to zero "faster" than h itself, i.e.,

$$
\lim _{h \rightarrow 0} \frac{\left|E_{g}(h)\right|}{|h|}=0 .
$$

Now we extend the notion of differentiability to functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, for arbitrary $n, m \geq 1$:

$$
\mathbb{R}^{n} \ni x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow f(x)=\left(\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right)=\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right) \in \mathbb{R}^{m}
$$

Definition 2.4.2. Let $U \subset \mathbb{R}^{n}$ be open, and let $f: U \rightarrow \mathbb{R}^{m}$. The function f is (totally) differentiable at a point $x \in U$ if there exists a linear mapping

$$
A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

such that in some neighbourhood of x, (i.e., for small enough $h \in \mathbb{R}^{n}$ with $|h|<\varepsilon$), there is a presentation

$$
\begin{equation*}
f(x+h)=f(x)+A h+E_{f}(h), \tag{**}
\end{equation*}
$$

where the error term

$$
E_{f}(h):=f(x+h)-f(x)-A h \in \mathbb{R}^{m}
$$

obeys

$$
\lim _{h \rightarrow 0} \frac{\left\|E_{f}(h)\right\|_{\mathbb{R}^{m}}}{\|h\|_{\mathbb{R}^{n}}}=0
$$

The derivative $D f(x)$ of f at point x is the matrix A.
Remark 2.4.3.
(i) Each linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be represented by the $m \times n$ matrix (with m rows and n columns)

$$
\left(a_{i j}\right)_{\substack{1 \leq i \leq m \\
1 \leq j \leq n}}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

which describes the action of the linear map A on the canonical basis $\left(e_{j}\right)_{1 \leq j \leq n}$ in $\mathbb{R}^{n}, e_{j}=(\underbrace{0, \ldots, 0,1}_{j}, 0, \ldots, 0)^{\mathrm{t}}$ (vertical column or $n \times 1$ matrix $)$,

$$
A e_{j}=\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right) \in \mathbb{R}^{m}, \quad 1 \leq j \leq n
$$

Below we always identify the linear mapping $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with this matrix, which acts as

$$
A h:=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
h_{1} \\
h_{2} \\
\vdots \\
h_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{11} h_{1}+\ldots+a_{1 n} h_{n} \\
a_{21} h_{1}+\ldots+a_{2 n} h_{n} \\
\vdots \\
a_{m 1} h_{1}+\ldots+a_{m n} h_{n}
\end{array}\right) \in \mathbb{R}^{m}
$$

whereby the vector $h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{R}^{n}$ is considered as an $n \times 1$ matrix. The identity (**) can be rewritten in coordinate form as

$$
\left\{\begin{array}{c}
f_{i}(x+h)=f_{i}(x)+\sum_{j=1}^{n} a_{i j} h_{j}+E_{i}(h) \\
i=1, \ldots, m
\end{array}\right.
$$

with

$$
\lim _{h \rightarrow 0} \frac{\left|E_{i}(h)\right|}{\|h\|_{\mathbb{R}^{n}}}=0
$$

It is obvious that the vector-valued function $f: U \rightarrow \mathbb{R}^{m}$ is differentiable at a point $x \in U$ if and only if all coordinate mappings $f_{i}: U \rightarrow \mathbb{R}, 1 \leq i \leq m$, are differentiable.
(ii) Symbolically we write

$$
E_{f}(h)=o\left(\|h\|_{\mathbb{R}^{n}}\right), \text { as } h \rightarrow 0
$$

(iii) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (i.e., $m=1$). Then

$$
A=\left(\begin{array}{llll}
a_{1}, & a_{2}, & \ldots, & a_{n}
\end{array}\right)=\left(a_{j}\right)_{j=1}^{n}(1 \times n \text {-matrix })
$$

and

$$
f(x+h)=f(x)+\sum_{j=1}^{n} a_{j} h_{j}+E_{f}(h)
$$

where $E_{f}(h) \in \mathbb{R}$ is such that

$$
\lim _{h \rightarrow 0} \frac{\left|E_{f}(h)\right|}{\|h\|}=0
$$

Theorem 2.4.4. Let $f: U \rightarrow \mathbb{R}^{m}$ be differentiable at a point $x \in U$, i.e.,

$$
f(x+h)=f(x)+A h+o\left(\|h\|_{\mathbb{R}^{n}}\right)
$$

with a matrix

$$
A=\left(a_{i j}\right)_{\substack{1 \leq i \leq m . \\ 1 \leq j \leq n}} .
$$

Then:
(i) f is continuous at x
(ii) All components $f_{i}: U \rightarrow \mathbb{R}, 1 \leq i \leq m$, are partially differentiable at the point x and

$$
\frac{\partial f_{i}(x)}{\partial x_{j}}=a_{i j}, \quad 1 \leq j \leq n
$$

In other words, the derivative $D f(x)$ of f at x is the matrix of first partial derivatives $\frac{\partial f_{i}(x)}{\partial x_{j}}$ of the component functions f_{i} :

$$
D f(x)=\left(\begin{array}{cccc}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \frac{\partial f_{1}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{1}(x)}{\partial x_{n}} \\
\frac{\partial f_{2}(x)}{\partial x_{1}} & \frac{\partial f_{2}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{2}(x)}{\partial x_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{m}(x)}{\partial x_{1}} & \frac{\partial f_{m}(x)}{\partial x_{2}} & \ldots & \frac{\partial f_{m}(x)}{\partial x_{n}}
\end{array}\right)
$$

Such a matrix is called the Jacobian matrix of the function f. Notation:

$$
D f(x)=\frac{\partial\left(f_{1}, \ldots, f_{m}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}(x)=\left(\frac{\partial f_{i}}{\partial x_{j}}(x)\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}
$$

Proof of Theorem 2.4.4.
(i) We have

$$
f(x+h)=f(x)+A h+o(\|h\|), \text { as } h \rightarrow 0 .
$$

Since $\lim _{h \rightarrow 0} A h=0$ and $\lim _{h \rightarrow 0} o(\|h\|)=0$, finally

$$
\lim _{h \rightarrow 0} f(x+h)=f(x) .
$$

(ii) For each $1 \leq i \leq m$

$$
f_{i}(x+h)=f_{i}(x)+\sum_{j=1}^{n} a_{i j} h_{j}+E_{i}(h), \quad \text { with } E_{i}(h)=o(\|h\|) \text { as } h \rightarrow 0 .
$$

Hence for

$$
h:=t e_{j} \in \mathbb{R}^{n}, \quad\|h\|=|t|, \quad t \in \mathbb{R}, 1 \leq j \leq n
$$

with $e_{j}=(\underbrace{0, \ldots, 0,1}_{j}, 0, \ldots, 0)$ being the canonical basis vector in \mathbb{R}^{n}, it holds

$$
\begin{aligned}
f_{i}\left(x+t e_{j}\right) & =f_{i}(x)+t a_{i j}+E_{i}\left(t e_{j}\right), \\
\frac{\partial f_{i}}{\partial x_{j}}(x): & =\lim _{t \rightarrow 0} \frac{f_{i}\left(x+t e_{j}\right)-f_{i}(x)}{t}=a_{i j}+\lim _{t \rightarrow 0} \frac{E_{i}\left(t e_{j}\right)}{t}=a_{i j} .
\end{aligned}
$$

Warning: The inverse statement is not true! Partial differentiability alone does not imply total differentiability. However, the continuity of all $x \mapsto \frac{\partial f_{i}}{\partial x_{j}}(x)$ would be sufficient to guarantee total differentiability (cf. Theorem 2.4.5 below).

For functions of real variables $f: U \rightarrow \mathbb{R}^{m}, x \in U \subseteq \mathbb{R}$ with $n=1$, the notions of partial and total differentiability coincide. So, the total differentiability is a new concept only in the multidimensional case $n>1$.

Theorem 2.4.5 (without proof here). Let $U \subset \mathbb{R}^{n}$ be open, and let $f: U \rightarrow \mathbb{R}^{m}$ be partially differentiable. If all partial derivatives

$$
\frac{\partial f_{i}}{\partial x_{j}}, 1 \leq i \leq m, 1 \leq j \leq n
$$

are continuous at the point $x \in U$, then f is (totally) differentiable at x.
We summarize: For $f: U \rightarrow \mathbb{R}^{m}$ the following implications hold:

$$
\begin{gathered}
\text { continuously partially differentiable } \\
\Downarrow \\
\text { totally differentiable } \\
\Downarrow \\
\text { partially differentiable. }
\end{gathered}
$$

Example 2.4.6. Let $C:=\left(c_{i j}\right)_{1 \leq i, j \leq n}$ be a symmetric $n \times n$ matrix, i.e.,

$$
c_{i j}=c_{i j}, \quad \text { for all } i, j,
$$

and let

$$
f(x):=\langle C x, x\rangle_{\mathbb{R}^{n}}:=\sum_{i, j=1}^{n} c_{i j} x_{i} x_{j}, \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

be the corresponding quadratic form. Then

$$
\begin{aligned}
f(x+h) & =\langle C(x+h), x+h\rangle_{\mathbb{R}^{n}} \\
& =\langle C x, x\rangle+\langle C x, h\rangle+\langle C h, x\rangle+\langle C h, h\rangle \\
& =\langle C x, x\rangle+2\langle C x, h\rangle+\langle C h, h\rangle \\
& =f(x)+\langle a, h\rangle+E(h),
\end{aligned}
$$

with

$$
\begin{aligned}
a & =2 C x, \quad E(h)=\langle C h, h\rangle_{\mathbb{R}^{n}}, \quad|E(h)| \leq\|C\| \cdot\|h\|_{\mathbb{R}^{n}}{ }^{2} \\
\|C\|: & =\|C\|_{\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}}:=\max _{1 \leq i \leq n}\left(\sum_{1 \leq j \leq n} c_{i j}^{2}\right)^{1 / 2}
\end{aligned}
$$

Since

$$
\lim _{h \rightarrow 0} \frac{\left|E_{f}(h)\right|}{\|h\|}=0
$$

we conclude that

$$
\exists D f(x)=2 C x \in \mathbb{R}^{n}
$$

Alternatively, we can calculate the partial derivatives

$$
\frac{\partial f}{\partial x_{j}}(x)=2 \sum_{i=1}^{n} c_{i j} x_{i}=2 \sum_{i=1}^{n} c_{j i} x_{i}=2(C x)_{j} \in \mathbb{R},
$$

which are continuous functions of x. So, by Theorem 2.4.5

$$
\exists D f(x)=2 C x=2\left((C x)_{j}\right)_{j=1}^{n} \in \mathbb{R}^{n}(1 \times n-\text { matrix }) .
$$

Remark 2.4.7 (Remark to Theorem 2.4.5). Partially differentiable functions need not be continuous! The reason is that we consider limits along the axes, but not arbitrary sequences $\left(x_{k}\right)_{k \geq 1} \subset U$ converging to a given point $x \in U$.

Exercise 2.4.8. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{y}{x^{2}} e^{-\frac{y}{x^{2}}}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

Show that:
(i) f is continuous on every line drawn through $(0,0)$;
(ii) f is not continuous at $(0,0)$.
(Hint: Consider $y_{k}:=c x_{k}^{2}$ with $x_{k} \rightarrow 0$ as $\left.k \rightarrow \infty.\right)$

2.5 Chain Rule

Theorem 2.5.1 (Chain Rule, without proof). Let us be given two functions,

$$
f: U \rightarrow \mathbb{R}^{m} \text { and } g: V \rightarrow \mathbb{R}^{p}
$$

where $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{m}$ are open and $f(U) \subseteq V$. Suppose that f is differentiable at some $x \in U$ and g respectively at $y:=f(x)$. Then the composite function

$$
h:=g \circ f: U \rightarrow \mathbb{R}^{p}
$$

is differentiable at x, and its derivative is given by (via matrix multiplication)

$$
\begin{equation*}
D h(x)=\underbrace{D g(f(x))}_{p \times m} \underbrace{D f(x)}_{m \times n} .(p \times n \text {-matrix }) \tag{*}
\end{equation*}
$$

Idea of the proof. For any $x, \tilde{x} \in U$

$$
\begin{aligned}
h(x)-h(\tilde{x}) & =g(f(x))-g(f(\tilde{x})) \\
g \text { diff. } & \Rightarrow h(x)-h(\tilde{x}) \sim D g(f(x))(f(x)-f(\tilde{x})), \text { as } f(\tilde{x}) \rightarrow f(x) \\
f \text { diff. } & \Rightarrow h(x)-h(\tilde{x}) \sim D g(f(x)) D f(x)(x-\tilde{x}), \text { as } \tilde{x} \rightarrow x
\end{aligned}
$$

A rigorous proof should take into account the error terms.
In $(*)$ we have the product of two matrices: Let B be a $p \times m$ matrix and A be an $m \times n$ matrix,

$$
\begin{aligned}
& A=\left(a_{i j}\right)_{\substack{1 \leq i \leq m \\
1 \leq j \leq n}}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)(m \times n), \\
& B=\left(b_{k i}\right)_{\substack{1 \leq k \leq p \\
1 \leq i \leq m}}=\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & & \vdots \\
a_{p 1} & a_{p 2} & \ldots & a_{p m}
\end{array}\right)(p \times m) .
\end{aligned}
$$

Then their product $C:=B A$ is a $p \times n$ matrix defined as follows:

$$
B A=: C=\left(c_{k j}\right)_{\substack{1 \leq k \leq p \\
1 \leq j \leq n}}=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & & \vdots \\
c_{p 1} & c_{p 2} & \ldots & c_{p n}
\end{array}\right) \text {, }
$$

with the entries

$$
c_{k j}:=\sum_{i=1}^{m} b_{k i} \cdot a_{i j}, \quad 1 \leq k \leq p, \quad 1 \leq j \leq n .
$$

Typical applications of the Chain Rule

(i) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we define

$$
\begin{gathered}
h:=g \circ f: \mathbb{R} \rightarrow \mathbb{R} . \\
\mathbb{R} \ni t \rightarrow\left(\begin{array}{c}
f_{1}(t) \\
\vdots \\
f_{n}(t)
\end{array}\right)=: x \in \mathbb{R}^{n}, \\
\mathbb{R}^{n} \ni x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow g\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}, \\
\mathbb{R} \ni t \rightarrow h(t):=g\left(f_{1}(t), \ldots, f_{n}(t)\right) .
\end{gathered}
$$

Then

$$
\begin{aligned}
D f(t) & =\left(\begin{array}{c}
f_{1}^{\prime}(t) \\
\vdots \\
f_{n}^{\prime}(t)
\end{array}\right) \in \mathbb{R}^{n}, \\
D g(x) & =\nabla g(x)=\left(\frac{\partial g}{\partial x_{1}}(x), \ldots, \frac{\partial g}{\partial x_{n}}(x)\right) \in \mathbb{R}^{n} .
\end{aligned}
$$

By Theorem 2.5.1

$$
\begin{aligned}
h^{\prime}(t) & =D g[f(t)] D f(t) \\
& =\left(\frac{\partial g}{\partial x_{1}}(f(t)), \ldots, \frac{\partial g}{\partial x_{n}}(f(t))\right) \times\left(\begin{array}{c}
f_{1}^{\prime}(t) \\
\vdots \\
f_{n}^{\prime}(t)
\end{array}\right) \\
& =\left\langle\nabla_{x} g(f(t)), \nabla f(t)\right\rangle_{\mathbb{R}^{n}}=\sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}}(f(t)) \cdot f_{i}^{\prime}(t) \in \mathbb{R} .
\end{aligned}
$$

Example 2.5.2 (Numerical Example). Let

$$
f(t)=\binom{t}{t^{2}}=:\binom{x_{1}}{x_{2}}=x \in \mathbb{R}^{2}, \quad g(x)=g\left(x_{1}, x_{2}\right):=x_{1}-x_{2}^{2}
$$

Then

$$
h(t)=g(f(t))=t-t^{4}, \quad h^{\prime}(t)=1-4 t^{3}, t \in \mathbb{R}
$$

On the other hand

$$
f^{\prime}(t)=\binom{1}{2 t}, \quad \nabla g\left(x_{1}, x_{2}\right)=\left(1,-2 x_{2}\right)
$$

and hence (substituting x_{2} by t^{2})

$$
h^{\prime}(t)=\left(1,-2 t^{2}\right) \times\binom{ 1}{2 t}=1-4 t^{3}
$$

(ii) Applications to directional derivatives (Section 2.2 revisited)

Let $U \subset \mathbb{R}^{n}$ be open, and let $f: U \rightarrow \mathbb{R}$ be differentiable. Choose some unit vector $v \in \mathbb{R}^{n}$ with $|v|=1$. Then the directional derivative along v is defined by

$$
\begin{aligned}
\partial_{v} f(x): & =\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t} \\
& =\left.\frac{d f(x+t v)}{d t}\right|_{t=0}
\end{aligned}
$$

Theorem 2.5.3. Let $f: U \rightarrow \mathbb{R}$ be totally differentiable and let $v \in \mathbb{R}^{n}$ with $|v|=1$. Then, for any $x \in U$

$$
\partial_{v} f(x)=\langle\nabla f(x), v\rangle_{\mathbb{R}^{n}}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x) \cdot v_{i}
$$

Proof. By the above definition

$$
\partial_{v} f(x)=\left.g_{v}^{\prime}(t)\right|_{t=0}
$$

with a scalar function

$$
\begin{aligned}
g_{v}: \mathcal{I} & \rightarrow \mathbb{R} \quad \mathcal{I}:=(-\varepsilon, \varepsilon) \subset \mathbb{R}(\text { i.e. } n=m=1) \\
& \mathcal{I} \ni t \rightarrow g_{v}(t)=f(x+t v) \in \mathbb{R}
\end{aligned}
$$

where $\varepsilon>0$ is small enough such that $B_{\varepsilon}(x) \subset U$. But

$$
g_{v}(t)=f(\varphi(t))
$$

where we set

$$
\mathcal{I} \ni t \rightarrow \varphi(t):=x+t v \in \mathbb{R}^{n}, \varphi(0):=x
$$

Obviously, φ is differentiable and $\varphi^{\prime}(t)=v \in \mathbb{R}^{n}$ for all $t \in \mathcal{I}$. By the chain rule (Theorem 2.5.1)

$$
g_{v}^{\prime}(t)=D f(\varphi(t)) \cdot \varphi^{\prime}(t)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\varphi(t)) \cdot v_{i}=\langle\nabla f(\varphi(t)), v\rangle_{\mathbb{R}^{n}}
$$

and for $t=0$

$$
\partial_{v} f(x)=g_{v}^{\prime}(0)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x) \cdot v_{i}=\langle\nabla f(x), v\rangle .
$$

(iii) Further rules: Linearity, i.e., for any $f, g: U \rightarrow \mathbb{R}^{m}$

$$
\begin{aligned}
& D(f+g)=D f+D g \\
& D(\alpha f)=\alpha D f, \alpha \in \mathbb{R}
\end{aligned}
$$

Example: Polar coordinates

$$
x=\binom{r \cos \varphi}{r \sin \varphi}, \quad r>0, \quad \varphi \in \mathbb{R}
$$

Let us be given a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R},\left(x_{1}, x_{2}\right) \rightarrow f\left(x_{1}, x_{2}\right) \in \mathbb{R}$. Then,

$$
g(r, \varphi):=f\binom{r \cos \varphi}{r \sin \varphi}, r>0, \varphi \in \mathbb{R}
$$

defines a differential function $g:(0,+\infty) \times \mathbb{R} \rightarrow \mathbb{R}$ with partial derivatives

$$
\begin{aligned}
& \frac{\partial g(r, \varphi)}{\partial r}=\frac{\partial f(r, \varphi)}{\partial x_{1}} \cos \varphi+\frac{\partial f(r, \varphi)}{\partial x_{2}} \sin \varphi \\
& \frac{\partial g(r, \varphi)}{\partial \varphi}=-r \frac{\partial f(r, \varphi)}{\partial x_{1}} \sin \varphi+r \frac{\partial f(r, \varphi)}{\partial x_{2}} \cos \varphi
\end{aligned}
$$

2.6 Taylor's Formula

Intuition: Review of 1-dim
Let us recall the following:
Theorem 2.6.1 (Mean value theorem). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function (i.e., $f \in C^{1}(\mathbb{R})$). Then for each $a, b \in \mathbb{R}, a<b$, there exists $\theta \in(a, b)$ such that

$$
\begin{equation*}
f(b)-f(a)=f^{\prime}(\theta) \cdot(b-a) . \tag{*}
\end{equation*}
$$

Taylor's formula is a generalization of $(*)$ to $(k+1)$-times differentiable functions $(k=0,1,2, \ldots)$. As a result we get a (finite) series expansion of a function f about a fixed point, up to the $(k+1)$-th Taylor remainder. The following is well known from Calculus:

Definition 2.6.2 (Taylor's Formula). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a $(k+1)$-times continuously differentiable function on an open interval $\mathcal{I} \subset \mathbb{R}$. Then for all $x, x+h \in \mathcal{I}$, we have the Taylor approximation of f

$$
\begin{equation*}
f(x+h)=f(x)+\sum_{l=1}^{k} \frac{f^{(l)}(x)}{l!} h^{l}+E_{k+1} \tag{**}
\end{equation*}
$$

where the $(k+1)$-th error term E_{k+1} can be represented by

$$
E_{k+1}(x, h)=\frac{f^{(k+1)}(x+\lambda h)}{(k+1)!} h^{k+1}
$$

for some $\lambda=\lambda(x, h) \in(0,1)$. Recall that $l!:=l \cdot(l-1) \cdot \ldots \cdot 2 \cdot 1$ and $0!:=1$.
This is the so-called Lagrange form of the remainder term E_{k+1}. Of course, E_{k+1} and λ depend on the point x, around which we write the expansion, as well as on the increment h. Since $\lambda \in(0,1)$, we see that $x+\lambda h$ is some intermediate point between x and $x+\lambda h$. Obviously, $\lim _{h \rightarrow 0} E_{k+1}(x, h) / h^{k}=0$ and hence $E_{k+1}(x, h)=o\left(h^{k}\right), h \rightarrow 0$.

Sometimes, Taylor's formula is written in the equivalent form

$$
f(x+h)=f(x)+\sum_{l=1}^{k} \frac{f^{(l)}(x)}{l!} h^{l}+o\left(h^{k}\right), h \rightarrow 0 .
$$

If $k=0$, we just get the mean value theorem $(*)$

$$
f(x+h)-f(x)=f^{\prime}(x+\lambda h) h, \lambda \in(0,1)
$$

Generalization to several variables

Theorem 2.6.3 (Multi-dimensional Taylor's Formula). Let $U \subseteq \mathbb{R}^{n}$ be open; let $x \in U$ and hence $B_{\delta}(x) \subset U$ for some $\delta>0$. Let

$$
f: U \rightarrow \mathbb{R}
$$

be $(k+1)$-times continuously differentiable (i.e., $\left.f \in C^{k+1}(U)\right) \dot{\text { Then }}$ for any $h \in \mathbb{R}^{n}$ with $\|h\|_{\mathbb{R}^{n}}<\delta$ there exists $\theta=\theta(x, h) \in(0,1)$ such that

$$
\begin{equation*}
f(x+h)=\sum_{0 \leq|\alpha| \leq k} \frac{D^{\alpha} f(x)}{\alpha!} h^{\alpha}+E_{k+1} \tag{***}
\end{equation*}
$$

with $E_{k+1}(x, h)=\sum_{|\alpha|=k+1} \frac{D^{\alpha} f(x+\theta h)}{|\alpha|!} h^{\alpha}$, where the summation is over all (i.e., with all possible permutations) multi-indices

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{Z}_{+}\right)^{n} \text { with order (degree) }|\alpha| \leq k
$$

Multi-index notation:

$$
\begin{gathered}
|\alpha|:=\alpha_{1}+\ldots+\alpha_{n}, \alpha_{i} \in \mathbb{Z}_{+}:=\{0,1,2, \ldots\}, \\
\quad k!:=k \cdot(k-1) \cdot \ldots \cdot 2 \cdot 1,0!:=1, \\
h^{\alpha}=h_{1}^{\alpha_{1}} h_{2}^{\alpha_{2}} \cdots h_{n}^{\alpha_{n}}, h=\left(h_{1}, h_{2}, \cdots, h_{n}\right) \in \mathbb{R}^{n}, \\
D^{\alpha} f(x)=D_{x_{1}}^{\alpha_{1}} D_{x_{2}}^{\alpha_{2}} \cdots D_{x_{n}}^{\alpha_{n}} f(x):=\frac{\partial^{|\alpha|} f(x)}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{n}^{\alpha_{n}}} .
\end{gathered}
$$

Proof will be done below.

Corollary 2.6.4. Under the above conditions

$$
f(x+h)=\sum_{0 \leq|\alpha| \leq k} \frac{D^{\alpha} f(x)}{|\alpha|!} h^{\alpha}+o\left(\|h\|^{k}\right), h \rightarrow 0
$$

Remark 2.6.5.

(i) Actually, the later formula with $o\left(\|h\|^{k}\right)$ is true if we just know that f is k-times differentiable at the point x. But for the Lagrange representation of the error term $E_{k+1}(x, h)$ in Theorem 2.6.3, we have to assume that $f \in C^{k+1}(U)$.
(ii) If we do not allow permutations of indexes, then in Taylor's formula instead of $|\alpha|$! we should take $\alpha_{1}!\ldots \alpha_{n}$!.

Example 2.6.6 (Particular Cases).
(i) Taylor approximation of order $k=2$ for $f \in C^{2}(U)$

$$
\begin{aligned}
f(x+h) & =f(x)+\sum_{i=1}^{n} \partial_{i} f(x) \cdot h_{i}+\frac{1}{2} \sum_{i, j=1}^{n} \partial_{i, j}^{2} f(x) \cdot h_{i} h_{j}+o\left(\|h\|^{2}\right) \\
& =f(x)+\langle\operatorname{grad} f(x), h\rangle_{\mathbb{R}^{n}}+\frac{1}{2}\langle h, \operatorname{Hess} f(x) \cdot h\rangle_{\mathbb{R}^{n}}+o\left(\|h\|^{2}\right), \quad h \rightarrow 0
\end{aligned}
$$

We here use the gradient of f

$$
\operatorname{grad} f(x):=\nabla f(x):=D f(x):=\left(\partial_{1} f(x), \ldots, \partial_{n} f(x)\right) \in \mathbb{R}^{n}
$$

and the Hessian of f (i.e., its matrix of second derivatives)

$$
\operatorname{Hess} f(x):=D^{2} f(x):=\left(\begin{array}{cccc}
\frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right) .
$$

For shorthand,

$$
\operatorname{Hess} f(x):=\left(\partial_{x_{i}} \partial_{x_{j}} f(x)\right)_{\substack{1 \leq i \leq n, 1 \leq j \leq n}}
$$

which is a symmetric $n \times n$ matrix by Theorem 2.3.1.
(ii) For $n=k=2$ we have in the coordinate form

$$
\begin{aligned}
f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)= & f\left(x_{1}, x_{2}\right)+\partial_{x_{1}} f\left(x_{1}, x_{2}\right) h_{1}+\partial_{x_{2}} f\left(x_{1}, x_{2}\right) h_{2} \\
& +\frac{1}{2} \partial_{x_{1}}^{2} f\left(x_{1}, x_{2}\right) h_{1}^{2}+\partial_{x_{1} x_{2}}^{2} f\left(x_{1}, x_{2}\right) h_{1} h_{2} \\
& +\frac{1}{2} \partial_{x_{2}}^{2} f\left(x_{1}, x_{2}\right) h_{2}^{2}+o\left(h_{1}^{2}+h_{2}^{2}\right) .
\end{aligned}
$$

Proof of Theorem 2.6.3. Set

$$
g(t)=f(x+t h), t \in \mathcal{I} \supseteq[0,1] .
$$

Applying the one-dimensional Taylor formula to the function g on an open interval $\mathcal{I} \subset \mathbb{R}$, we get with some $\lambda=\lambda(t) \in(0,1)$

$$
\begin{aligned}
g(t)= & g(0)+g^{\prime}(0) t+\frac{1}{2} g^{\prime \prime}(0) t^{2}+\frac{1}{6} g^{\prime \prime \prime}(0) t^{3}+\ldots \\
& +\frac{1}{k!} g^{(k)}(0) t^{k}+\frac{1}{(k+1)!} g^{(k+1)}(\lambda) t^{k+1}
\end{aligned}
$$

By the chain rule

$$
\begin{gathered}
g^{\prime}(t)=\langle D f(x+t h), h\rangle_{\mathbb{R}^{n}}, g^{\prime \prime}(t)=\left\langle D^{2} f(x+t h) h, h\right\rangle_{\mathbb{R}^{n}}, \ldots \\
\text { and hence } g^{\prime}(0)=\langle D f(x), h\rangle_{\mathbb{R}^{n}}, g^{\prime \prime}(0)=\left\langle D^{2} f(x) h, h\right\rangle_{\mathbb{R}^{n}}, \ldots
\end{gathered}
$$

Finally we put $t=1$ and get the required expression for $g(1)=f(x+h)$.

Example 2.6.7. Compute the Taylor approximation of order two $(k=n=2)$ of the Cobb-Douglas function

$$
f(x, y)=x^{1 / 4} y^{3 / 4} \text { at point }(1,1)
$$

Solution 2.6.8. In the open domain $U=\{x>0, y>0\} \subset \mathbb{R}^{2}$

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{1}{4} x^{-3 / 4} y^{3 / 4}, \quad \frac{\partial f}{\partial y}=\frac{3}{4} x^{1 / 4} y^{-1 / 4} \\
\frac{\partial^{2} f}{\partial x^{2}} & =-\frac{3}{16} x^{-7 / 4} y^{3 / 4}, \quad \frac{\partial^{2} f}{\partial y^{2}}=-\frac{3}{16} x^{1 / 4} y^{-5 / 4} \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial^{2} f}{\partial y \partial x}=\frac{3}{16} x^{-3 / 4} y^{-1 / 4}
\end{aligned}
$$

Evaluating these derivatives at $x=y=1$ gives

$$
\frac{\partial f}{\partial x}=\frac{1}{4}, \quad \frac{\partial f}{\partial y}=\frac{3}{4}, \quad \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} f}{\partial y^{2}}=-\frac{3}{16}, \quad \frac{\partial^{2} f}{\partial x \partial y}=\frac{3}{16}
$$

Therefore,

$$
f(x+t h, y+t g)=1+\frac{1}{4} h+\frac{3}{4} g-\frac{3}{32}\left(h^{2}+g^{2}\right)+\frac{3}{16} h g+o\left(h^{2}+g^{2}\right), \text { as } h, g \rightarrow 0 .
$$

2.7 Implicit Functions

Before we studied explicit functions

$$
\begin{gathered}
f: U \rightarrow \mathbb{R}^{m}, \\
\mathbb{R}^{n} \supset \underbrace{U}_{\text {open }} \ni x \rightarrow f(x)=: y \in \mathbb{R}^{m} \\
\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right) \in \mathbb{R}^{m} .
\end{gathered}
$$

This ideal situation does not always occur in economic models. Frequently, such models are described by "mixed" equations like

$$
\begin{equation*}
F(x, y)=0, \quad F: \underset{\subset \mathbb{R}^{n}}{U_{1}} \times \underset{\subset \mathbb{R}^{m}}{U_{2}} \rightarrow \mathbb{R}^{m} \tag{*}
\end{equation*}
$$

i.e., in coordinate form

$$
\left\{\begin{array}{c}
F_{1}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)=0 \\
\vdots \\
F_{m}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)=0
\end{array}\right.
$$

where $x_{1}, \ldots, x_{n} \in \mathbb{R}$ are called exogenous variables and $y_{1}, \ldots, y_{m} \in \mathbb{R}$ resp. endogenous variables.

In particular, for $m=n=1$ we have

$$
F(x, y)=0, \quad x, y \in \mathbb{R} .
$$

As a rule, we cannot solve (*) by some explicit formula separating the independent variables x_{1}, \ldots, x_{n} on one side and y_{1}, \ldots, y_{m} on the other.

Interpretation: $x=\left(x_{1}, \ldots, x_{n}\right)$ is a vector of parameters and $y=\left(y_{1}, \ldots, y_{m}\right)$ is the output vector we seek to describe the model. If for each $\left(x_{1}, \ldots, x_{n}\right) \in U$ the equation $(*)$ determines a unique value $\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$, we say that we have an implicit function

$$
y=g(x) \in \mathbb{R}^{m}, \quad x \in U
$$

Below we study existence and differentiability properties of implicit functions.

Intuition: 1-dim case:

Let $U \subset \mathbb{R}^{2}$ be open, and consider a differentiable function

$$
F: U \rightarrow \mathbb{R}, \quad(x, y) \rightarrow F(x, y) .
$$

Fix some point $\left(x_{0}, y_{0}\right) \in U$ such that $F\left(x_{0}, y_{0}\right)=0$, and suppose (!!!) that there exists a differentiable function

$$
g: \mathcal{I} \rightarrow \mathbb{R}, \quad x \rightarrow g(x), \quad g\left(x_{0}\right)=y_{0}
$$

defined on some open interval $\mathcal{I} \ni x_{0}$ such that

$$
(x, g(x)) \in U \text { and } F(x, g(x))=0 \text { for all } x \in \mathcal{I}
$$

Differentiating the equation $F(x, g(x))=0$, we get by the Chain Rule that

$$
\frac{\partial}{\partial x} F(x, g(x))+\frac{\partial}{\partial y} F(x, g(x)) \cdot g^{\prime}(x)=0, \quad x \in \mathcal{I}
$$

Assuming that

$$
\frac{\partial}{\partial y} F\left(x_{0}, y_{0}\right) \neq 0
$$

we conclude that

$$
g^{\prime}\left(x_{0}\right)=-\frac{\frac{\partial}{\partial x} F\left(x_{0}, y_{0}\right)}{\frac{\partial}{\partial y} F\left(x_{0}, y_{0}\right)}
$$

Indeed we have the following classical theorem from Calculus.
Theorem 2.7.1 (1-dim Implicit Function Theorem, IFT). Suppose that $F(x, y)$ is a continuously differentiable function on an open domain $U \subset \mathbb{R}^{2}$, (i.e., $F \in C^{1}(U)$, which means that $\partial_{x} F, \partial_{y} F: U \rightarrow \mathbb{R}$ are continuous). Let a point $\left(x_{0}, y_{0}\right) \in U$ be such that $F\left(x_{0}, y_{0}\right)=0$. If

$$
\frac{\partial}{\partial y} F\left(x_{0}, y_{0}\right) \neq 0
$$

then there exist open intervals

$$
\mathcal{I} \ni x_{0}, \quad \mathcal{J} \ni y_{0}, \quad \mathcal{I} \times \mathcal{J} \subset U
$$

and a continuously differentiable function

$$
g: \mathcal{I} \rightarrow \mathcal{J}, \quad g\left(x_{0}\right)=y_{0}
$$

such that $F(x, g(x))=0$ for all $x \in \mathcal{I}$ and

$$
g^{\prime}\left(x_{0}\right)=-\frac{\frac{\partial}{\partial x} F\left(x_{0}, y_{0}\right)}{\frac{\partial}{\partial y} F\left(x_{0}, y_{0}\right)} .
$$

Furthermore, such g is unique: if $(x, y) \in \mathcal{I} \times \mathcal{J}$ and $F(x, y)=0$, then surely $y=g(x)$.

Remark 2.7.2. The proof of the existence of g in Theorem 2.7.1 is based on the Banach Contraction Theorem (Th. 1.12) and is highly non-trivial. This is a local result since it is stated on some (probably very small) open intervals $\mathcal{I} \ni x_{0}, \mathcal{J} \ni y_{0}$.

Interpretation in economics: Comparative Statistics:
The IFT allows to study in what direction does the equilibrium $y(x)$ change in a control variable x. The equilibrium is typically described by some equation $F(x, y)=0$.

Example 2.7.3.

(i) Let $\mathcal{I}=(-a, a)$, consider the function describing an upper half-circle

$$
y:=g(x)=\sqrt{a^{2}-x^{2}}, \quad x \in \mathcal{I} .
$$

By direct calculations

$$
\exists g^{\prime}(x)=-\frac{x}{\sqrt{a^{2}-x^{2}}}, x \in \mathcal{I} .
$$

Let us check that IFT gives the same result. We have

$$
\begin{aligned}
& y^{2}:=g^{2}(x)=a^{2}-x^{2} \Longleftrightarrow \\
& F(x, y):=x^{2}+y^{2}-a^{2}=0
\end{aligned}
$$

on the open domain $U:=\{(x, y) \mid x \in \mathcal{I}, y>0\} \subset \mathbb{R}^{2}$. So, for any $(x, y) \in U$

$$
\begin{aligned}
\frac{\partial F}{\partial x} & =2 x, \quad \frac{\partial F}{\partial y}=2 y \neq 0, \quad \text { and } \\
\exists g^{\prime}(x) & =-\frac{2 x}{2 \sqrt{a^{2}-x^{2}}}=-\frac{x}{\sqrt{a^{2}-x^{2}}} .
\end{aligned}
$$

(ii) A cubic implicit function

$$
F(x, y)=x^{2}-3 x y+y^{3}-7=0, \quad(x, y) \in \mathbb{R}^{2}
$$

with

$$
\left(x_{0}, y_{0}\right)=(4,3) \quad \text { and } \quad F\left(x_{0}, y_{0}\right)=0
$$

Indeed,

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=2 x-3 y=-1 \text { at }\left(x_{0}, y_{0}\right) \\
& \frac{\partial F}{\partial y}=-3 x+3 y^{2}=15 \text { at }\left(x_{0}, y_{0}\right)
\end{aligned}
$$

Theorem 2.7.1 tells us that $F(x, y)=0$ indeed defines $y=g(x)$ as a C^{1} function of x around the point with coordinates $x_{0}=4$ and $y_{0}=3$. Furthermore,

$$
y^{\prime}\left(x_{0}\right)=g^{\prime}\left(x_{0}\right)=-\frac{\frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)}{\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)}=\frac{1}{15} .
$$

(iii) A unit circle is described by

$$
\begin{aligned}
& F(x, y)=x^{2}+y^{2}-1=0 \\
& \text { with } \frac{\partial F}{\partial x}=2 x, \quad \frac{\partial F}{\partial y}=2 y .
\end{aligned}
$$

(a) Let first $\left(x_{0}, y_{0}\right)=(0,1)$, so that $\frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)=0, \frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)=2 \neq 0$. By Theorem 2.7.1 the implicit function $y=g(x)$ exists around $x_{0}=0$ and $y_{0}=1$, with $g^{\prime}\left(x_{0}\right)=-0 / 2=0$. In this case we have an explicit formula

$$
\begin{aligned}
y^{2}(x) & =1-x^{2} \Rightarrow \\
y(x) & =\sqrt{1-x^{2}}>0 .
\end{aligned}
$$

We also can compute directly

$$
y^{\prime}(x)=\frac{1}{2} \frac{-2 x}{\sqrt{1-x^{2}}}, \quad y^{\prime}\left(x_{0}\right)=0 .
$$

(b) On the other hand, no nice function $y=g(x)$ exists around the initial point $\left(x_{0}, y_{0}\right)=(1,0)$. Actually, Theorem 2.7.1 does not apply since $\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)=0$. On the picture we can see two branches tending to the point $(1,0)$:

$$
y(x)= \pm \sqrt{1-x^{2}} .
$$

IFT, Multidimensional Case

Theorem 2.7.4 (Multidimensional IFT). Let $U_{1} \subset \mathbb{R}^{n}$ and $U_{2} \subset \mathbb{R}^{m}$ be open domains and let

$$
F: U_{1} \times U_{2} \rightarrow \mathbb{R}^{m}, \quad(x, y) \rightarrow F(x, y)
$$

be continuously differentiable, i.e., $F \in C^{1}\left(U_{1} \times U_{2}\right)$, which means that all $\frac{\partial F_{i}}{\partial x_{j}}, \frac{\partial F_{i}}{\partial y_{k}}$: $U_{1} \times U_{2} \rightarrow \mathbb{R}$ are continuous, $1 \leq j \leq n, 1 \leq i, k \leq m$. Let a point $\left(x_{0}, y_{0}\right) \in U_{1} \times U_{2}$ be such that $F\left(x_{0}, y_{0}\right)=0$. Suppose that the $m \times m$-matrix of partial derivatives w.r.t. $y=\left(y_{1}, \ldots, y_{m}\right)$

$$
\frac{\partial F}{\partial y}=\frac{\partial\left(F_{1}, \ldots, F_{m}\right)}{\partial\left(y_{1}, \ldots, y_{m}\right)}=\left(\begin{array}{cccc}
\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} & \cdots & \frac{\partial F_{1}}{\partial y_{m}} \\
\frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}} & \cdots & \frac{\partial F_{2}}{\partial y_{m}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial F_{m}}{\partial y_{1}} & \frac{\partial F_{m}}{\partial y_{2}} & \cdots & \frac{\partial F_{m}}{\partial y_{m}}
\end{array}\right)
$$

is invertible at the point $\left(x_{0}, y_{0}\right)$, i.e., its determinant

$$
\operatorname{det} \frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right) \neq 0
$$

Then, there exist:
(i) open neighbourhoods $V_{1} \subseteq U_{1}$ of x_{0} resp. $V_{2} \subseteq U_{2}$ of y_{0} (in general, they can be smaller than U_{1} resp. U_{2}),
(ii) a continuously differentiable function

$$
g: V_{1} \rightarrow V_{2}, \text { with } g\left(x_{0}\right)=y_{0}
$$

such that

$$
F(x, g(x))=0 \text { for all } x \in V_{1} .
$$

Such function is unique in the following sense: if $(x, y) \in V_{1} \times V_{2}$ obey $F(x, y)=0$, then $y=g(x)$. Furthermore, the derivative at point x_{0} equals

$$
\underbrace{D g\left(x_{0}\right)}_{m \times n}=-\underbrace{\left[\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)\right]^{-1}}_{m \times m} \cdot \underbrace{\frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)}_{m \times n} .
$$

Example 2.7.5 (Special Cases).
(i) $m=1$, i.e., $F: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$,

$$
F\left(x_{1}, \ldots, x_{n} ; y_{1}\right)=0 .
$$

The implicit function

$$
y=g\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}
$$

exists under the sufficient condition

$$
\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right) \neq 0
$$

Then $D g\left(x_{0}\right)=\nabla g\left(x_{0}\right)=\left(\partial_{i} g\left(x_{0}\right)\right)_{i=1}^{n}$, whereby the partial derivatives $\partial_{j} g\left(x_{0}\right)$ w.r.t. x_{j} are given by

$$
\partial_{j} g\left(x_{0}\right)=-\frac{\partial_{j} F\left(x_{0}, y_{0}\right)}{\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)}, \quad 1 \leq j \leq n .
$$

(ii) $n=1, m=2$, i.e., $F: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
\left\{\begin{array}{l}
F_{1}\left(x, y_{1}, y_{2}\right)=0, \\
F_{2}\left(x, y_{1}, y_{2}\right)=0 .
\end{array}\right.
$$

The sufficient condition is stated in terms of

$$
\frac{\partial F}{\partial y}=\left(\begin{array}{ll}
\frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\
\frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}}
\end{array}\right)
$$

namely,

$$
\operatorname{det} \frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)=\left(\frac{\partial F_{1}}{\partial y_{1}} \cdot \frac{\partial F_{2}}{\partial y_{2}}-\frac{\partial F_{1}}{\partial y_{2}} \cdot \frac{\partial F_{2}}{\partial y_{1}}\right)\left(x_{0}, y_{0}\right) \neq 0 .
$$

Then there exists $g(x)=\left(g_{1}(x), g_{2}(x)\right) \in \mathbb{R}^{2}$ around x_{0} and

$$
D g\left(x_{0}\right)=\binom{g_{1}^{\prime}\left(x_{0}\right)}{g_{2}^{\prime}\left(x_{0}\right)}=-\left(\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)\right)^{-1} \cdot\binom{\frac{\partial F_{1}}{\partial x}\left(x_{0}, y_{0}\right)}{\frac{\partial F_{2}}{\partial x}\left(x_{0}, y_{0}\right)} .
$$

Numerical Example: $n=1, m=2$, i.e., $F: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
F\left(x, y_{1}, y_{2}\right)=\left\{\begin{array}{l}
-2 x^{2}+y_{1}^{2}+y_{2}^{2}=0, \\
x^{2}+e^{y_{1}-1}-2 y_{2}=0
\end{array}\right.
$$

at point $x_{0}=1, y_{0}=(1,1)$. After calculations

$$
D_{y} F\left(x, y_{1}, y_{2}\right)=\left(\begin{array}{cc}
2 y_{1} & 2 y_{2} \\
e^{y_{1}-1} & -2
\end{array}\right)
$$

and at the point $\left(x_{0}, y_{0}\right) \in \mathbb{R} \times \mathbb{R}^{2}$

$$
\begin{aligned}
D_{y} F\left(x_{0}, y_{0}\right) & =\left(\begin{array}{cc}
2 & 2 \\
1 & -2
\end{array}\right) \\
\operatorname{det} D_{y} F\left(x_{0}, y_{0}\right) & =2 \cdot(-2)-1 \cdot 2=-6 \neq 0
\end{aligned}
$$

The inverse matrix

$$
\left(\frac{\partial F}{\partial y}\left(x_{0}, y_{0}\right)\right)^{-1}=\frac{1}{-6} \cdot\left(\begin{array}{cc}
-2 & -2 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 / 3 & 1 / 3 \\
1 / 6 & -1 / 3
\end{array}\right)
$$

Also, by direct calculations

$$
D_{x} F\left(x_{0}, y_{0}\right)=\binom{-4}{2}
$$

Thus,

$$
\frac{d g}{d x}\left(x_{0}\right)=\left(\begin{array}{cc}
1 / 3 & 1 / 3 \\
1 / 6 & -1 / 3
\end{array}\right) \cdot\binom{-4}{2}=\binom{-2 / 3}{-2}
$$

Reminder: Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { with } \operatorname{det} A:=a d-b c \neq 0
$$

Then, the inverse matrix is calculated by

$$
A^{-1}=\frac{1}{\operatorname{det} A} \cdot\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) .
$$

2.8 Inverse Functions

Let $f: U \rightarrow \mathbb{R}^{n}, U \subset \mathbb{R}^{n}$ - open set (now $m=n!$).
Problem: Does there exist an inverse mapping

$$
g:=f^{-1}: f(U) \rightarrow U ?
$$

Theorem 2.8.1. Let $U \subset \mathbb{R}^{n}$ be open domains and let $f: U \rightarrow \mathbb{R}^{n}$ be continuously differentiable, i.e., $f \in C^{1}(U)$. Let $x_{0} \in U$ and $y_{0}:=f\left(x_{0}\right)$. Suppose that the Jacobi matrix of partial derivatives

$$
D f=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right)
$$

is invertible at point x_{0}, i.e., its determinant $\neq 0$. Then, there exist open neighbourhoods $U_{0} \subseteq U$ of x_{0} resp. $V_{0} \subseteq \mathbb{R}^{n}$ of y_{0} such that the mapping

$$
f: U_{0} \rightarrow V_{0}
$$

is one-to-one (bijection) and the inverse function

$$
\begin{aligned}
g: & =f^{-1}: V_{0} \rightarrow U_{0}, \quad \text { acting by } \\
\left(f^{-1} \circ f\right)(x) & =x,\left(f \circ f^{-1}\right) y=y, \forall x \in U_{0}, \forall y \in V_{0},
\end{aligned}
$$

is continuously differentiable on V_{0}. Furthermore, the following holds:

$$
D g\left(y_{0}\right)=\left[D f\left(x_{0}\right)\right]^{-1}
$$

Proof. Define the function

$$
\begin{gathered}
F: U \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
F(x, y):=y-f(x)
\end{gathered}
$$

Then $F\left(x_{0}, y_{0}\right)=0$ and

$$
\frac{\partial F}{\partial x}(x, y)=-D f(x), \quad \frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)=-D f\left(x_{0}\right) \neq 0, \quad \frac{\partial F}{\partial y}(x, y)=\operatorname{Id}_{\mathbb{R}^{n}}
$$

where $\operatorname{Id}_{\mathbb{R}^{n}}$ is the identity $n \times n$-matrix. We claim that the equation

$$
F(x, y):=y-f(x)=0
$$

locally defines the implicit function $x:=g(y)=f^{-1}(y)$. Indeed, by Theorem 2.8.1 there exist $V_{0} \subseteq \mathbb{R}^{n}$ and a function $g: V_{0} \rightarrow \mathbb{R}^{n}, g \in C^{1}\left(V_{0}\right)$, such that

$$
x=g(y), y=f(g(y)), y \in V_{0} .
$$

So,

$$
g=f^{-1} \text { on } V_{0}
$$

and

$$
D g\left(y_{0}\right)=-\left[\frac{\partial F}{\partial x}\left(x_{0}, y_{0}\right)\right]^{-1} \cdot \operatorname{Id}_{\mathbb{R}^{n}}=-\left[D f\left(x_{0}\right)\right]^{-1}
$$

Special case: $n=1$ and $f: U \rightarrow \mathbb{R}$. The sufficient condition is

$$
\begin{gathered}
f^{\prime}\left(x_{0}\right) \neq 0 \\
\text { Then, } g^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)} .
\end{gathered}
$$

Example 2.8.2. Let

$$
\begin{gathered}
f\binom{x}{y}:=\binom{x^{2}-y^{2}}{2 x y} \in \mathbb{R}^{2}, \quad x, y \in \mathbb{R} . \quad \text { Then, } \\
D f(x, y)=\frac{\partial f(x, y)}{\partial(x, y)}=\left(\begin{array}{cc}
2 x & -2 y \\
2 y & 2 x
\end{array}\right), \quad \operatorname{det} D f(x, y)=4\left(x^{2}+y^{2}\right) .
\end{gathered}
$$

By IFT, f is (locally) invertible at every point $(x, y) \in \mathbb{R}^{2}$ except $(0,0)$. But globally f is not one-to-one, since for all $(x, y) \in \mathbb{R}^{2}$

$$
f\binom{x}{y}=f\binom{-x}{-y} .
$$

2.9 Unconstrained Optimization

We now turn to study of optimization theory under assumptions of differentiability.
Definition 2.9.1. Let $U \subset \mathbb{R}^{n}$ be an open domain and let

$$
f: U \rightarrow \mathbb{R}
$$

be an objective function whose extrema we would like to analyse.
(i) A point $x^{*} \in U$ is a local maximum (resp. minimum) of f if there exists a ball $B_{\varepsilon}\left(x^{*}\right) \subset U$ such that for all $x \in B_{\varepsilon}\left(x^{*}\right)$

$$
f\left(x^{*}\right) \geq f(x)\left(\text { resp. } f\left(x^{*}\right) \leq f(x)\right)
$$

Local max or min are called local extrema.
(ii) A point $x^{*} \in U$ is a global (or absolute) maximum (resp.minimum) of f if for all $x \in U$

$$
f\left(x^{*}\right) \geq f(x)\left(\text { resp. } f\left(x^{*}\right) \leq f(x)\right)
$$

(iii) A point $x^{*} \in U$ is a strict local maximum (resp. minimum) of f if there exists a ball $B_{\varepsilon}\left(x^{*}\right) \subset U$ such that for all $x \neq x^{*}$ in $B_{\varepsilon}\left(x^{*}\right)$

$$
f\left(x^{*}\right)>f(x)\left(\text { resp. } f\left(x^{*}\right)<f(x)\right) .
$$

Remark 2.9.2. In the definition of the global extrema, the function $f: U \rightarrow \mathbb{R}^{n}$ can be defined on any domain U, which is not necessarily open.

We want to use methods of Calculus to find local extrema. So, we need smoothness (i.e., differentiability) of f.

2.10 First-Order Conditions

Aim: To find necessary conditions for local extrema.
Theorem 2.10.1 (Necessary Condition for Local Extrema). Let $U \subset \mathbb{R}^{n}$ be an open domain and $f: U \rightarrow \mathbb{R}$ be partially differentiable on U (i.e., all its partial derivatives $\partial f / \partial x_{i}: U \rightarrow \mathbb{R}, 1 \leq i \leq n$, exist). Then,

$$
\begin{gathered}
x^{*} \in U \text { is a local extremum for } f \\
\Longrightarrow \operatorname{grad} f\left(x^{*}\right):=\nabla f\left(x^{*}\right)=\left(\frac{\partial f}{\partial x_{1}}\left(x^{*}\right), \ldots, \frac{\partial f}{\partial x_{n}}\left(x^{*}\right)\right)=0 .
\end{gathered}
$$

Proof. For $i=1, \ldots, n$ define a function

$$
\begin{gathered}
t \rightarrow g_{i}(t):=f\left(x^{*}+t e_{i}\right), \text { where } \\
e_{i}=(0, \ldots, 0, \underbrace{1}_{i}, 0, \ldots, 0) \in \mathbb{R}^{n} \text { is a unit basis vector in } \mathbb{R}^{n} .
\end{gathered}
$$

Here $t \in(-\varepsilon, \varepsilon)$ with a sufficiently small $\varepsilon>0$ such that

$$
\left\{x^{*}+t e_{i} \mid-\varepsilon<t<\varepsilon\right\} \subset B_{\varepsilon}\left(x^{*}\right) \subset U \text { for all } 1 \leq i \leq n
$$

If x^{*} is a local extremum for $f\left(x_{1}, \ldots, x_{n}\right)$, then clearly each real function $g_{i}(t):(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$ has a local extremum at $t=0$. Applying the one-dimensional necessary condition for extrema (well known from Calculus), we conclude that

$$
\frac{\partial f}{\partial x_{i}}\left(x^{*}\right)=g_{i}^{\prime}(0)=0
$$

2.11 Second-Order Conditions

Aim: To find sufficient conditions for local extrema.
Definition 2.11.1. Any point $x^{*} \in U$ satisfying the 1 st condition $\nabla f\left(x^{*}\right)=0$ is called a critical point of f on U.

The 1st order conditions for local optima do not distinguish between maxima and minima. To determine whether some critical point $x^{*} \in U$ is a local max or min, we need to examine the behaviour of the second derivative $D^{2} f\left(x^{*}\right)$. To this end, we assume that f is twice continuously differentiable on U, i.e., $f \in C^{2}(U)$, which means that all $\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}: U \rightarrow \mathbb{R}$ are continuous, $1 \leq i, j \leq n$. To formulate the sufficient conditions we need to use the Hessian of f, which is the $n \times n$ matrix of 2 nd partial derivatives:

$$
\operatorname{Hess} f(x):=D^{2} f(x):=\left(\begin{array}{cccc}
\frac{\partial^{2} f(x)}{x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(x)}{\partial x_{n}^{2}}
\end{array}\right) .
$$

Since $f \in C^{2}(U)$, by Theorem 2.3.1

$$
\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{i}}, \quad 1 \leq i, j \leq n
$$

so that $D^{2} f(x)$ is a symmetric matrix. By Taylor's approximation of the 2 nd order

$$
f\left(x^{*}+h\right)=f\left(x^{*}\right)+\left\langle\operatorname{grad} f\left(x^{*}\right), h\right\rangle_{\mathbb{R}^{n}}+\frac{1}{2}\left\langle h, \operatorname{Hess} f\left(x^{*}\right) \cdot h\right\rangle_{\mathbb{R}^{n}}+o\left(\|h\|^{2}\right), h \rightarrow 0 .
$$

Since $\nabla f\left(x^{*}\right)=0$,

$$
f\left(x^{*}+h\right) \sim f\left(x^{*}\right)+\frac{1}{2}\left\langle h, \operatorname{Hess} f\left(x^{*}\right) \cdot h\right\rangle_{\mathbb{R}^{n}}, h \rightarrow 0 .
$$

If $\operatorname{Hess} f\left(x^{*}\right)$ is a negative definite matrix, i.e.,

$$
\left\langle y, \operatorname{Hess} f\left(x^{*}\right) y\right\rangle_{\mathbb{R}^{n}}<0 \text { for all } 0 \neq y \in \mathbb{R}^{n}
$$

then $f\left(x^{*}+h\right)<f\left(x^{*}\right)$, i.e., x^{*} is a strict local max.
If $\operatorname{Hess} f\left(x^{*}\right)$ is a positive definite matrix, i.e.,

$$
\left\langle y, \operatorname{Hess} f\left(x^{*}\right) y\right\rangle_{\mathbb{R}^{n}}>0 \text { for all } 0 \neq y \in \mathbb{R}^{n}
$$

then $f\left(x^{*}+h\right)>f\left(x^{*}\right)$, i.e., x^{*} is a strict local min.
We summarize the above analysis in the following theorem:

Theorem 2.11.2 (Sufficient Conditions for Local Extrema). Let $U \subset \mathbb{R}^{n}$ be open, the function $f: U \rightarrow \mathbb{R}$ be twice continuously differentiable on U, and let $x^{*} \in U$ obey $\nabla f\left(x^{*}\right)=0$. Then:
(i) $\operatorname{Hess} f\left(x^{*}\right)$ is positive definite (i.e., $\operatorname{Hess} f\left(x^{*}\right)>0$ as a symmetric $n \times n$ matrix) $\Longrightarrow x^{*}$ is a strict local min.

The positive definiteness of $\operatorname{Hess} f\left(x^{*}\right)$ is equivalent to the positivity of all n leading principal minors of $D^{2} f\left(x^{*}\right)$:

$$
\begin{aligned}
& \partial_{1,1}^{2} f\left(x^{*}\right)>0, \quad\left|\begin{array}{ll}
\partial_{1,1}^{2} f\left(x^{*}\right) & \partial_{1,2}^{2} f\left(x^{*}\right) \\
\partial_{2,1}^{2} f\left(x^{*}\right) & \partial_{2,2}^{2} f\left(x^{*}\right)
\end{array}\right|>0, \\
& \left|\begin{array}{lll}
\partial_{1,1}^{2} f\left(x^{*}\right) & \partial_{1,2}^{2} f\left(x^{*}\right) & \partial_{1,3}^{2} f\left(x^{*}\right) \\
\partial_{2,1}^{2} f\left(x^{*}\right) & \partial_{2,2}^{2} f\left(x^{*}\right) & \partial_{2,3}^{2} f\left(x^{*}\right) \\
\partial_{3,1}^{2} f\left(x^{*}\right) & \partial_{3,2}^{2} f\left(x^{*}\right) & \partial_{3,3}^{2} f\left(x^{*}\right)
\end{array}\right|>0, \ldots,\left|D^{2} f\left(x^{*}\right)\right|=\operatorname{det} D^{2} f\left(x^{*}\right)>0 .
\end{aligned}
$$

(ii) $\operatorname{Hess} f\left(x^{*}\right)$ is negative definite (i.e., $\operatorname{Hess} f\left(x^{*}\right)>0$ as a symmetric $n \times n$ matrix) $\Longrightarrow x^{*}$ is a strict local max.

The negative definiteness of $\operatorname{Hess} f\left(x^{*}\right)$ means that the leading principal minors alternate in sign:

$$
\begin{gathered}
\partial_{1,1}^{2} f\left(x^{*}\right)<0, \quad\left|\begin{array}{ll}
\partial_{1,1}^{2} f\left(x^{*}\right) & \partial_{1,2}^{2} f\left(x^{*}\right) \\
\partial_{2,1}^{2} f\left(x^{*}\right) & \partial_{2,2}^{2} f\left(x^{*}\right)
\end{array}\right|>0, \\
\left|\begin{array}{ccc}
\partial_{1,1}^{2} f\left(x^{*}\right) & \partial_{1,2}^{2} f\left(x^{*}\right) & \partial_{1,3}^{2} f\left(x^{*}\right) \\
\partial_{2,1}^{2} f\left(x^{*}\right) & \partial_{2,2}^{2} f\left(x^{*}\right) & \partial_{2,3}^{2} f\left(x^{*}\right) \\
\partial_{3,1}^{2} f\left(x^{*}\right) & \partial_{3,2}^{2} f\left(x^{*}\right) & \partial_{3,3}^{2} f\left(x^{*}\right)
\end{array}\right|<0, \ldots,(-1)^{n}\left|D^{2} f\left(x^{*}\right)\right|>0 .
\end{gathered}
$$

(iii) $\operatorname{Hess} f\left(x^{*}\right)$ is indefinite, i.e., for some vectors $y_{1} \neq 0, y_{2} \neq 0$

$$
\left\langle y_{1}, \operatorname{Hess} f\left(x^{*}\right) y_{1}\right\rangle_{\mathbb{R}^{n}}>0 \quad \text { but } \quad\left\langle y_{2}, \operatorname{Hess} f\left(x^{*}\right) y_{2}\right\rangle_{\mathbb{R}^{n}}<0,
$$

$\Longrightarrow x^{*}$ is not a local extremum (i.e., x^{*} is a saddle point)
Remark 2.11.3. A saddle point x^{*} is a min of f in some direction $h_{1} \neq 0$ and a max of f in other direction $h_{2} \neq 0\left(\right.$ such that $\left.\left\langle h_{1}, \operatorname{Hess} f\left(x^{*}\right) h_{1}\right\rangle_{\mathbb{R}^{n}}>0,\left\langle h_{2}, \operatorname{Hess} f\left(x^{*}\right) h_{2}\right\rangle_{\mathbb{R}^{n}}<0\right)$.

Warning: The positive semidefiniteness $\operatorname{Hess} f\left(x^{*}\right) \geq 0$, i.e.,

$$
\left\langle y, \operatorname{Hess} f\left(x^{*}\right) y\right\rangle_{\mathbb{R}^{n}} \geq 0 \quad \text { for all } \quad y \in \mathbb{R}^{n},
$$

or the negative semidefiniteness $\operatorname{Hess} f\left(x^{*}\right) \leq 0$, i.e.,

$$
\left\langle y, \operatorname{Hess} f\left(x^{*}\right) y\right\rangle_{\mathbb{R}^{n}} \leq 0 \quad \text { for all } \quad y \in \mathbb{R}^{n},
$$

does not imply in general that x^{*} is a local (non-strict) minimum, or respectively, maximum. Now we cannot ignore the terms $o\left(\|h\|^{2}\right)$ in Taylor's formula.

Unlike Theorem 2.10.1, the conditions of Theorem 2.11.2 are not necessary conditions! Remember a standard Counterexample:

$$
\begin{gathered}
f_{1}(x)=x^{4}, \quad f_{2}(x)=-x^{4} \\
f_{1}^{\prime}(0)=f_{1}^{\prime \prime}(0)=0, \quad f_{2}^{\prime}(0)=f_{2}^{\prime \prime}(0)=0
\end{gathered}
$$

But f_{1} (resp. f_{2}) has a strict global min (rep. max) at $x=0$.
Numerical Examples: $f: \mathbb{R}^{2} \rightarrow \mathbb{R},(x, y) \rightarrow f(x, y)$

$$
\begin{gathered}
\text { (i) } f(x, y):=x^{2}+y^{2} \\
\nabla f(x)=(2 x, 2 y)=0 \Longleftrightarrow x=y=0 \\
D^{2} f(0)=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), \text { the same for all }(x, y), \\
\operatorname{det} D^{2} f(0)=4>0
\end{gathered}
$$

Answer: $(0,0)$ is a strict local min.

$$
\begin{aligned}
& \left(\text { ii) } f(x, y):=x^{2}-y^{2},\right. \\
\nabla f(x)= & (2 x,-2 y)=0 \Longleftrightarrow \quad x=y=0 \\
& D^{2} f(0)=\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right), \\
& \operatorname{det} D^{2} f(0)=-4<0 .
\end{aligned}
$$

Answer: $(0,0)$ is a saddle point.
(iii) $\operatorname{Hess} f\left(x^{*}\right)$ is semidefinite, but we cannot say something about critical points. Consider functions

$$
\begin{gathered}
f_{1}(x, y):=x^{2}+y^{4}, \quad f_{2}(x, y):=x^{2} \\
f_{3}(x, y):=x^{2}+y^{3}
\end{gathered}
$$

For each $i=1,2,3$, we have $f_{i}(0)=0, \nabla f(0)=0$,

$$
\operatorname{Hess} f(0)=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right) \text { is positive semidefinite, }
$$

i.e., $\left\langle h, \operatorname{Hess} f\left(x^{*}\right) h\right\rangle_{\mathbb{R}^{n}} \geq 0$ for any $h \in \mathbb{R}^{2}$.

But, the point $(0,0)$ is:
(1) strict local min for f_{1};
(2) a non-strict local min for f_{2} (since $f_{2}(0, y)=0, \forall y \in \mathbb{R}$);
(3) not a local extremum for $f_{3}\left(f_{3}(t, 0)=t^{2}>0, f_{3}(0, t)=t^{3}<0\right.$ if $\left.t<0\right)$.

Reminder from Linear Algebra:

Proposition 2.11.4. A symmetric 2×2 matrix

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), a_{12}=a_{21}
$$

is positive definite if and only if

$$
a_{11}>0 \text { and } \operatorname{det} A:=a_{11} a_{22}-a_{12}^{2}>0 .
$$

The matrix A is negative definite if and only if

$$
a_{11}<0 \text { and } \operatorname{det} A=a_{11} a_{22}-a_{12}^{2}>0 .
$$

If $\operatorname{det} A<0$, the matrix A is surely indefinite.
Indeed, for any vector $y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$:

$$
\langle A y, y\rangle=a_{11} y_{1}^{2}+a_{22} y_{2}^{2}+2 a_{12} y_{1} y_{2}
$$

Let us assume that $y_{2} \neq 0$ and set $z=y_{1} / y_{2}$, then the quadratic polynomial

$$
\frac{\langle A y, y\rangle}{y_{2}^{2}}=P(z)=a_{11} z^{2}+2 a_{12} z+a_{22}, \quad z \in \mathbb{R}
$$

takes only positive (resp. negative) values for all $z \in \mathbb{R}$ iff its discriminant $\Delta:=a_{12}^{2}-$ $a_{11} a_{22}=-\operatorname{det} A<0$.

2.12 A Rough Guide: How to Find the Global Maxima/Minima

Problem: to find global maxima (minima) for

$$
f: D \rightarrow \mathbb{R}, D \subseteq \mathbb{R}^{n} \text { (arbitrary set, not necessary open). }
$$

(i) Find and compare the local maxima (minima) in int D - interior of D - and choose the best.
(ii) Compare with the boundary values $f(x), x \in D \backslash \operatorname{int} D$.

Numerical Example: Find the max/min of

$$
f(x)=4 x^{3}-5 x^{2}+2 x \text { over } x \in[0,1] .
$$

Since $I:=[0,1]$ is compact and f is continuous on I, the Weierstrass theorem guarantees that f has a global max on this interval. There are 2 possibilities: either the maximum is a local maximum attained on the open interval $(0,1)$, or it occurs at one of the boundary points $x=0,1$. In the first case we should meet the 1 st order condition:

$$
\begin{aligned}
& f^{\prime}(x)=12 x^{2}-10 x+2=0 \\
& \Longrightarrow x_{1}=1 / 2 \text { or } x_{2}=1 / 3
\end{aligned}
$$

So, we have two critical points x_{1} and x_{2}. The 2 nd order condition says that

$$
\begin{gathered}
f^{\prime \prime}(x)=24 x-10 \\
\Longrightarrow \quad f^{\prime \prime}\left(x_{1}\right)=2>0 \text { and } f^{\prime \prime}\left(x_{2}\right)=-2<0 .
\end{gathered}
$$

Thus, $x=1 / 2$ is local min and $x=1 / 3$ is local max. Evaluating f at the four points 0 , $1 / 3,1 / 2$, and 1 shows that

$$
f(0)=0, f(1 / 3)=7 / 27, f(1 / 2)=1 / 4, f(1)=1
$$

so $x=1$ is the global max resp. $x=1 / 2$ is the global min for $f(x), x \in[0,1]$.
Literature: Chapters 16, 17 of C. Simon, L. Blume "Mathematics for Economists".
Example 2.12.1 (Economical Example: Cobb-Douglas Function).
Cobb-Douglas production function: $f(x, y)=x^{a} y^{b}, x, y>0$.
Find the maximum of the profit $V(x, y)=p x^{a} y^{b}-k_{x} x-k_{y} y$. 1st order conditions:

$$
\left\{\begin{array}{l}
p a x^{a-1} y^{b}=k_{x}, \tag{*}\\
p b x^{a} y^{b-1}=k_{y}
\end{array}\right.
$$

After dividing the 1st line by the 2nd one, we get

$$
\frac{a}{b} \cdot \frac{y}{x}=\frac{k_{x}}{k_{y}} \Longrightarrow y=\frac{b k_{x}}{a k_{y}} x
$$

Putting back in (*), we have

$$
k_{x}=p a x^{a-1}\left(\frac{b k_{x}}{a k_{y}} x\right)^{b}=p a^{1-b} b^{b}\left(\frac{k_{x}}{k_{y}}\right)^{b} x^{a+b-1}
$$

which allows us to find a unique critical point $\left(x^{*}, y^{*}\right)$

$$
\begin{aligned}
x^{*} & =\left(\frac{k_{x}^{1-b} k_{y}^{b}}{p a^{1-b} b^{b}}\right)^{\frac{1}{a+b-1}}=\frac{p^{\frac{1}{1-(a+b)}} a^{1-\frac{a}{1-(a+b)}} b^{\frac{b}{1-(a+b)}}}{k_{x}^{1-\frac{a}{1-(a+b)} b} k_{y}^{1-\frac{b}{1-(a+b)}}}, \\
y^{*} & =\frac{b k_{x}}{a k_{y}} x^{*} .
\end{aligned}
$$

Is it a maximum? Calculate

$$
\begin{gathered}
\operatorname{Hess} V(x, y)=\operatorname{Hess} f(x, y)=p\left(\begin{array}{cc}
a(a-1) x^{a-2} y^{b} & a b x^{a-1} y^{b-1} \\
a b x^{a-1} y^{b-1} & b(b-1) x^{a} y^{b-2}
\end{array}\right), \\
\operatorname{det} \operatorname{Hess} V(x, y)=\left[a(a-1) b(b-1)-a^{2} b^{2}\right] x^{2 a-2} y^{2 b-2}>0
\end{gathered}
$$

if $(a-1)(b-1)>a b$ or $a+b<1$. We also have that

$$
\frac{\partial^{2} f}{\partial x^{2}}(x, y)<0 \text { if } a<1
$$

So, a sufficient condition for max is $a+b<1$.

2.13 Envelope Theorems

The Envelope Theorem (Umhüllenden-Theorem) is a general principle describing how the optimal value of the objective function in a parametrized optimization problem changes as the parameters of the problem change. In economics, such parameters can be prices, tax rates, income levels, etc. Such problems constitute the subject of Comparative Statistics.

In microeconomic theory, the envelope theorem is used, e.g., to prove Hotelling's lemma (1932), Shepard's lemma (1953) and Roy's identity (1947).

In applications, it is usually stated non-rigorously, i.e., without the suitable assumptions which guarantee the differentiability of the so-called optimal value function.

Let

$$
f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}
$$

be a continuously differentiable function. We call it the objective function $f(x, \alpha)$, it depends on the choice variable $x \in \mathbb{R}^{n}$ and the parameter $\alpha \in \mathbb{R}^{m}$. We consider the unconstrained maximization problem for f, i.e.,
maximize $f(x ; \alpha)$ w.r.t. $x \in \mathbb{R}^{n}$.
Let $x^{*}(\alpha) \in \mathbb{R}^{n}$ be a solution of the above problem, i.e.,

$$
f\left(x^{*}(\alpha) ; \alpha\right) \geq f(x ; \alpha) \text { for all } x \in \mathbb{R}^{n}
$$

Here we assume that, at each $\alpha \in \mathbb{R}^{m}$, such a solution $x^{*}(\alpha) \in \mathbb{R}^{n}$ exists;
in the case of non-uniqueness we take for $x^{*}(\alpha)$ any one of the maximum points x for $f(x ; \alpha)$. Then,

$$
V(\alpha):=\max _{x \in \mathbb{R}^{n}} f(x ; \alpha)=f\left(x^{*}(\alpha) ; \alpha\right)
$$

is the corresponding (optimal) value function.
We are interested in how $V(\alpha)$ depends on $\alpha \in \mathbb{R}^{m}$.
Note that $V(\alpha)=f\left(x^{*}(\alpha) ; \alpha\right)$ changes for 2 reasons:
(i) directly w.r.t. α, because α is the 2nd variable in $f(x ; \alpha)$;
(ii) indirectly, since $x^{*}(\alpha)$ itself nontrivially depends on α.

Theorem 2.13.1 (Envelope Theorem). Suppose that $f(x ; \alpha)$ is continuously differentiable w.r.t. $x \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}^{m}$. Suppose additionally that $x^{*}(\alpha)$ is a continuously differentiable function of $\alpha \in \mathbb{R}^{m}$. Then $V(\alpha)$ is also continuously differentiable and for any $\alpha \in \mathbb{R}^{m}$ and $1 \leq i \leq m$

$$
\frac{\partial V}{\partial \alpha_{i}}(\alpha)=\frac{\partial f}{\partial \alpha_{i}}\left(x^{*}(\alpha) ; \alpha\right) .
$$

Proof. By our assumption we have

$$
V(\alpha)=f\left(x^{*}(\alpha) ; \alpha\right), \forall \alpha \in \mathbb{R}^{m}
$$

Therefore, by the chain rule

$$
\frac{\partial V}{\partial \alpha_{i}}(\alpha)=\frac{\partial f}{\partial \alpha_{i}}\left(x^{*}(\alpha) ; \alpha\right)+\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}\left(x^{*}(\alpha) ; \alpha\right) \frac{\partial x_{j}}{\partial \alpha_{i}}(\alpha), \quad 1 \leq i \leq m .
$$

The second sum vanishes since by the 1st order condition for extrema (cf. Theorem 2.10.1)

$$
\frac{\partial f}{\partial x_{j}}\left(x^{*}(\alpha) ; \alpha\right)=0, \quad \text { for all } 1 \leq j \leq n
$$

Thus we get

$$
\frac{\partial V}{\partial \alpha_{i}}(\alpha)=\frac{\partial f}{\partial \alpha_{i}}\left(x^{*}(\alpha) ; \alpha\right)
$$

Remark 2.13.2. The same inequality holds if we minimize $f(x ; \alpha)$.

Simplified rule: When calculating $\partial V / \partial \alpha_{i}$, just forget the $\max _{x \in \mathbb{R}^{n}}$ and take the derivatives of $f(x ; \alpha)$ w.r.t. α_{i}, and then plug in the optimal solution $x^{*}(\alpha)$. So, we need to consider only the direct effect of α on $V(\alpha)$, ignoring the indirect effect of $x^{*}(\alpha)$.

At this point it would be useful to know when $x^{*}(\alpha)$ exists and is continuously differentiable w.r.t. α. To answer this question we can use the Implicit Function Theorem (IFT).

Assume that $f \in C^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$. We know that $x^{*}(\alpha)$ is a solution to

$$
\nabla_{x} f(x, \alpha)=0
$$

(the necessary condition for extrema), i.e.,

$$
\left\{\begin{array}{cc}
\frac{\partial f}{\partial x_{1}}(x, \alpha) & =0 \\
\cdots & \cdots \\
\frac{\partial f}{\partial x_{n}}(x, \alpha) & =0
\end{array}\right.
$$

Consider a function

$$
\begin{aligned}
g: & \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
& (x ; \alpha) \rightarrow\left(\frac{\partial f}{\partial x_{j}}(x ; \alpha)\right)_{1 \leq j \leq n}
\end{aligned}
$$

The IFT (cf. Theorem 2.8.1) tells us that $x^{*}(\alpha)$ exists as an implicit function and is continuously differentiable w.r.t. α if the $n \times n$-matrix of partial derivatives of g w.r.t. $x=\left(x_{1}, \ldots, x_{n}\right)$ is invertible, i.e., $\operatorname{det} D_{x} g(x, \alpha) \neq 0$, where

$$
\begin{gathered}
D_{x} g=\left(\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial g_{n}}{\partial x_{1}} & & \frac{\partial g_{n}}{\partial x_{1}}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right), \\
D_{x} g=\operatorname{Hess}_{x} f=D_{x}^{2} f .
\end{gathered}
$$

Assume that $\operatorname{Hess}_{x} f$ at point $\left(x^{*}(\alpha) ; \alpha\right)$ is a negative definite matrix (which is the sufficient condition for a strict local maximum w.r.t. $x)$. Hence $\operatorname{det} D_{x} g\left(x^{*}(\alpha) ; \alpha\right)>0$ if $n=2,4,6, \ldots$ (or <0 if respectively, $n=1,3,5, \ldots$). These arguments lead to the following result.

Theorem 2.13.3 (Deep Envelope Theorem, Sammuelson (1947), Auspitz-Lieben (1889)). Let $U_{1} \subset \mathbb{R}^{n}$ and $U_{2} \subset \mathbb{R}^{m}$ be open domains and let

$$
f: U_{1} \times U_{2} \rightarrow \mathbb{R}, \quad(x, \alpha) \rightarrow f(x ; \alpha)
$$

be twice continuously differentiable (i.e., $f \in C^{2}\left(U_{1} \times U_{2}\right)$). Suppose that $\operatorname{Hess}_{x} f(x ; \alpha)$ is negative definite for all $x \in U_{1}, \alpha \in U_{2}$. Fix some $\alpha \in U_{2}$, and let $x^{*}(\alpha) \in U_{1}$ be a maximum of $f(x ; \alpha)$ on U_{1}, i.e.,

$$
f\left(x^{*}(\alpha) ; \alpha\right)=\max _{x \in U_{1}} f(x ; \alpha)
$$

\Downarrow which, by Theorem 2.11.2, implies \Downarrow

$$
\nabla_{x} f\left(\left(x^{*}(\alpha) ; \alpha\right)=0\right.
$$

Then there exists a continuously differentiable function $x^{*}: V_{2} \rightarrow \mathbb{R}^{n}$ defined on some open set $V_{2} \subseteq U_{2}$ such that

$$
\begin{aligned}
V(\alpha) & :=\max _{x \in U_{1}} f(x ; \alpha)=f\left(x^{*}(\alpha) ; \alpha\right) \\
\text { and } \quad & \frac{\partial V}{\partial \alpha_{i}}(\alpha)=\frac{\partial f}{\partial \alpha_{i}}\left(x^{*}(\alpha) ; \alpha\right) .
\end{aligned}
$$

Geometrical picture: The curve $\mathbb{R}^{m} \ni \alpha \mapsto y=V(\alpha):=f\left(x^{*}(\alpha) ; \alpha\right)$ is the envelope of the family of curves $\mathbb{R}^{m} \ni \alpha \mapsto y=V_{x}(\alpha):=f(x ; \alpha)$, indexed by the parameter $x \in \mathbb{R}^{n}$. Indeed, for each x and α we have

$$
f(x ; \alpha) \leq V(\alpha)
$$

None of the $V_{x}(\alpha)$-curves can lie above the curve $y=V(\alpha)$. On the other hand, for each value of α there exists at least one value $x^{*}(\alpha)$ of x such that $f\left(x^{*}(\alpha) ; \alpha\right)=V(\alpha)$. The curve $\alpha \mapsto V_{x^{*}(\alpha)}(\alpha)$ will just touch the curve $\alpha \mapsto y=V(\alpha)$ at the point $\left(x^{*}(\alpha), V(\alpha)\right)$, and so must have exactly the same tangent as the graph of V at this point, i.e.,

$$
\frac{\partial V}{\partial \alpha_{i}}(\alpha)=\frac{\partial f}{\partial \alpha_{i}}\left(x^{*}(\alpha) ; \alpha\right) .
$$

So, the graph of $V(\alpha)$ is like an envelope that is used to "wrap" or cover all the curves $y=V_{x}(\alpha)$.

Example 2.13.4 (Hotelling's Lemma). A competitive firm cannot change:
(i) output prices p (if you increase p, you lose customers);
(ii) wages w (workers will go to other firms).

But the firm can chose x-the number of workers it uses. Let $f(x)$ is the corresponding production function. The profit of the firm at given x, p, w is given by

$$
\pi(x ; p, w)=p f(x)-w x .
$$

The maximum profit function (also called the firm's profit function)

$$
V(p, w)=\max _{x \geq 0}\{p f(x)-w x\}
$$

It is important to know how the profit of the firm changes if p, w change:

$$
\frac{\partial V}{\partial p}, \frac{\partial V}{\partial w} ?
$$

By the Envelope Theorem, if the model is "nice" (i.e., we have a continuously differentiable function $\left.x^{*}(p, w)\right)$, then formally

$$
\begin{aligned}
& \frac{\partial V}{\partial p}=f\left(x^{*}(p, w)\right) \\
& \frac{\partial V}{\partial w}=-x^{*}(p, w)
\end{aligned}
$$

where $x^{*}(p, w)$ is the optimal number of workers.
Conclusion: when wages are increasing, the maximum profit will be decreasing proportionally to the number of workers.
Formally x^{*} obeys

$$
g(x, w, p)=p f^{\prime}\left(x^{*}\right)-w=0
$$

By the IFT, a "nice" solution exists if $f^{\prime \prime}\left(x^{*}\right)<0$.

2.14 Gâteaux and Fréchet Differentials

The notions of directional and total differentiability can be naturally extended to infinite dimensional spaces.

Let $(X,\|\cdot\|)$ be a normed space, $U \subset X-$ open set and $f: U \rightarrow \mathbb{R}$.
Definition 2.14.1 (Gâteaux differentiability). The function $f: U \rightarrow \mathbb{R}$ is Gâteaux differentiable at a point $x \in U$ along direction $v \in X,\|v\|=1$, if the following limit exists:

$$
\lim _{t \rightarrow 0} \frac{1}{t}[f(x+t v)-f(x)]=: D_{v} f(x)
$$

$D_{v} f(x) \in X$ is called the Gâteaux derivative.
Definition 2.14.2 (Fréchet differentiability). The function $f: U \rightarrow \mathbb{R}$ is Fréchet differentiable at a point $x \in U$ if there exists a linear continuous mapping $D f(x): X \rightarrow X$ such that

$$
\lim _{\|h\| \rightarrow 0} \frac{1}{\|h\|}[f(x+h)-f(x)-D f(x) h]=0
$$

$D f(x) \in \mathcal{L}(X, X)$ is called the Fréchet derivative.

Fréchet differentiability \Longrightarrow Gâteaux differentiability along all directions $v \in X,\|v\|=1$.

Proposition 2.14.3 (Sufficient condition for Fréchet differentiability). If all directional derivatives

$$
D_{v} f(x), \quad \forall v \in X, \quad\|v\|=1
$$

exist in all points $x \in U$ and can be represented as

$$
D_{v} f(x)=L(x) v
$$

with a linear bounded operator $L(x): X \rightarrow X$ and the mapping

$$
U \ni x \rightarrow L(x) \in \mathcal{L}(X, X)
$$

is continuous (in the operator norm), then $f: U \rightarrow \mathbb{R}$ is also Fréchet differentiable at all points $x \in U$ and

$$
D f(x)=L(x)
$$

Proposition 2.14.4 (Necessary condition for extrema). If f has a local extrema in U, then each $D_{v} f(x)=0$ for $v \in X,\|v\|=1$, (provided this directional derivative exists).

