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3 Convexity

3.1 Definition of Convex Sets and Convex (resp. Concave) Func-

tions

Definition 3.1.1. A set U ⊂ Rn is convex if for any two points x, y ∈ U , their convex

combination also belongs to U , i.e.,

λx+ (1− λ)y ∈ U, for all 0 ≤ λ ≤ 1,
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or equivalently, the segment [x, y] ⊂ U .

Notation 3.1.2. The segment [x, y] connecting x and y is given by

[x, y] := {z ∈ Rn | z = λx+ (1− λ)y, λ ∈ [0, 1]} .

Definition 3.1.3. Let U ⊂ Rn be a convex set.

(i) A function f : U → R is called convex if for all x, y ∈ U and λ ∈ [0, 1]

f [λx+ (1− λ)y] ≤ λf(x) + (1− λ)f(y).

(ii) A function f : U → R is called strictly convex if for all pairs of distinct points

x, y ∈ U , x 6= y, and all λ ∈ (0, 1)

f [λx+ (1− λ)y] < λf(x) + (1− λ)f(y).

(iii) A function f : U → R is called (strictly) concave if (−f) is (strictly) convex.

These conditions are not easy to check in multidimensional case (n ≥ 1). To this end,

it is more convenient to use Differential Calculus.

Theorem 3.1.4. (will be proved later)

Let f : U → R be a twice continuously differentiable function defined on an open convex

set U ⊂ Rn, i.e., f ∈ C2(U). Then:

(i) f is convex if and only if the Hessian matrix D2f(x) is positive semidefinite for

all x ∈ U , i.e.,

〈D2f(x)h, h〉 ≥ 0 for any h ∈ Rn.

(ii) If the Hessian is positive definite, i.e., for all x ∈ U

〈D2f(x)h, h〉 > 0 for any h ∈ Rn \ {0},

then f is strictly convex.

(iii) f is concave if and only if the Hessian matrix D2f(x) is negative semidefinite for

all x ∈ U , i.e.,

〈D2f(x)h, h〉 ≤ 0 for any h ∈ Rn.

(iv) If the Hessian is negative definite, i.e., for all x ∈ U

〈D2f(x)h, h〉 < 0 for any h ∈ Rn \ {0},

then f is strictly concave.

Warning: The positive (resp. negative) definiteness of D2f(x) is sufficient but not

necessary for the strict convexity (resp. concavity) of f .

Counterexample: f(x) := x4, x ∈ R. Obviously, f is strictly convex on the whole

line R, but f ′′(0) = 0.
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3.2 Properties of Convex Sets

Lemma 3.2.1. Any intersection of convex sets is convex.

In other words, let each Ui, i ∈ I, be convex and let I be an arbitrary (not necessary

countable) index set. Then ⋂
i∈I

Ui

is convex.

Proof. Trivial (Homework).

Lemma 3.2.2. Let U and V be convex sets in Rn. Then the following sets are also convex

U + V := {z ∈ Rn | z = x+ y for some x ∈ U, y ∈ V } ,
αU := {z ∈ Rn | z = αx for some x ∈ U} , α ∈ R.

Proof. Trivial (Homework).

Corollary 3.2.3. Any linear combination of convex sets

αU + βV = {z ∈ Rn | z = αx+ βy for some x ∈ U, y ∈ V } , α, β ∈ R,

is also convex.

Definition 3.2.4. A point y ∈ Rn is a convex combination of given points x1, . . . , xm ∈
Rn (m ∈ N) if it can be written as

y =
m∑
i=1

λixi with some λi ∈ [0, 1], 1 ≤ i ≤ m, s.t.
m∑
i=1

λi = 1.

Lemma 3.2.5. A set U ⊂ Rn is convex if and only if every convex combination of points

of U lies in U .

Proof. (⇐=) Obvious.

(=⇒) By the method of mathematical induction. The statement is true for m = 2.

Suppose it is true for any (m− 1) points from U . It suffices to consider

λi ∈ (0, 1),
m∑
i=1

λi = 1.

Define

y :=
m∑
i=1

λixi = λmxm +
m−1∑
i=1

λixi

= λmxm + (1− λm)
m−1∑
i=1

λi
1− λm

xi = λmxm + (1− λm)z,
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where we let z denote

z :=
m−1∑
i=1

λi
1− λm

xi =
m−1∑
i=1

µixi,

with µi :=
λi

(1− λm)
∈ (0, 1),

m−1∑
i=1

µi =
m−1∑
i=1

λi
(1− λm)

= 1.

By induction z ∈ U and by convexity y := λmxm + (1− λm)z ∈ U .

Definition 3.2.6. Let A ⊂ Rn be an arbitrary set. The convex hull of A, which will be

denoted by convA, is the smallest convex set containing A. That is,

convA :=
⋂

A⊆U, Uconvex

U.

which is convex by lemma 3.2.1

Theorem 3.2.7. The convex hull of A coincides with the set of all convex combinations

of elements from A.

Proof. Very similar to the proof of Lemma 3.2.5.

Question: How many points are required in Theorem 3.2.7? The answer is given by

Theorem 3.2.8 (Carathéodory). If y is a convex combination of some points x1, . . . , xm ∈
Rn (with arbitrary m ∈ N, possibly m > n), then y can be represented as a convex combi-

nation of (n+ 1) or fewer points from this list.

Equivalently, y lies in an r-simplex with vertices in Rn, where r ≤ n+ 1.

Lemma 3.2.9 (metric properties of convex sets). Let U ⊂ Rn be convex. Then the interior

intU and the closure Ū are convex too.

Proof. The proof is left as an easy exercise.

Remark 3.2.10. The definitions and properties of convex sets extend from Rn to any

Banach or normed space X.

3.3 Properties of Concave Functions

Lemma 3.3.1. Let U ⊂ Rn be a convex set, f : U → R be a concave (resp. convex) function

and g : R → R be an increasing concave (resp. convex) function. Then the composition

h = g ◦ f is concave (resp. convex).

Lemma 3.3.2. Let U ⊂ Rn be a convex set and f, g : U → R be concave (resp. convex)

functions. Then, for all α, β ≥ 0, the linear combination h := αf + βg is concave (resp.

convex).
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Exercise 3.3.3. Prove the above lemmas by directly using the definition of convex/concave

functions. Complete solutions can be found in the book of de la Fuente.

Theorem 3.3.4. Let f : U → R be a concave (resp. convex) function defined on an open

convex set U ⊂ Rn. Then f is continuous on U .

Proof. We’ll skip this proof. For details see de la Fuente, p. 252.

Indeed, it can be shown that any such f is continuously differentiable almost everywhere

on U , except possibly at a set of points having the ‘Lebesgue measure’ (a generalisation of

area) zero.

Lemma 3.3.5. Let {fi}i∈I be a (possibly infinite) family of concave functions on U , all of

which are bounded below,

∃C ∈ R : fi(x) ≥ C for all x ∈ U, i ∈ I.

(i) Then the function f : U → R given by

f(x) = inf {fi(x) | i ∈ I}

is concave.

(ii) (Exercise) Reformulate this statement for convex functions.

The idea for the proof is based on the notion of hypographs which we do not introduce

here.

3.4 Concavity of Smooth Functions

Theorem 3.4.1 (Characterization of concavity by means of the tangent hyperplane). Let

U ⊂ Rn be an open convex set and f : U → R be continuously differentiable (f ∈ C1(U)).

Then:

(i) f is concave if and only if

f(y) ≤ f(x) + 〈∇f(x), y − x〉, for all x, y ∈ U ; (∗)

(ii) f is strictly concave if and only if

f(y) < f(x) + 〈∇f(x), y − x〉, for all x, y ∈ U, x 6= y. (∗∗)

Proof. (only necessary conditions):
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(i) f concave =⇒ f(y) ≤ f(x) + 〈∇f(x), y − x〉, ∀x, y ∈ U?

Consider for λ ∈ (0, 1)

zλ := (1− λ)x+ λy = x+ λ(y − x) ∈ U.

By concavity of f

(1− λ)f(x) + λf(y) ≤ f [(1− λ)x+ λy] , or

f(y)− f(x) ≤ f [x+λ(y−x)]−f(x)
λ

.

Taking λ→ 0, in the RHS we get the directional derivative along the vector (y− x),

i.e.,

f(y)− f(x) ≤ 〈∇f(x), y − x〉.

Comment: the graph of f lies below the tangent hyperplane drawn at every point

x ∈ U .

(ii) f strictly concave =⇒ f(y) < f(x) + 〈∇f(x), y − x〉, x 6= y?

Indeed, analogously to the proof of (i), we have by strict concavity of f that

f(y)− f(x) <
f(zλ)− f(x)

λ
, λ ∈ (0, 1).

Now we use the following trick: For zλ := (1− λ)x+ λy, we have by the claim (i)

f(zλ)− f(x) ≤ 〈∇f(x), zλ − x〉, and thus

f(y)− f(x) < 1
λ
〈∇f(x), zλ − x〉, λ ∈ (0, 1).

Calculate
1

λ
(zλ − x) =

1

λ
[(1− λ)x+ λy − x] = y − x.

Hence,

f(y)− f(x) < 〈∇f(x), y − x〉Rn .

Theorem 3.4.2. Let f : U → R be a twice continuously differentiable function (i.e., f ∈
C2(U)) defined on an open convex set U ⊂ Rn. Then f is concave on U if and only if the

Hessian matrix D2f(x) is negative semidefinite for all x ∈ U , i.e.,

〈D2f(x)h, h〉 ≤ 0 for all h ∈ Rn.

Moreover, if the Hessian is negative definite, i.e.,

〈D2f(x)h, h〉 < 0 for all h ∈ Rn \ {0},

then f is strictly concave.
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Remark 3.4.3. (i) Negative definiteness of D2f(x) is sufficient but not necessary for

the strict concavity of f .

(ii) The positive / negative definiteness or semidefiniteness of the matrix D2f(x) can be

checked using the principal-minor test.

Proof. (a) (f concave =⇒ D2f(x) ≤ 0)

Pick some direction h ∈ Rn and define a function

α 7→ g(α) := f(x+ αh)− f(x)− α〈∇f(x), h〉,

for small enough |α| < δ (such that Bδ(x) ⊂ U). By concavity of f and Theorem 3.4.1,

f(x+ αh)− f(x) ≤ 〈∇f(x), αh〉,

which implies

g(α) ≤ 0 for all |α| < δ.

On the other hand, g(0) = 0, g ∈ C1((−δ, δ)), and g has a local maximum at α = 0. By

the necessary condition (well-known from Calculus) for local max of scalar functions we

have

g′(0) = 0, g′′(0) ≤ 0

(it is obvious that g′′(0) ≤ 0 since supposing the opposite g′′(0) > 0 would give α = 0 is a

strict local minimum for g). But

g′′(0) = 〈D2f(x)h, h〉,

which shows that 〈D2f(x)h, h〉 ≤ 0 for all h ∈ Rn.

(b) (D2f(x) ≤ 0 =⇒ f concave)

By Theorem 3.4.1, it is enough to show that for all h ∈ Rn such that x, x+ h ∈ U

f(x+ h) ≤ f(x) + 〈∇f(x), h〉.

Pick any x, x+ h ∈ U . Since f ∈ C2(U), by Taylor’s formula ∃θ ∈ (0, 1) such that

f(x+ h) = f(x) + 〈∇f(x), h〉+ 1
2
〈D2f(x+ θh)h, h〉︸ ︷︷ ︸

≤0

=⇒ f(x+ h) ≤ f(x) + 〈∇f(x), h〉.

By Theorem 3.4.1 this implies that f is concave.
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3.5 Examples

Example 3.5.1 (Quadratic function with parameters). Let a, b > 0:

f(x, y) := ax2 + by2, x, y ∈ R.

The Hessian

D2f(x, y) = Hessf(x, y) =

(
2a 0

0 2b

)
is positive definite (since 2a > 0, 2a · 2b > 0). So f(x, y) is strictly convex on R2.

Example 3.5.2 (Euclidean norm function in Rn). Let f : Rn → R be given by

f(x) := ‖x‖ =

√√√√ n∑
i=1

x2i , x = (x1, . . . , xn) ∈ Rn.

We claim that f is convex. Indeed by the properties of ‖ · ‖, we have for any x, y ∈ Rn and

λ ∈ [0, 1]

f(λx+ (1− λ)y) = ‖λx+ (1− λ)y‖
≤ λ‖x‖+ (1− λ)‖y‖ = λf(x) + (1− λ)f(y).

Alternatively, by Theorem 3.4.2:

∇f(x) =
x

‖x‖
, for all x 6= 0.

Then by the Cauchy-Schwartz inequality,

〈∇f(x), y − x〉 =
〈x, y − x〉
‖x‖

=
〈x, y〉
‖x‖

− ‖x‖ ≤ ‖y‖ − ‖x‖ = f(y)− f(x)

or f(y)− f(x) ≥ 〈∇f(x), y − x〉.

Example 3.5.3 (CES production functions). Let a, b > 0:

f(x, y) := (axp + byp)1/p ,

U := {(x, y) | x > 0, y > 0} ⊂ R2.

Exercise: For which p > 0 is this function convex / concave?

Example 3.5.4 (Additive utility). Set the coefficients ci > 0.

F (x) :=
n∑
i=1

cifi(xi) on Rn.

F is concave (convex) on Rn ⇐⇒ all fi are concave (convex) on R.
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Example 3.5.5 (Leontieff function). The following function is concave.

f(x, y) = min {x, y} , (x, y) ∈ R2.

Example 3.5.6. The simplest utility or production function

f(x, y) := xy, U = {(x, y) | x, y > 0},

D2f(x, y) = Hessf(x, y) =

(
0 1

1 0

)
, for all x, y.

Since detD2f(x, y) = −1, the matrix D2f(x, y) is indefinite and hence is neither concave

nor convex.

Example 3.5.7 (Cobb-Douglas function). Set the parameters a, b > 0

f(x, y) = xayb, U = {(x, y) | x, y > 0}.

D2f(x, y) =

(
a(a− 1)xa−2yb abxa−1yb−1

abxa−1yb−1 b(b− 1)xayb−2

)
.

detD2f(x, y) = ab(1− a− b)x2a−2y2b−2.

Then, f is concave on U if and only if D2f(x, y) ≤ 0, i.e.,
a(a− 1) ≤ 0,

b(b− 1) ≤ 0,

ab(1− a− b) ≥ 0,

⇐⇒


0 ≤ a ≤ 1,

0 ≤ b ≤ 1,

a+ b ≤ 1.

For strict concavity it suffices to have D2f(x, y) < 0, i.e.,

{
a(a− 1) < 0,

ab(1− a− b) > 0,
=⇒


0 < a < 1,

0 < b < 1,

a+ b < 1.

And f is neither concave nor convex if a+ b > 1.

3.6 Extrema of Concave Functions

For concave / convex functions, the 1st order conditions are both necessary and sufficient

to identify their global maxima (or minima). We need not to analyse the 2nd derivatives

to separate maxima, minima and saddle points.

A critical point of a concave (resp. convex) function is automatically its global maxi-

mum (resp. minimum).
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Theorem 3.6.1. Let U ⊂ Rn be an open convex set and f : U → R be a continuously

differentiable (i.e., f ∈ C1(U)), concave function. Then x∗ is a critical point of f , i.e.,

∇f(x∗) = 0,

if and only if x∗ is a global maximum of f on U .

Proof. Necessity of the condition ∇f(x∗) = 0 for any local (and hence for any global)

maximum x∗ is given as a theorem in Part II.

So, we need to prove sufficiency only. Suppose that ∇f(x∗) = 0.

Since f ∈ C1(U) =⇒ by Theorem 3.4.1

f concave ⇐⇒ f(y) ≤ f(x) + 〈∇f(x), y − x〉, ∀x, y ∈ U.

Since ∇f(x∗) = 0, we get f(y) ≤ f(x∗) for all y ∈ U, which means that x∗ is a global

maximum.

In the next theorem we do not need to assume that f ∈ C1(U).

Theorem 3.6.2. Let U ⊂ Rn be an open convex set and f : U → R be concave. Then:

(i) Any local maximum of f is its global maximum on U .

(ii) If f : U → R is strictly concave, then it has at most one maximum.

Proof. (i) Let x∗ be a local maximum, but not a global one. Hence,

∃ε > 0 s.t. f(x∗) ≥ f(y),∀y ∈ Bε(x
∗) ⊆ U, but

∃z ∈ U : f(z) > f(x∗).

Since U is convex, we have yλ := λx∗+ (1−λ)z ∈ U for all λ ∈ [0, 1]. Choose λ sufficiently

close to 1 such that yλ ∈ Bε(x
∗).

By concavity of f , for such λ ∈ (0, 1)

f(yλ) ≥ λf(x∗) + (1− λ)f(z) > f(x∗),

since f(z) > f(x∗). On the other hand, since x∗ is a local maximum,

f(λx∗ + (1− λ)z) = f(yλ) ≤ f(x∗),

which leads to a contradiction.

(ii) Suppose x∗ and x∗ are two different maxima, i.e., x∗ 6= x∗ and

f(x∗) = f(x∗) ≥ f(y), ∀y ∈ U.

For z := (x∗ + x∗)/2 we get by strict concavity

f(z) >
1

2
[f(x∗) + f(x∗)] = f(x∗),

which contradicts the assumption that x∗ and x∗ are maxima.
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3.7 Summary: Unconstrained Optimization for Differentiable

functions

Here, we summarise some of the most important results from this section and the last on

finding and classifying interior extrema for unconstrained optimisation problems involving

differentiable functions.

Theorem 3.7.1 (2.10.1 in Part II - 1st Order Necessary Condition for Local Extrema). Let

U ⊂ Rn be an open set. A differential function f : U → R can only have a local maximum

or minimum at a point x∗ ∈ U if this point is critical, i.e.,

gradf(x∗) := ∇f(x∗) =

(
∂f

∂x1
(x∗), . . . ,

∂f

∂xn
(x∗)

)
= 0.

Theorem 3.7.2 (2.11.2 in Part II - 2nd Order Sufficient Conditions for Local Extrema).

Let U ⊂ Rn be open, f : U → R be twice continuously differentiable on U (i.e., f ∈ C2(U)),

and let x∗ ∈ U be a critical point of f . Then:

(i) The Hessian Hessf(x∗) (also denoted by D2f(x∗)) is positive definite (i.e., Hessf(x∗) >

0) implies that x∗ is a strict local min.

The positive definiteness of Hessf(x∗) is equivalent to the positivity of all n leading

principal minors of D2f(x∗):

∂21,1f(x∗) > 0,

∣∣∣∣ ∂21,1f(x∗) ∂21,2f(x∗)

∂22,1f(x∗) ∂22,2f(x∗)

∣∣∣∣ > 0,∣∣∣∣∣∣
∂21,1f(x∗) ∂21,2f(x∗) ∂21,3f(x∗)

∂22,1f(x∗) ∂22,2f(x∗) ∂22,3f(x∗)

∂23,1f(x∗) ∂23,2f(x∗) ∂23,3f(x∗)

∣∣∣∣∣∣ > 0, . . . , |D2f(x∗)| > 0.

(ii) Hessf(x∗) is negative definite (i.e., Hessf(x∗) < 0) implies that x∗ is a strict local

max.

The matrix Hessf(x∗) is negative definite if and only if its n leading principal minors

alternate in sign:

∂21,1f(x∗) < 0,

∣∣∣∣ ∂21,1f(x∗) ∂21,2f(x∗)

∂22,1f(x∗) ∂22,2f(x∗)

∣∣∣∣ > 0,∣∣∣∣∣∣
∂21,1f(x∗) ∂21,2f(x∗) ∂21,3f(x∗)

∂22,1f(x∗) ∂22,2f(x∗) ∂22,3f(x∗)

∂23,1f(x∗) ∂23,2f(x∗) ∂23,3f(x∗)

∣∣∣∣∣∣ < 0, . . . , (−1)n|D2f(x∗)| > 0.

(iii) Hessf(x∗) is indefinite (i.e, is neither positive semidefinite nor negative semidefinite)

=⇒ x∗ is not a local extremum (i.e., x∗ is a saddle point).
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(iv) If x∗ is a local min then Hessf(x∗) is positive semi-definite. The matrix Hessf(x∗)

is positive semi-definite if and only if each of its (2n − 1) principal minors is non-

negative. The principal minors of order k = 1, . . . , n are the determinants of k × k
submatrices obtained by deleting any n − k columns, say i1, . . . , in−k, and the same

n− k rows, i1, . . . , in−k, from D2f(x∗).

(v) If x∗ is a local max then Hessf(x∗) is negative semidefinite. This is the case if and

only if the principal minors alternate in sign, so that the odd ordered ones are ≤ 0

and the even ordered ones are ≥ 0.

Remark 3.7.3. Be careful:

• The claims (i) and (ii) of Theorem 2.11.2 are not necessary conditions.

• Hessf(x∗) ≥ 0 (or Hessf(x∗) ≤ 0) does not imply in general that x∗ is a local (non-

strict) minimum (or maximum). Counterexample: f(x) = ±x4 at x = 0.

Example 3.7.4. For a function f of two variables, the Hessian is

D2f(x∗) :=

(
∂21,1f(x∗) ∂21,2f(x∗)

∂22,1f(x∗) ∂22,2f(x∗)

)
, with ∂21,2f(x∗) = ∂22,1f(x∗).

This matrix is negative definite if ∂21,1f(x∗) < 0 and detD2f(x∗) = ∂21,1f(x∗) · ∂22,2f(x∗) −
(∂21,2f(x∗))2 > 0. (These two inequalities imply that ∂22,2f(x∗) < 0). This is a sufficient

condition for a critical point x∗ of a function of two variables to be a local max.

Similarly, a sufficient condition for x∗ to be a local min is D2f(x∗) > 0, that is

∂21,1f(x∗) > 0 and detD2f(x∗) > 0 (which imply ∂22,2f(x∗) > 0). In particular, if detD2f(x∗) <

0, then x∗ is neither a local maximizer nor a local minimizer, i.e., x∗ is a saddle point.

Note that this condition is only sufficient, not necessary.

The matrix D2f(x∗) is negative semidefinite if ∂21,1f(x∗) ≤ 0, ∂22,2f(x∗) ≤ 0 and

detD2f(x∗) ≥ 0. Finally, D2f(x∗) is positive semidefinite if ∂21,1f(x∗) ≥ 0, ∂22,2f(x∗) ≥ 0

and detD2f(x∗) ≥ 0.

Theorem 3.7.5 (Sufficient Conditions for Convexity/Concavity). Let f : U → R be a

twice continuously differentiable function (i.e., f ∈ C2(U)) defined on an open convex set

U ⊂ Rn. Then:

(i) f is convex if and only if the Hessian matrix D2f(x) is positive semidefinite for all

x ∈ U , i.e.,

〈D2f(x)h, h〉 ≥ 0 for all h ∈ Rn.

Every critical point x∗ ∈ U will surely be a global minimum point for f in U .
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(ii) f is concave if and only if the Hessian matrix D2f(x) is negative semidefinite for all

x ∈ U , i.e.,

〈D2f(x)h, h〉 ≤ 0 for all h ∈ Rn.

Every critical point x∗ ∈ U will surely be a global maximum point for f in U .

(iii) If the Hessian is positive definite, i.e.,

〈D2f(x)h, h〉 > 0 for all h ∈ Rn \ {0},

then f is strictly convex.

(iv) If the Hessian is negative definite, i.e.,

〈D2f(x)h, h〉 < 0 for all h ∈ Rn \ {0},

then f is strictly concave.

Remark 3.7.6. The positive (resp. negative) definiteness of D2f(x) is sufficient but not

necessary for the strict convexity (resp. concavity) of f . Counterexample: f(x) = x4 is

strictly convex, but f ′′(0) = 0.

So, we can state briefly the results of the above theorems for maximizers together:

(i) Sufficient conditions for local max: if x∗ is a stationary point of f and Hessf(x∗)

is negative definite at this x∗, then x∗ is a local maximizer of f .

(ii) Sufficient conditions for global max: if x∗ is a stationary point of f and Hessf(x)

is negative semidefinite for all values of x ∈ U , then x∗ is a global maximizer of f .

3.8 Separation Theorems

This section and the next on Farkas’ Lemma are not examinable - see A. de la Fuente,

Section 6.1 d for further details.

Definition 3.8.1. A hyperplane in Rn is given by

Hc,v := {x ∈ Rn | 〈x, v〉 = c} ,

for a vector v ∈ Rn \ {0} and some c ∈ R.

The vectors x ∈ Hc,v satisfy a linear equation with n unknowns x1, . . . , xn ∈ R:

n∑
j=1

xjvj = c.

The hyperplane Hc,v divides Rn into 2 regions:
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(i) x ∈ Rn satisfying 〈x, v〉 ≥ c;

(ii) x ∈ Rn satisfying 〈x, v〉 ≤ c.

We say that two sets A,B ⊂ Rn are separated by Hc,v if they lie on different sides of the

hyperplane, i.e.,

〈x, v〉 ≥ c for x ∈ A, 〈x, v〉 ≤ c for x ∈ B,
or 〈x, v〉 ≤ c for x ∈ A, 〈x, v〉 ≥ c for x ∈ B.

We say that A and B are strictly separated, if these are strict inequalities.

Theorem 3.8.2 (Separation Theorem). Let A 6= ∅ be closed and convex, and let z /∈ A.

Then there exists a hyperplane Hc,v with some v 6= 0 and c ∈ R such that

〈z, v〉 < c < 〈x, v〉 for all x ∈ A.

Proof. (Idea) By the Weierstrass theorem, minx∈A ‖z−x‖ := dist(z, A) is attained at some

x∗ ∈ A. Furthermore, dist(z, A) =: δ > 0 since z /∈ A and A = Ā. Set

0 6= v := x∗ − z and c := 〈x∗, v〉.

Then Hc,v separates z and A:

〈z, v〉 = 〈x∗ − v, v〉 = c− ‖v‖2 < c,

〈x, v〉 > c (this is checked by convexity of A ).

Further improvements of this theorem

Theorem 3.8.3 (Supporting Theorem). Let A 6= ∅ be closed and convex, and let z /∈ A.

Then there exists a point x0 ∈ ∂A and a supporting hyperplane Hc,v through x0 such

that

〈z, v〉 < c := 〈x0, v〉 = inf
x∈A
{〈x, v〉} .

Theorem 3.8.4 (Minkowski Theorem). Let A and B be disjoint and nonempty convex

sets in Rn. Then there exists a hyperplane Hc,v separating A and B, i.e.,

〈x, v〉 ≤ c ≤ 〈y, v〉 for all x ∈ A and y ∈ B.
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3.9 Farkas’ Lemma

Every student has learned how to solve a system of linear equations, but solving systems

of linear inequalities is less well-known. How can one solve Ax ≤ b for x ≥ 0 (or show that

there is no solution)?

The answer is given by Farkas’ lemma. It was originally proved by Julius Farkas

(“Uber die Theorie der linearen Ungleichungen”, 1902). This lemma is at the core of

linear programming and game theory. Farkas’ lemma is also used to prove the Kuhn-

Tucker theorem in nonlinear programming. Another important application is arbitrage

problems in theoretical finance.

Farkas’ lemma (roughly) states that a vector is either in a given convex cone or that

there exists a (hyper-) plane separating this vector from the cone, but not both. So, Farkas’

lemma is an example of a theorem of alternatives (or dichotomy): a theorem stating

that of two systems, one or the other has a solution, but not both or none.

One of equivalent statements of Farkas’ lemma is as follows:

Lemma 3.9.1 (Farkas’ Lemma). Let A be an m× n matrix and b ∈ Rm. Then either:

(i) There is an x ∈ Rn such that Ax = b and x ≥ 0; or

(ii) There is a y ∈ Rm such that

yt︸︷︷︸
1×m

× A︸︷︷︸
m×n

≥ 0 and 〈y, b〉 = y︸︷︷︸
1×m

× b︸︷︷︸
m×1

< 0.

Proof. The trivial claim is that (i) and (ii) contradict each other:

0 = 〈y, Ax− b〉 = 〈yA, x〉︸ ︷︷ ︸
≥0

−〈y, b〉 ≥ −(y, b) > 0.

Contradiction to (ii) implies (i) - This part is highly non-trivial!

Most of the known proofs are based on Separation Hyperplane Theorem (Theorem

3.8.2).

Farkas’ lemma is still considered a pedagogical annoyance: it has an obvious formulation

but no elementary proof.

3.9.1 Geometric Interpretation

Let a1, . . . , an ∈ Rm denote the columns of a matrix A. In terms of these vectors, Farkas’

lemma states that exactly one of the following two statements is true:

(i) There exist non-negative coefficients x1, . . . , xn ∈ R such that b = x1a1 + · · ·+ xnan.
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(ii) There exists a vector y ∈ Rm such that 〈aj, y〉 ≥ 0 for all 1 ≤ j ≤ n and 〈y, b〉 < 0.

The vectors x1a1 + · · ·+ xnan ∈ Rm with nonnegative coefficients x1, . . . , xn constitute

the convex cone K(a1, . . . , an) of the set {a1, . . . , an}, so the first statement says that b

is in this cone.

The second statement says that there exists a vector y such that the angle of y with

the vectors aj is at most 90◦, while the angle of y with the vector b is more than 90◦. The

hyperplane normal to this vector has the vectors aj on one side and the vector b on the

other side. Hence, this hyperplane separates the vectors in the cone K(a1, . . . , an) and the

vector b.

(One more equivalent) Algebraic formulation:

The system of inequalities Ax ≤ b has a solution x ≥ 0 if and only if 〈y, b〉 ≥ 0 for

any vector y ≥ 0 such that ytA ≥ 0.
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