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4 Constrained Optimization

4.1 Equality Constrains: The Lagrange Problem

Typical Example from Economics:
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A consumer chooses how much of the available income I to spend on:

goods units price per unit

1 x1 p1
...

...
...

n xn pn

.

The consumer preferences are measured by the utility function u(x1, . . . , xn). The con-

sumer faces the problem of choosing (x1, . . . , xn) in order to maximize u(x1, . . . , xn) subject

to the budget constraint p1x1 + · · ·+ pnxn = I.

Mathematical formalization:

maximize u(x1, . . . , xn),

subject to p1x1 + · · ·+ pnxn = I.

We ignore for a moment that x1, . . . , xn ≥ 0 and that possibly not the whole income I

may be spent. To solve this and similar problems economists make use of the Lagrange

multiplier method.

4.1.1 Lagrange Problem: Mathematical Formulation

Let U be a subset of Rn and let m ≤ n. Let moreover f : U → R and g : U → Rm be

functions (usually C1- or even C2-class).

Equality Constraint (EC) Problem: maximize the objective function f(x) subject

to g(x) = 0, i.e. find

max
x∈U , g(x)=0

f(x).

The components of g = (g1, . . . , gm) are called the constraint functions and the set

D := {x ∈ U | g(x) = 0} is called the constraint set.

The method is named after the Italian/French mathematician J. L. Lagrange (1736–

1813). In economics, the method was first implemented (≈1876) by the Danish economist

H. Westergard.

We are looking for points x∗ ∈ D that are (local) maxima of f . We could have a unique

x∗ or not. x∗ could exist or not exist at all.

Definition 4.1.1. A point x∗ ∈ D is called a local max (resp. min) for the EC problem

if there exists ε > 0 such that for all x ∈ Bε(x
∗) ∩D, one has

f(x∗) ≥ f(x) (resp. f(x∗) ≤ f(x)).

Moreover, this point is a global max (resp. min) if f(x∗) ≥ f(x) (resp. f(x∗) ≤ f(x))

for all x ∈ D.
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4.1.2 The Simplest Case of EC: n=2, m=1

Let U ⊂ R2 be open and let f, g : U → R be continuously differentiable. We want to

compute

max {f(x1, x2) | (x1, x2) ∈ U, g(x1, x2) = 0} .

Let (x∗1, x
∗
2) be some local maximiser for the EC problem (provided it exists). How do

we find all such (x∗1, x
∗
2)? The Theorem of Lagrange (which will be precisely formulated

later) gives the necessary conditions which should be satisfied by any local optima in this

problem. Based on the Lagrange Theorem, we should proceed as follows to find all possible

candidates for (x∗1, x
∗
2).

A Formal Scheme of the Lagrange Method

(1) Write down the so-called Lagrangian function (or simple ‘the Lagrangian’)

L(x1, x2) := f(x1, x2)− λg(x1, x2)

with a constant λ ∈ R – Lagrange multiplier.

(2) Take the partial derivatives of L(x1, x2) w.r.t. x1 and x2

∂

∂x1
L(x1, x2) : =

∂f

∂x1
(x1, x2)− λ

∂g

∂x1
g(x1, x2),

∂

∂x2
L(x1, x2) : =

∂f

∂x2
(x1, x2)− λ

∂g

∂x2
g(x1, x2).

As will be explained below, a solution (x∗1, x
∗
2) to the EC problem can only be a point

for which
∂

∂x1
L(x1, x2) =

∂

∂x2
L(x1, x2) = 0

for a suitable λ = λ(x∗1, x
∗
2). This leads to the next step:

(3) Solve the system of three equations and find all possible solutions

(x∗1, x
∗
2;λ
∗) ∈ U × R


∂
∂x1
L(x1, x2) = ∂f

∂x1
(x1, x2)− λ ∂g

∂x1
g(x1, x2) = 0,

∂
∂x2
L(x1, x2) = ∂f

∂x2
(x1, x2)− λ ∂g

∂x2
g(x1, x2) = 0,

∂
∂λ
L(x1, x2) = −g(x1, x2) = 0.

So, any candidate for local extrema (x∗1, x
∗
2) is a solution, with its own λ∗ ∈ R, to the

system
∂L
∂x1

= 0,
∂L
∂x2

= 0,
∂L
∂λ

= 0.
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These 3 conditions are called the first order conditions for the EC problem.

Remark 4.1.2. This procedure would not have worked if both ∂g
∂x1

and ∂g
∂x2

were zero at

(x∗1, x
∗
2), i.e., (x∗1, x

∗
2) is a critical point of g. The restriction that U does not contain

critical points of g is called a constraint qualification in the domain U. The restriction

that ∇g(x∗1, x
∗
2) 6= 0 implies the constrain qualification in some neighborhood of the point

(x∗1, x
∗
2).

Remark 4.1.3. i. A magic process!!! To solve the constraint problem for two vari-

ables (x1, x2) we transform it into the unconstrained problem in three variables by

adding an artificial variable λ).

ii. The same scheme works whether we are minimising f(x1, x2). To distinguish max

from min, one needs second order conditions.

Example 4.1.4. Maximize f(x1, x2) = x1x2 subject to 2x1 + x2 = 100.

Solution 4.1.5. Define g(x1, x2) = 2x1 + x2 − 100 and the Lagrangian

L(x1, x2) = x1x2 − λ (2x1 + x2 − 100) .

The 1st order conditions for the solutions of EC problem:

∂L
∂x1

= x2 − 2λ = 0,
∂L
∂x2

= x1 − λ = 0, g(x1, x2) = 2x1 + x2 − 100 = 0.

Herefrom,

x2 = 2λ, x1 = λ, 2λ+ 2λ = 100⇐⇒ λ = 25.

The only candidate for the solution

x1 = 25, x2 = 50, λ = 25.

The constrain qualification holds at all points (x, y) ∈ R2:

∂g

∂x1
= 2,

∂g

∂x2
= 1.

The solution obtained can be confirmed by the substitution method:

x2 = 100− 2x1 =⇒ h(x1) = x1(100− 2x1) = 2x1(50− x1), h′(x1) = −4x1 + 100

=⇒ x1 = 25, h′′(x1) = −4 < 0.

Therefore, x1 = 25 is a max point for h =⇒ x1 = 25, x2 = 50 is a max point for f.

Justification of the EC scheme: An analytic argument
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How to find a local max / min of f(x1, x2) subject to g(x1, x2) = 0.

Let (x∗1, x
∗
2) ∈ U be a local extrema for the EC problem and let ∇g(x∗1, x

∗
2) 6= 0. Without

loss of generality assume that ∂g/∂x2(x
∗
1, x
∗
2) 6= 0. Then by the Implicit Function Theorem

(IFT) the equation g(x1, x2) = 0 defines a differentiable function x2 := i(x1) such that

g(x1, i(x1)) = 0 near (x∗1, x
∗
2) ∈ U

and

i′(x∗1) = −∂g/∂x1
∂g/∂x2

(x∗1, x
∗
2).

Then

h(x1) := f(x1, i(x1))

has a local extremum at the point x∗1. By the Chain Rule

0 = h′(x∗1) =
∂f

∂x1
(x∗1, x

∗
2) +

∂f

∂x2
(x∗1, x

∗
2)i
′(x∗1)

=
∂f

∂x1
(x∗1, x

∗
2)−

∂f

∂x2
(x∗1, x

∗
2)
∂g/∂x1
∂g/∂x2

(x∗1, x
∗
2).

Hence,
∂f

∂x1
(x∗1, x

∗
2) =

∂f/∂x2
∂g/∂x2

(x∗1, x
∗
2)
∂g

∂x1
(x∗1, x

∗
2).

Denoting

(!!!) λ :=
∂f/∂x2
∂g/∂x2

(x∗1, x
∗
2) ∈ R,

we have
∂f

∂x1
(x∗1, x

∗
2)− λ

∂f

∂x1
(x∗1, x

∗
2) = 0

and
∂f

∂x2
(x∗1, x

∗
2)− λ

∂f

∂x2
(x∗1, x

∗
2) = 0.

4.1.3 More variables: n ≥ 2,m = 1

Goal: Find min/max of f(x1, . . . , xn) = 0 subject to g(x1, . . . , xn) = 0.

Define the Lagrangian with the multiplier λ ∈ R as

L(x1, . . . , xn) := f(x1, . . . , xn)− λg(x1, . . . , xn)

where (x1, . . . , xn) ∈ U ⊂ Rn and U is open.
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Theorem 4.1.6 (Lagrange Theorem for a single constraint equation). Let U ⊂ Rn be

open and let f, g : U → R be continuously differentiable. Let x∗ = (x∗1, . . . , x
∗
n) ∈ U be a

local extremum for f(x1, . . . , xn) under the equality constraint g(x1, . . . , xn) = 0. Suppose

further that ∇g(x∗) 6= 0, i.e., at least one of ∂g/∂xj(x
∗) 6= 0, 1 ≤ j ≤ n. Then there exists

a unique number λ∗ ∈ R such that

∂f

∂xj
(x∗) = λ∗

∂g

∂xj
(x∗), for all 1 ≤ j ≤ n,

or ∇f(x∗) = λ∗∇g(x∗).

In particular, for any pair (i, j), where 1 ≤ i, j ≤ n, one has

∂f

∂xi
(x∗)/

∂f

∂xj
(x∗) =

∂g

∂xi
(x∗)/

∂g

∂xj
(x∗).

Constraint qualification (CQ): We assume that ∇g(x∗) 6= 0. The method in general

fails if ∇g(x∗) = 0. All such critical points should be treated separately by calculating

f(x∗).

The Theorem of Lagrange only provides necessary conditions for local optima x∗ and,

moreover, only for those which meet CQ, i.e., ∇g(x∗) 6= 0. These conditions are not

sufficient!

Counterexample 4.1.7. Maximize f(x1, x2) = −x2 subject to g(x1, x2) = x32 − x21 = 0,

with (x1, x2) ∈ U = R2.

Solution 4.1.8. Since x32 = x21 =⇒ x2 ≥ 0. Moreover, x2 = 0 ⇔ x1 = 0. So, (x∗1, x
∗
2) =

(0, 0) is the global max of f under the constraint g = 0. But ∇g(x∗1, x
∗
2) = 0, i.e., the

constaint qualification does not hold. Furthermore, ∇f(x1, x2) = (0,−1) for all (x1, x2),

and there cannot exist any λ ∈ R such that

∇f(x∗)− λ∇g(x∗) = 0 (since − 1 6= λ · 0).

The Lagrange Theorem is not applicable.

Remark 4.1.9.

i. On the technical side: we need ∇g(x∗) 6= 0 to apply IFT.

ii. If ∇g(x∗) = 0, it still can happen that ∇f(x∗) = λ∇g(x∗) = 0 (Suppose e.g. that

f : U → R has a strict global min/max in x∗ and hence ∇f(x∗) = 0).

iii. It is also possible that the constraint qualifications holds, but the EC problem has no

solutions, see the example below.

f(x1, x2) = x21 − x22 subject to g(x1, x2) = 1− x1 − x2.
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Then

∇g(x1, x2) = (−1,−1) 6= 0 everywhere.

Define the Lagrangian

L(x1, x2) = f(x1, x2)− λg(x1, x2).

Then 
2x1 + λ = 0

−2x2 + λ = 0

1− x1 − x2 = 0

⇐⇒ λ 6= 0, x1 = −x2, x1 + x2 = 1, or

λ = 0, x1 = x2 = 0, x1 + x2 = 1

There are thus NO solutions to EC!! Indeed, put

x2 = 1− x1 and h(x1) := x21 − (1− x1)2 = −1 + 2x1.

Then there are NO local extrema!!

4.1.4 More Variables and More Constraints: n ≥ m

Theorem 4.1.10 (General Form of the Lagrange Theorem). Let U ⊂ Rn be open and let

f : U → R, g : U → Rm (m ≤ n)

be continuously differentiable. Suppose that x∗ = (x∗1, . . . , x
∗
n) ∈ U is a local extremum for

f(x1, . . . , xn) under the equality constraints
g1(x1, . . . , xn) = 0,

...

gm(x1, . . . , xn) = 0.

Suppose further that the matrix Dg(x∗) has rank m. Then there exists a unique vector

λ∗ = (λ∗1, . . . , λ
∗
m) ∈ Rm such that

∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n.

In other words,

∇f(x∗)︸ ︷︷ ︸
1×n

= λ︸︷︷︸
1×m

×DG(x∗)︸ ︷︷ ︸
m×n

(product of 1×m and m× n matrices),

(
∂f

∂x1
(x∗), . . . ,

∂f

∂xn
(x∗)

)
= (λ∗1, . . . , λ

∗
m)×


∂g1
∂x1

(x∗) · · · ∂g1
∂xn

(x∗)
...

...
∂gm
∂x1

(x∗) · · · ∂gm
∂x1

(x∗)

 .
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Constraint Qualification: The rank of the Jacobian matrix

Dg(x∗) =


∂g1
∂x1

(x∗) · · · ∂g1
∂xn

(x∗)
...

...
∂gm
∂x1

(x∗) · · · ∂gm
∂x1

(x∗)


is equal to the number of the constraints, i.e.,

rank Dg(x∗) = m.

This ensures that Dg(x∗) contains an invertible m×m submatrix, which will be used to

determine λ∗ ∈ Rm.

Proof of Theorem 4.1.10. The main ingredients of the proof are:

i. Implicit Function Theorem, and

ii. Chain Rule for Derivatives.

By assumption, there exists an m ×m submatrix of Dg(x∗) with full rank, i.e., its de-

terminant is non-zero. Without loss of generality, such submatrix can be chosen as

D≤mg(x∗) :=


∂g1
∂x1

(x∗) · · · ∂g1
∂xm

(x∗)
...

...
∂gm
∂x1

(x∗) · · · ∂gm
∂xm

(x∗)


(otherwise we can change the numbering of variables x1, . . . , xn). So, we have

detD≤mg(x∗) 6= 0,

and hence there exists the inverse matrix [D≤mg(x∗)]−1 . By the IFT there exist C1-

functions

i1(xm+1, . . . , xn), . . . , im(xm+1, . . . , xn)

such that

g (i1(xm+1, . . . , xn), . . . , im(xm+1, . . . , xn), xm+1, . . . , xn) = 0 near (x∗1, . . . , x
∗
n),

and moreover

Di(x∗m+1, . . . , x
∗
n)︸ ︷︷ ︸

m×(n−m)

= −

D≤m g(x∗1, . . . , x
∗
n)︸ ︷︷ ︸

m×n

−1 ×D>mg(x∗1, . . . , x
∗
n)︸ ︷︷ ︸

n×(n−m)

,
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where

D>mg(x∗) :=


∂g1

∂xm+1
(x∗) · · · ∂g1

∂xn
(x∗)

...
...

∂gm
∂xm+1

(x∗) · · · ∂gm
∂xn

(x∗)

 .

Then (x∗m+1, . . . , x
∗
n) is a local extrema of the C1-function

h(xm+1, . . . , xn) := f (i1(xm+1, . . . , xn), . . . , im(xm+1, . . . , xn), xm+1, . . . , xn) .

Hence, by the Chain Rule

0︸︷︷︸
∈ Rn−m

= ∇h(x∗m+1, . . . , x
∗
n)

= ∇≤mf(x∗1, . . . , x
∗
n)︸ ︷︷ ︸

1×m

×Di(x∗m+1, . . . , x
∗
n)︸ ︷︷ ︸

m×(n−m)

+∇>mf(x∗1, . . . , x
∗
n)︸ ︷︷ ︸

1×(n−m)

= −∇≤mf(x∗)︸ ︷︷ ︸
1×m

× [D≤mg(x∗)]−1︸ ︷︷ ︸
m×m

×D>mg(x∗)︸ ︷︷ ︸
m×(n−m)

+∇>mf(x∗)︸ ︷︷ ︸
1×(n−m)

or

∇>mf(x∗)︸ ︷︷ ︸
1×(n−m)

= ∇≤mf(x∗)︸ ︷︷ ︸
1×m

× [D≤mg(x∗)]−1︸ ︷︷ ︸
m×m

×D>mg(x∗)︸ ︷︷ ︸
m×(n−m)

(∗)

= λ∗︸︷︷︸
1×m

×D>mg(x∗)︸ ︷︷ ︸
m×(n−m)

where we set

Rm 3 λ∗︸︷︷︸
1×m

:= (λ∗1, . . . , λ
∗
m) := ∇≤mf(x∗)︸ ︷︷ ︸

1×m

× [D≤mg(x∗)]−1︸ ︷︷ ︸
m×m

. (∗∗)

So, we have from (∗)

(i)
∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all m+ 1 ≤ j ≤ n,

and respectively from (∗∗)

∇≤mf(x∗)︸ ︷︷ ︸
1×m

[D≤mg(x∗)]−1︸ ︷︷ ︸
m×m

= λ∗︸︷︷︸
1×m

⇐⇒

∇≤mf(x∗)︸ ︷︷ ︸
1×m

= λ∗︸︷︷︸
1×m

×D≤mg(x∗) ⇐⇒

(ii)
∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n,

which proves the theorem.

9



4.2 A “Cookbook” Procedure: How to use the Multidimensional

Theorem of Lagrange

(1) Set up the Lagrangian function

U 3 (x1, . . . , xn)→ L(x1, . . . , xn) := f(x1, . . . , xn)−
∑m

i=1
λigi(x1, . . . , xn)

with a vector of Lagrange multipliers λ = (λ1, . . . , λm) ∈ Rm.

(2) Take the partial derivatives of L(x1, . . . , xn) w.r.t. xj, 1 ≤ j ≤ n,

∂

∂xj
L(x1, . . . , xn) :=

∂f

∂xj
(x1, . . . , xn)−

∑m

i=1
λi
∂gi
∂xj

(x1, . . . , xn).

(3) Find the set of all critical points (x∗1, . . . , x
∗
n) ∈ U for the Lagrangian L(x1, . . . , xn).

To this end, solve the system of (n+m) equations{
∂
∂xj
L(x1, . . . , xn) = 0, 1 ≤ j ≤ n,

∂
∂λi
L(x1, . . . , xn) = −gi(x1, . . . , xn) = 0, 1 ≤ i ≤ m,

with (n+m) unknowns (x1, . . . , xn) ∈ U, (λ1, . . . , λm) ∈ Rm.

Every critical point (x∗1, . . . , x
∗
n;λ∗1, . . . , λ

∗
m) ∈ U × Rm for L gives us the candidate

(x∗1, . . . , x
∗
n) for the local extrema of the EC problem, provided this (x∗1, . . . , x

∗
n) satisfies

the constraint qualification rank Dg(x∗) = m. To check whether x∗ is a local (global) max

/ min, we need to evaluate f at each point x∗.

The points x∗ at which the constraint qualification fails (i.e., rank Dg(x∗) < m) should

be considered separately since the Lagrange Theorem is not applicable to them.

Example 4.2.1 (Economic / Numerical Example to EC). Maximize the Cobb-Douglas

utility function

u(x1, x2, x3) = x21x
3
2x3, x1, x2, x3 ≥ 0 (∈ R+),

under the budjet constraint

x1 + x2 + x3 = 12.

Solution 4.2.2. The global maximum exists by the Weierstrass theorem, since u is a

continuous function defined on a compact domain

D :=
{

(x1, x2, x3) ∈ R3
+ | x1 + x2 + x3 = 12

}
.

If any of x1, x2, x3 is zero, then u(x1, x2, x3) = 0, which is not the max value.
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So, it is enough to solve the Lagrange optimization problem in the open domain

Ů :=
{

(x1, x2, x3) ∈ R3
>0

}
.

The Lagrangian is

L(x1, x2, x3) = x21x
3
2x3 − λ(x1 + x2 + x3 − 12).

The 1st order conditions are
∂L
∂x1

= 2x1x
3
2x3 − λ = 0, (i)

∂L
∂x2

= 3x21x
2
2x3 − λ = 0, (ii)

∂L
∂x3

= x21x
3
2 − λ = 0, (iii)

x1 + x2 + x3 = 12, (iv)

(i) + (ii) =⇒ x2 = 3x1/2;

(i) + (iii) =⇒ x3 = x1/2.
.

Inserting x2 and x3 in (iv) =⇒

x1 + 3x1/2 + x1/2 = 12 =⇒
x1 = 4, x2 = 6, x3 = 2.

The Constraint Qualification in this (as well as in any other) point holds:

∂g

∂x1
=

∂g

∂x2
=

∂g

∂x3
= 1.

Answer: The only possible solution is (4, 6, 2), which is the global max point.

Example 4.2.3 (Harder Example). Determine the max/min of the objective function

f(x, y) = x2 + y2 (square of distance from (0, 0) in R2)

subject to g(x, y) = x2 + xy + y2 − 3 = 0.

Solution 4.2.4. The constraint g(x, y) = 0 defines an ellipse in R2, so we should find

points of the ellipse which have the minimal distance from (0, 0). The Lagrangian is

L(x, y) = x2 + y2 − λ(x2 + xy + y2 − 3), for (x, y) ∈ R2.

The 1st order conditions are 
∂L
∂x

= 2x− λ(2x+ y), (i)
∂L
∂y

= 2y − λ(x+ 2y), (ii)

x2 + xy + y2 − 3 = 0. (iii)

We then have (i) =⇒ λ = 2x
2x+y

if y 6= −2x. Inserting λ in (ii), we get

2y =
2x

2x+ y
(x+ 2y) =⇒ y2 = x2 ⇐⇒ x = ±y.

11



(a) Suppose y = x. Then (iii) =⇒ x2 = 1, so x = 1 or x = −1. We have 2 solution

candidates: (x, y) = (1, 1) and (x, y) = (−1, 1) for λ = 2/3.

(b) Suppose y = −x. Then (iii) =⇒ x2 = 3, so x =
√

3 or x = −
√

3. We have 2

solution candidates: (x, y) = (
√

3,−
√

3) and (x, y) = (−
√

3,
√

3) for λ = 2.

(c) It remains to consider y = −2x. Then (i) =⇒ x = y = 0, which contradicts (iii).

So, we have 4 candidates for the max/min problem:

fmin = f(1, 1) = f(−1,−1) = 2 and fmax = f(
√

3,−
√

3) = f(−
√

3,
√

3) = 6.

Next, we check the constraint qualification at these points: ∇g(x, y) = (2x+ y, 2y+x) 6= 0.

The only point where ∇g(x, y) = 0 is x = y = 0, but it does not satisfy the constraint

g(x, y) = 0.

Answer: (1, 1) and (−1, 1) solve the min problem; (
√

3,−
√

3) and (−
√

3,
√

3) solve the

max problem.

Example 4.2.5 (Economic Example). Suppose we have n resources with units x1, . . . , xn ≥
0 and m consumers with their utility functions

u1(x), . . . , um(x), x = (x1, . . . , xn) ∈ Rn
+.

The vector xi := (xi1, . . . , xin) ∈ Rn
+ describes the allocation received by the ith consumer,

1 ≤ i ≤ m.

Problem: Find

max
x1,...,xn∈Rn

+

∑m

i=1
ui(xi)

under the resourse constraint∑m

i=1
xi = ω ∈ Rn

+ (a given endowment vector), i.e.,∑m

i=1
xij = ωj ≥ 0, 1 ≤ j ≤ n.

Solution 4.2.6. The Weierstrass theorem says that the global maximum exists if each of

the functions u1(x), . . . , um(x) are continuous. The Lagrangian with the multiplier vector

λ ∈ Rn

L(x1, . . . , xn) =
∑m

i=1
ui(xi)−

〈
λ,
∑m

i=1
xi − ω

〉
=

∑m

i=1
ui(x)−

∑n

j=1
λj

(∑m

i=1
xij − ωj

)
.

1st order conditions

∂ui
∂xij

(xi) = λj (independent of i) =⇒

∂ui
∂xij

(xi)

∂ui
∂xik

(xi)
=

λj
λk

, for any pair of resourses k, j and any consumer i.
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The left-hand side is the so-called marginal rate of substitution (MRS) of resourse

k for resourse j. This relation is the same for all consumers, 1 ≤ i ≤ m.

4.3 Sufficient Conditions

4.3.1 Global Sufficient Conditions

The Lagrange multiplier method gives the necessary conditions. They also will be suffi-

cient in the following special case.

Concave / Convex Lagrangian

Let everything be as in Theorem 4.2. Namely, let U ⊂ Rn be open and let

f : U → R, g : U → Rm (m ≤ n)

be continuously differentiable. Consider the Lagrangian

L(x;λ) := f(x)−
∑m

i=1
λigi(x).

Let (x∗, λ∗) ∈ U ×R be a critical point of L(x;λ), i.e., it satisfies the 1st order conditions.

Theorem 4.3.1. The following hold.

i. If L(x;λ∗) is a concave function of x ∈ U , then x∗ is the global maximum.

ii. If L(x;λ∗) is a convex function of x ∈ U , then x∗ is the global minimum.

Proof. By assumption, x obeys the constraint g(x) = 0. Let L(x;λ∗) be concave on U.

Then by Theorem 3.6, for any x ∈ U , one has

h(x) = L(x;λ∗) ≤ L(x∗;λ∗) + 〈∇xL(x∗;λ∗), x− x∗〉Rn

= L(x∗;λ∗) +
〈
∇f(x∗)−

∑m

i=1
λ∗i∇gi(x∗), x− x∗

〉
Rn

= L(x∗;λ∗) + 0 = f(x∗)− 〈λ∗, g(x∗)〉Rn = f(x∗)− 0

= f(x∗).

Remark 4.3.2. In particular, Theorem 4.3.1 holds if f is concave, g is convex and λ∗ ≥ 0.

Furthermore, all this applies to linear f, g which are both convex and concave.
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Example 4.3.3 (Economic Example). A firm uses inputs K > 0 of capital and L > 0 of

labour, respectively, to produce a single output Q according to the Cobb-Douglas production

function

Q = KaLb,

where

a, b > 0 and a+ b ≤ 1.

The prices of capital and labour are r > 0 and w > 0, respectively. Solve the cost min-

imising problem

min {rK + wL} subject to KaLb = Q.

Solution 4.3.4. The Lagrangian is

L(K,L) = rK + wL− λ
(
KaLb −Q

)
.

Note that

f(K,L) := rK + wL is linear and g(k, L) := KaLb −Q is concave.

The 1st order conditions are necessary and sufficient:
r = λaKa−1Lb,

w = λbKaLb−1,

KaLb = Q,

=⇒


λ ≥ 0,

r
w

= aL
bK
⇒ L = K br

aw
,

Ka+b = Q
(
aw
br

)b
.

Answer:

K = Q
1

a+b

(aw
br

) b
a+b

, L = K
br

aw
= Q

1
a+b

(
br

aw

) a
a+b

is the global solution of the Lagrange min problem.

4.3.2 Local Sufficient Conditions of 2nd Order

Theorem 4.3.5. Let U ⊂ Rn be open and let

f : U → R, g : U → Rm (m ≤ n)

be twice continuously differentiable. Define the Lagrangian

L(x;λ) := f(x)− 〈λ, g(x)〉Rm .

Let x∗ ∈ U be such that g(x∗) = 0 and

DxL(x;λ∗) = ∇f(x∗)︸ ︷︷ ︸
1×n

− λ∗︸︷︷︸
1×m

×Dg(x∗)︸ ︷︷ ︸
m×n

= 0
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for some Lagrange multiplier λ∗ ∈ Rm, i.e., (x∗, λ∗) is a critical point of L(x;λ). Consider

the matrix of 2nd partial derivatives of L(x;λ∗) w.r.t. x

D2
xL(x;λ∗) := D2f(x)︸ ︷︷ ︸

n×n

− λ∗︸︷︷︸
1×m

×D2g(x∗)︸ ︷︷ ︸
m×(n×n)

.

Suppose that D2
xL(x;λ∗) is negative definite subject to the constraint

Dg(x∗)︸ ︷︷ ︸
m×n

× h︸︷︷︸
n×1

= 0,

i.e., for all x ∈ U and for all 0 6= h ∈ Rn, one has〈
D2
xL(x;λ∗)h, h

〉
Rn < 0

from the linear constraint subspace Z(x∗) := {h ∈ Rn | Dg(x∗)h = 0}. Then x∗ is a

strict local maximum of f(x) subject to g(x) = 0 (i.e., there exists a ball Bε(x
∗) ⊂ U

such that f(x∗) > f(x) for all x ∈ Bε(x
∗) satisfying the constraint g(x) = 0).

Proof. (Idea.) By Taylor’s formula and the IFT. See e.g. Simon, Blume, Sect. 19.3, or

Sundarem, Sect. 5.3 .

Example 4.3.6 (Illustrative Example with n = 2, m = 1 (see Section 4.2)). Find local

max / min of

f(x, y) = x2 + y2

subject to

g(x, y) = x2 + xy + y2 − 3 = 0.

Solution 4.3.7. We have seen that the 1st order conditions give 4 candidates

(1, 1), (−1,−1) with λ = 2/3,

(
√

3,−
√

3), (−
√

3,
√

3) with λ = 2.

Calculate

∇g(x, y) = (2x+ y, 2y + x),

L(x, y) = x2 + y2 − λ(x2 + xy + y2 − 3),

D2L(x, y) =

(
2− 2λ −λ
−λ 2− 2λ

)
.
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i. Let x∗ = y∗ = 1, λ∗ = 2/3, and h = (h1, h2) 6= 0.

∇g(x∗, y∗) = (3, 3),

〈∇g(x∗, y∗), h〉 = 0 ⇐⇒ 3h1 + 3h2 = 0 ⇐⇒ h1 = −h2.〈
D2
xL(x;λ∗)h, h

〉
Rn = (2− 2λ∗)h21 − 2λ∗h1h2 + (2− 2λ∗)h22

= 8h21/3 > 0 (for h 6= 0).

By Theorem 4.3.5, x∗ = y∗ = 1 is a local min. The same holds for x∗ = y∗ = −1.

ii. Let x∗ = −y∗ =
√

3, λ∗ = 2, and h = (h1, h2) 6= 0.

∇g(x∗, y∗) = (
√

3,−
√

3),

〈∇g(x∗, y∗), h〉 = 0 ⇐⇒ h1 = h2.〈
D2
xL(x;λ∗)h, h

〉
Rn = −8h21 < 0 (for h 6= 0).

By Theorem 4.3.5, x∗ =
√

3, y∗ = −
√

3 is a local maximum. The same holds for

x∗ = −
√

3, y∗ =
√

3.

4.4 Non-linear Programming and the (Karush-) Kuhn-Tucker

Theorem: Optimization under Inequality Constraints

In economics one usually meets inequality than equality constraints (certain variables

should be nonnegative, budget constraints, etc.).

Formulation of the problem

Let U ⊂ Rn be an open set and let n,m ∈ N (not necessarily m ≤ n). Find

max
x∈U

f(x1, . . . , xn)

subject to m inequality constraints
g1(x1, . . . , xn) ≤ 0,

...

gm(x1, . . . , xn) ≤ 0.

The points x ∈ U which satisfy these constraints are called admissible or feasible.

Respectively,

D := {x ∈ U | g1(x) ≤ 0, . . . , gm(x) ≤ 0}
is called admissible or feasible set.

A point x∗ ∈ U is called a local maximum (resp. minimum) of f under the above

inequality constraints, if there exists a ball Bε(x
∗) ⊂ U such that f(x∗) ≥ f(x) (resp.

f(x∗) ≤ f(x)) for all x ∈ D ∩Bε(x
∗).
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Remark 4.4.1. In general, it is possible that m > n, since we have some inequality

constraints. For the sake of concreteness we consider only the constraints with ”≤”.

In principle, the problem can be solved by the Lagrange method. We have to examine

the critical points of L(x1, . . . , xn) in the interior of the domain D and the behaviour of

f(x1, . . . , xn) on the boundary of D. However, since the 1950s, the economists generally

tacked this such problems by using an extension of the Lagrange multiplier method due to

Karush–Kuhn–Tucker.

4.4.1 Karush-Kuhn-Tucker (KKT) Theorem

Albert Tucker (1905–1995) was a Canadian-born American mathematician who made

important contributions in topology, game theory, and non-linear programming. He chaired

the mathematics department of the Princeton University for about 20 years, one of the

longest tenures.

Harold Kuhn (born 1925) is an American mathematician who studied game theory. He

won the 1980 John von Neumann Theory Prize along with David Gale and Albert Tucker.

He is known for his association with John Nash, as a fellow graduate student, a lifelong

friend and colleague, and a key figure in getting Nash the attention of the Nobel Prize

committee that led to Nash’s 1994 Nobel Prize in Economics. Kuhn and Nash both had

long associations and collaborations with A. Tucker, who was Nash’s dissertation advisor.

Kuhn is credited as the mathematics consultant in the 2001 movie adaptation of Nash’s

life, ”A Beautiful Mind”.

William Karush (1917–1997) was a professor of California State University and is a

mathematician best known for his contribution to Karush–Kuhn–Tucker conditions. He

was the first to publish the necessary conditions for the inequality constrained problem in

his Masters thesis (Univ. of Chicago, 1939), although he became renowned after a seminal

conference paper by Kuhn and Tucker (1951).

Definition 4.4.2. We say that the inequality constraint gi(x) ≤ 0 is effective (or active,

binding) at a point x∗ ∈ U if gi(x
∗) = 0. Respectively, the constraint gi(x) ≤ 0 is passive

(inactive, not binding) at a point x∗ ∈ U if gi(x
∗) < 0.

Intuitively, only active constraints have effect on the local behaviour of an optimal

solution. If we know from the beginning which restrictions would be binding at an optimum,

the Karush-Kuhn-Tucker problem would reduce to a Lagrange problem, in which we would

take the active constraints as equalities and ignore the rest.
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Theorem 4.4.3 (Karush-Kuhn-Tucker Theorem or the 1st Order Necessary Conditions

for Optima; without proof here). Let U ⊂ Rn be open and let f : U → R and g : U → Rm,

with m,n ∈ N, be continuously differentiable. Suppose that x∗ = (x∗1, . . . , x
∗
n) ∈ U is a

local maximum for f(x1, . . . , xn) under the inequality constraints
g1(x1, . . . , xn) ≤ 0,

...

gm(x1, . . . , xn) ≤ 0.

Without loss of generality, suppose that the first p (0 ≤ p ≤ m) constraints are active at

point x∗, while the others are inactive.

Furthermore, suppose that the Constraint Qualification (CQ) holds: the rank of

the Jacobian matrix of the binding constraints (which is a p× n matrix)

Dg≤p(x
∗) =


∂g1
∂x1

(x∗) · · · ∂g1
∂xn

(x∗)
...

...
∂gp
∂x1

(x∗) · · · ∂gp
∂xn

(x∗)


is equal to p, i.e.,

rank Dg≤p(x
∗) = p.

Then there exists a nonnegative vector λ∗ = (λ∗1, . . . , λ
∗
m) ∈ Rm

+ such that (x∗, λ∗)

satisfy the following conditions hold:

[KKT− 1]
∂f

∂xj
(x∗) =

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n;

[KKT− 2] λ∗i gi(x
∗) = 0, for all 1 ≤ i ≤ m.

Remark 4.4.4.

i. [KKT− 2] is called the “Complementary Slackness” condition: if one of the

inequalities

λ∗i ≥ 0 or gi(x
∗) ≤ 0

is slack (i.e., strict), the other cannot be!{
λ∗i > 0 =⇒ gi(x

∗) = 0,

gi(x
∗) < 0 =⇒ λ∗i = 0.

It is also possible that both λ∗i = gi(x
∗) = 0.

ii. The Constraint Qualification (CQ) claims that the matrix Dg≤p(x
∗) is of full

rank p, i.e., there is no redundant binding constraints, both in the sense that there

are fewer binding constraints than variables (i.e., p ≤ n) and in the sense that the

constraints which are binding are ‘independent’ (otherwise, Dg≤p(x
∗) cannot have the

full rank p).
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By changing min f = max(−f), we get the following:

Corollary 4.4.5. Suppose f, g are defined as in Theorem 4.4.3 and x∗ ∈ U is a local

minimum. Then the statement of Theorem 4.5 holds true with the only modification

[KKT− 1′]
∂f

∂xj
(x∗) = −

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n.

4.5 A “Cookbook” Procedure: How to use the Karush–Kuhn–

Tucker Theorem

(1) Set up the Lagrangian function

U 3 (x1, . . . , xn)→ L(x1, . . . , xn) := f(x1, . . . , xn)−
∑m

i=1
λigi(x1, . . . , xn)

with a vector of non-negative Lagrange multipliers λ = (λ1, . . . , λm) ∈ Rm
+

(i.e., all λi ≥ 0, 1 ≤ i ≤ m).

(2) Equate all 1st order partial derivatives of L(x1, . . . , xn) w.r.t. xj, 1 ≤ j ≤ n,

to zero:

[KKT− 1]
∂

∂xj
L(x1, . . . , xn) =

∂f

∂xj
(x1, . . . , xn)−

∑m

i=1
λi
∂gi
∂xj

(x1, . . . , xn) = 0.

(3) Require (x1, . . . , xn) to satisfy the constraints

− ∂

∂λi
L(x1, . . . , xn) = gi(x1, . . . , xn) ≤ 0, 1 ≤ i ≤ m.

Impose the Complementary Slackness Condition

[KKT− 2] λigi(x1, . . . , xn) = 0, 1 ≤ i ≤ m,

whereby λi = 0 if gi(x1, . . . , xn) < 0

and gi(x1, . . . , xn) = 0 if λi > 0.

(4) Find all x∗ = (x∗1, . . . , x
∗
n) ∈ U which together with the corresponding values

of λ∗1, . . . , λ
∗
m satisfy Conditions [KKT− 1], [KKT− 2]. These are the max-

ima solution candidates, at least one of which solves the problem (if it has

a solution at all). For such x∗ we should check the Constraint Qualification

rank Dg≤p(x
∗) = p, otherwise the method can give a wrong answer.

Finally, compute all points x ∈ U where the Constraint Qualification fails

and compare values of f at such points.
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4.5.1 Remarks on Applying KKT Method

(1) The sign of λi is important. The multipliers λ∗i ≥ 0 correspond to the inequality

constraints gi(x) ≤ 0, 1 ≤ i ≤ m. Constraints gi(x) ≥ 0 formally lead to the

multipliers λ∗i ≤ 0 in [KKT− 1] (by setting g̃i := −gi).

(2) λ∗i ≥ 0 correspond to the maximum problem

max
x∈U ; g1(x)≤0,...,gm(x)≤0

f(x).

In turn, the minimum problem

min
x∈U ; g1(x)≤0,...,gm(x)≤0

f(x)

leads to the following modification of the [KKT− 1] (by setting f̃ := −f)

[KKT− 1′]
∂f

∂xj
(x∗) = −

∑m

i=1
λ∗i
∂gi
∂xj

(x∗), for all 1 ≤ j ≤ n.

(3) Intuitively, the λi means the sensitivity of the objective function f(x) w.r.t. a

”small” increase of the parameter ci in tne constraint gi(x) ≤ ci.

(4) Possible reasons leading to failure of the Karush-Kuhn-Tucker method:

i. The Constraint Qualification fails. Even if an optimum x∗ does exit but does

not obey CQ, it may happen that x∗ does not satisfy [KKT− 1], [KKT− 2].

ii. There exists no global optimum for the constrained problem at all. Then

there may exist solutions to [KKT− 1], [KKT− 2], which are however not

global, or maybe even local, optima.

Example 4.5.1 (Worked Examples (with n = 2, m = 1)). Solve the problem:

max f(x, y) for f(x, y) = x2 + y2 + y + 1

subject to g(x, y) = x2 + y2 − 1 ≤ 0.

Solution 4.5.2. By the Weierstrass Theorem there exists a global maximum (x∗, y∗) ∈ D
of f(x, y) in the closed bounded domain (unit ball)

D :=
{

(x, y) ∈ R2 | x2 + y2 ≤ 1
}
.

The Lagrangian is defined for all (x, y) ∈ R2 := U by

L(x, y) := x2 + y2 + y + 1− λ(x2 + y2 − 1).
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[KKT− 1]

{
∂L(x,y)
∂x

= 2x− 2λx = 0, (i)
∂L(x,y)
∂y

= 2y + 1− 2λy = 0. (ii)
,

[KKT− 2]

{
λ ≥ 0, x2 + y2 ≤ 1,

λ = 0 if x2 + y2 < 1, x2 + y2 = 1 if λ > 0.
(iii).

We should find all (x∗, y∗) ∈ D which satisfy (i)− (iii) for some λ ≥ 0.

(i) ⇐⇒ 2x(1− λ) = 0 ⇐⇒ λ = 1 or x = 0.

But λ = 1 =⇒︸︷︷︸
(ii)

2y + 1− 2y = 0, contradiction. Hence, x = 0.

(a) Suppose x2 + y2 = 1 ⇐⇒ y = ±1.

If y = 1 =⇒︸︷︷︸
(ii)

λ = 3/2, which solves (iii).

If y = −1 =⇒︸︷︷︸
(ii)

λ = 1/2, which solves (iii).

(b) Suppose x2 + y2 < 1; x = 0 =⇒ −1 < y < 1, λ = 0.

Then by (ii) y = −1/2.

We get 3 candidates:

1. (0, 1) with λ = 3/2 and f(0, 1) = 3;

2. (0,−1) with λ = 1/2 and f(0,−1) = 1;

3. (0,−1/2) with λ = 0 and f(0,−1/2) = 3/4.

The point (0,−1/2) is inside D, i.e., the constraint is not active.

At the points (0, 1) and (0,−1) the constraint is active, but ∇g(x, y) = (2x, 2y) 6= 0

and rankDg(x, y) = 1, i.e., (CQ) holds.

The only point, where (CQ) could fail, i.e., ∇g(x, y) = 0, is x = y = 0 with f(0, 0) = 1.

But this point is inside D, i.e. g(0, 0) < 0, and hence the constraint is passive.

Answer: x = 0, y = 1 is the solution (global maximum).

Example 4.5.3 (Counterexample (KKT method fails)). Find max f(x, y) for

f(x, y) = −(x2 + y2)

subject to

g(x, y) = y2 − (x− 1)3 ≤ 0.
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Solution 4.5.4. Elementary analysis: y2 ≤ (x−1)3 =⇒ x ≥ 1. In particular, the smallest

possible value of x is 1, which corresponds to y = 0. So,

max
g(x,y)≤0

f(x, y) = − min
g(x,y)≤0

(x2 + y2) = −1

is achieved at x∗ = 1, y∗ = 0.

Now, we try to apply the Karush-Kuhn-Tucker method. First we note that g(x∗, y∗) = 0

and

∇g(x∗, y∗) = (∂xg(x∗, y∗), ∂yg(x∗, y∗)) = (0, 0),

i.e., the Constrained Qualification fails. Formally, we should find λ∗ ≥ 0 such that{
∂xf(x∗, y∗) = λ∗∂xg(x∗, y∗) = 0,

∂yf(x∗, y∗) = λ∗∂yg(x∗, y∗) = 0,

but we see that ∇f(x∗, y∗) = (−2x∗,−2y∗) = (−2, 0) 6= 0. The Kuhn-Tucker method gives

no solutions / critical points, hence it is not applicable. On the other hand, elementary

analysis gives us the global maximum at the above point x∗ = 1, y∗ = 0.

4.5.2 The Simplest Case of KKT: n = 2,m = 1

Problem: Maximize f(x, y) subject to g(x, y) ≤ 0.

Corollary 4.5.5 (Karush-Kuhn-Tucker Theorem with one inequality constraint). Let U

be an open subset of R2 and let f : U → R and g : U → R be continuously differentiable.

Suppose that (x∗, y∗) ∈ U is a local maximum for f(x, y) under the inequality constraint

g(x, y) ≤ 0.

If g(x∗, y∗) = 0 (i.e., the constraint g is active at point (x∗, y∗)), suppose additionally

that rank Dg(x∗) = ∇g(x∗) = 1, i.e.,

∂g

∂x
(x∗, y∗) 6= 0 or

∂g

∂y
(x∗, y∗) 6= 0,

i.e., the Constraint Qualification (CQ) holds.

In any case, form the Lagrangian function

L(x, y) := f(x, y)− λg(x, y).

Then, there exists a multiplier λ∗ ≥ 0 such that

[KKT− 1]
∂L
∂x

(x∗, y∗) =
∂f

∂x
(x∗, y∗)− λ∗ ∂g

∂x
(x∗, y∗) = 0,

∂L
∂y

(x∗, y∗) =
∂f

∂y
(x∗, y∗)− λ∗∂g

∂y
(x∗, y∗) = 0;

[KKT− 2] λ∗ · g(x∗, y∗) = 0, λ∗ ≥ 0, g(x∗, y∗) ≤ 0.
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Remark 4.5.6 (Why Does the Receipe Work? Geometrical Picture (n = 2,m = 1)).

Since we do not know a priori whether or not the constraint will be binding at the

maximizer, we cannot use the only condition [KKT− 1], i.e., ∂xL(x, y) = ∂yL(x, y) = 0

that we used with equality constraints. We should complete the statement by the condition

[KKT− 2], which says that either the constraint is binding or its multiplier is zero

(or sometime, both).

Proof. (Idea of Prooving Theorem 4.4.3.)

Case 1: Passive Constraint g(x∗, y∗) < 0. The point p = (x∗, y∗) is inside the feasible

set

D := {(x, y) ∈ U | g(x, y) ≤ 0} .

This means that (x∗, y∗) is an interior maximum of f(x, y) and thus

∂f

∂x
(x∗, y∗) =

∂f

∂y
(x∗, y∗) = 0.

In this case we set λ∗ = 0.

Case 2: Binding Constraint g(x∗, y∗) = 0. The point p = (x∗, y∗) is on the boundary

of the feasible set. In other words, (x∗, y∗) solves the Lagrange problem, i.e., there

exists a Lagrange multiplier λ∗ ∈ R such that

∂f

∂x
(x∗, y∗) = λ∗

∂g

∂x
(x∗, y∗),

∂f

∂y
(x∗, y∗) = λ∗

∂g

∂y
(x∗, y∗),

or ∇f(x∗, y∗) = λ∗∇g(x∗, y∗).

This time, however, the sign of λ∗ is important! Let us show that λ∗ ≥ 0. Recall

from Sect. 2, that ∇f(x∗, y∗) ∈ R2 points in the direction in which f inreases most

rapidly at the point (x∗, y∗). In particular, ∇g(x∗, y∗) points to the set g(x, y) ≥ 0

and not to the set g(x, y) ≤ 0. Since (x∗, y∗) maximizes f on the set g(x, y) ≤ 0, the

gradient of f cannot point to the constraint set. If did, we could increase f and still

keep g(x, y) ≤ 0. So, ∇f(x∗, y∗) must point to the region where g(x, y) ≥ 0. This

means that ∇f(x∗, y∗) and ∇g(x∗, y∗) must point in the same direction. Thus, if

∇f(x∗, y∗) = λ∗∇g(x∗, y∗), the multiplier λ∗ must be ≥ 0.

Corollary 4.5.7 (Trivial case (n = m = 1)). Let U ⊂ R be open and let f, g ∈ C1(U).

Suppose that x∗ ∈ U is a local maximum for f(x) under the inequality constraint

g(x) ≤ 0.
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If g(x∗) = 0 (i.e., the constraint is active at x∗), suppose additionally that

g′(x∗) 6= 0

(i.e., the CQ holds). Then there exists a multiplier λ∗ ≥ 0 such that

[KT − 1] f ′(x∗) = λ∗g′(x∗);

[KT − 2] λ∗g(x∗) = 0, λ∗ ≥ 0, g(x∗) ≤ 0.

4.5.3 The case n = m = 2

Corollary 4.5.8. Let U ⊂ R2be open and let

f : U → R, g1 : U → R, g2 : U → R

be continuously differentiable. Suppose that (x∗, y∗) ∈ U is a local maximum for f(x, y)

under the inequality constraints g1(x, y) ≤ 0, g2(x, y) ≤ 0.

i. If g1(x
∗, y∗) = g2(x

∗, y∗) = 0 (i.e., both constraints are active at point (x∗, y∗)),

suppose additionally that rankDg(x∗) = 2, i.e.,

detDg(x∗, y∗) =

∣∣∣∣∣∣∣
∂g1
∂x

(x∗, y∗) ∂g1
∂y

(x∗, y∗)
...

∂g2
∂x

(x∗, y∗) ∂g2
∂y

(x∗, y∗)

∣∣∣∣∣∣∣ 6= 0

(i.e., the CQ holds).

ii. If g1(x
∗, y∗) = 0 and g2(x

∗, y∗) < 0, suppose additionally that rankDg1(x
∗, y∗) = 1,

i.e., at least one of ∂g1
∂x

(x∗, y∗) and ∂g1
∂y

(x∗, y∗) is not zero.

iii. If g1(x
∗, y∗) < 0 and g2(x

∗, y∗) = 0, suppose respectively that rankDg2(x
∗, y∗) = 1,

i.e., at least one of ∂g2
∂x

(x∗, y∗) and ∂g2
∂y

(x∗, y∗) is not zero.

iv. If both g1(x
∗, y∗) < 0 and g2(x

∗, y∗) < 0, no additional assumptions are needed (i.e.,

the CQ holds automatically).

In any case, form the Lagrangian function

L(x, y) := f(x, y)− λ1g1(x, y)− λ2g2(x, y).

Then there exists a multiplier λ∗ = (λ∗1, λ
∗
2) ∈ R2

+ such that:

[KKT− 1]

∂L
∂x

(x∗, y∗) = ∂f
∂x

(x∗, y∗)− λ∗1
∂g1
∂x

(x∗, y∗)− λ∗2
∂g2
∂x

(x∗, y∗) = 0,

∂L
∂y

(x∗, y∗) = ∂f
∂y

(x∗, y∗)− λ∗1
∂g1
∂y

(x∗, y∗)− λ∗2
∂g2
∂y

(x∗, y∗) = 0;

[KKT− 2]
λ∗1g1(x

∗, y∗) = 0, λ∗2g2(x
∗, y∗) = 0,

λ∗1 ≥ 0, λ∗2 ≥ 0, g1(x
∗, y∗) ≤ 0, g2(x

∗, y∗) ≤ 0.
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Example 4.5.9 (More difficult: n = m = 2). Find min (e−x − y) subject to{
ex + ey ≤ 6

y ≥ x

Solution 4.5.10. Rewrite the problem as max f(x, y) with

f(x, y) := y − e−x where (x, y) ∈ R2 =: U,

subject to {
g1(x, y) := ex + ey − 6 ≤ 0

g2(x, y) := x− y ≤ 0
.

Define the Lagrangian function with λ1, λ2 ≥ 0

L(x, y) := y − e−x − λ1(ex + ey − 6)− λ2(x− y).

The 1st order conditions [KKT-1]{
e−x − λ1ex − λ2 = 0, (i)

1− λ1ey + λ2 = 0. (ii)

The Complementary Slackness [KKT-2]
λ1(e

x + ey − 6) = 0; λ1 ≥ 0; λ1 = 0 if ex + ey < 6, (iii)

λ2(x− y) = 0; λ2 ≥ 0; λ2 = 0 if x < y; (iv)

x ≤ y, ex + ey ≤ 6.

From (ii)

λ2 + 1 = λ1e
y =⇒ λ1 > 0,

and then by (iii)

ex + ey = 6.

Suppose in (iv) that x = y, then ex = ey = 3. From (i) and (ii), we get{
1
3
− 3λ1 − λ2 = 0,

1− 3λ1 + λ2 = 0.
=⇒

{
λ1 = 2/9,

λ2 = −1/3,

which contradicts to (iv) (since now λ2 < 0). Hence x < y and λ2 = 0, as well as

ex + ey = 6 and λ1 > 0.

(i) =⇒ λ1 = e−2x,

(ii) =⇒ λ1 = e−y

}
=⇒

y = 2x,

e2x + ex = 6

}
=⇒ ex = 2 or ex = −3 (impossible!).
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So,

x∗ = ln 2, y∗ = 2x = ln 4,

λ∗1 = 1/4, λ∗2 = 0.

We showed that (x∗, y∗) = (ln 2, ln 4) is the only candidate for a solution. At this point

the constraint g1(x, y) ≤ 0 is binding whereas the constraint g2(x, y) ≤ 0 is passive. The

(CQ) now reads as

∂g1
∂x

(x∗, y∗) = ex
∗ 6= 0 or

∂g1
∂y

(x∗, y∗) = ey
∗ 6= 0

and is satisfied. Actually, (CQ) holds at all points (x, y) ∈ R2. Namely,

Dg(x, y) =

(
ex ey

1 −1

)
,

with detDg(x, y) = −(ex + ey) < 0 and ∇g1(x, y) 6= 0, ∇g2(x, y) 6= 0 for all (x, y) ∈ R2.

The point (ln 2, ln 4) is the global minimum point we need to find.
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