
QEM “Optimization”, WS 2017/18

Part 1. Convergence in Metric Spaces
A Big List of Exercises to Start with

1. Prove that in any metric space (X, d):

(a) [1 Point] |d(x, z)− d(y, z)| ≤ d(x, y) (inverse triangle inequality).

(b) [1 Point] |d(x, z)− d(y, u)| ≤ d(x, y) + d(z, u) (quadrangle inequality).

2. (a) [1 Point] Let a, b, c ≥ 0 and a ≤ b+ c. Check that

a

1 + a
≤ b

1 + b
+

c

1 + c
.

(b) [1 Point] Let ‖ · ‖ be an arbitrary norm on Rn, n ∈ N. Show that

d(x, y) :=
‖x− y‖

1 + ‖x− y‖
, x, y ∈ Rn,

defines a metric on Rn.

(c) [1 Point] Show that 0 ≤ d(x, y) ≤ 1 for all x, y ∈ Rn.

(d) [1 Point] The metric d(x, y) cannot be generated by any norm ‖ · ‖d on
Rn, i.e., the presentation d(x, y) = ‖x− y‖d is impossible.

3. [2 Points] Check that

d(x, y) :=
|x− y|

√
1 + x2

√
1 + y2

, x, y ∈ R,

defines a metric on the real line R. Is this metric induced by some norm on
R?

4. [2 Points] For x = (x1, x2), y = (y1, y2) ∈ R2 let us define

d(x, y) :=
(√
|x1 − y1|+

√
|x2 − y2|

)
.

Is it a metric on R2?

5. [2 Points] Two metrics d1 and d2 on X are called equivalent if from
d1(xn, x) → 0 it follows that d2(xn, x) → 0, and vice versa. In other words,
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d1 and d2 define the same system of open sets. Prove that the following two
metrics on X =

(
−π

2
, π
2

)
are equivalent:

d1(x, y) := |x− y|, d2(x, y) := | tanx− tan y|.

6. Let (X, d) be a metric space.
(a) [1 Point] Show that

d1(x, y) := min{1, d(x, y)}, x, y ∈ X,

defines a new metric on X.

(b) [1 Point] Show that these metrics are equivalent.

7. [2 Points] Let X be a set, (Y, ρ) a metric space, and F : X → Y a
one-to-one function. Show that

d(x, y) := ρ(F (x), F (y)), x, y ∈ X,

defines a metric on X.

8. Let
R∞ := {x = (xi)i∈N | xi ∈ R, ∀i ∈ N}

be the space of all real sequences.

(a) [2 Points] Using Exercise 2 check that both

d(x, y) :=
∑
i

1

2i
|xi − yi|

1 + |xi − yi|
,

d1(x, y) := sup
i

|xi − yi|
1 + |xi − yi|

,

x = (xi)i∈N, y = (yi)i∈N ∈ R∞,

define metrics on R∞.

(b) [1 Point] Show that

0 ≤ d(x, y) ≤ d1(x, y) ≤ 1, ∀x, y ∈ R∞.

(c) [2 Points] What does it mean for the sequences x(n) = (x
(n)
i )i∈N, n ∈ N,

to converge in these metrics? Show that d(x(n), x) → 0 is equivalent to the

pointwise convergence |x(n)i −xi| → 0 for each i ∈ N, whereas d1(x
(n), x)→ 0

is equivalent to the uniform convergence supi |x
(n)
i → xi| → 0 as n→∞.
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(d) [2 Points] Show that both spaces are complete.

(e*) [4 Points] Show that (R∞, d) is separable, but (R∞, d1) is not.

9. Let

l1 :=

{
x = (xi)i∈N ∈ R∞ |

∑
i

|xi| <∞

}
be a set of all summable real sequences. As usual, define

(xi)i∈N + (yi)i∈N := (xi + yi)i∈N,
a(xi)i∈N := (axi)i∈N

for all x = (xi)i∈N, y = (yi)i∈N ∈ l1 and a ∈ R. Show that:

(a) [1 Point] l1 is a vector space with respect to the above operations.

(b) [1 Point] Both

‖x‖∞ := sup
i
|xi| and ‖x‖1 :=

∑
i

|xi|

define norms on l1. Furthermore, ‖x‖∞ ≤ ‖x‖1.
(c) [1 Point] These norms are not equivalent, i.e., one cannot find some
C ∈ (0,∞) such that ‖x‖1 ≤ C‖x‖∞ for all x ∈ l1. To this end, in l1
construct a sequence x(n) = (x

(n)
i )i∈N, n ∈ N, such that

lim
n→∞

‖x(n)‖∞ = 0, lim
n→∞

‖x(n)‖1 =∞.

(d) [2 Points] Let 0 ≤ a ≤ ∞. Show that in l1 there exist sequences

x(n) = (x
(n)
i )i∈N, n ∈ N, such that

lim
n→∞

x
(n)
i = 0 for all i ∈ N,

but
lim
n→∞

‖x(n)‖∞ = lim
n→∞

‖x(n)‖1 = a.

10. For p ∈ [1,∞) define

lp :=

x = (xi)i∈N ∈ R∞ | ‖x‖p :=

[∑
i

|xi|p
]1/p

<∞

 .

Show that:
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(a) [1 Points] ‖ · ‖p is a norm on lp [Hint: use Minkovski’s inequality, see
Lecture 4].

(b) [2 Points] (lp, ‖ · ‖p) is a Banach space.

(c) [2 Points] (lp, ‖ · ‖p) is separable [Hint: consider a countable subset of
all finite sequences with xi ∈ Q].

(d) [1 Point] lp ⊂ lp′ whenever p < p′.

11. Consider the discrete metric space (X, d) with

d(x, y) :=

{
0, if x = y,

1, if x 6= y.

(a) [1 Point] Show that any set in (X, d) is open and closed simultaneously.

(b) [1 Point] Describe all convergent sequences in (X, d).

(c) [2 Points] If (X, d) is separable or not?

12. (a) [1 Point] Prove that in any metric space (X, d), the closed ball
defined by

Br(x) := {y ∈ X | d(x, y) ≤ r} , x ∈ X, r ∈ R+,

is a closed set.

(b) [1 Point] For each open ball

Br(x) := {y ∈ X | d(x, y) < r} ,

its closure is contained in Br(x).

(c) [2 Points] Show that in general there is no identity in (b). Hint: consider
the discrete metric space from Exercise 7.

(d) [2 Points] Show that the closure of Br(x) coincides with Br(x) in the
space C[a, b] with the uniform metric.

13. [2 Points] Show that a set A ⊆ X is open iff A ∩ ∂A = ∅ and A is
closed if ∂A ⊆ A.

14. [2 Points] In R2 consider two sets

A := {(x, y) | y = 0} and B := {(x, y) | xy = 1}.

Prove that A ∩B = 0 but dist(A,B) := inf{d(x, y) | x ∈ A, y ∈ B} = 0.
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15. (a) [2 Points] Prove that for any points x, y ∈ X and any nonempty
set A ⊆ X

|d(x,A)− d(y, A)| ≤ d(x, y).

Here, d(x,A) := inf{d(x, z) | z ∈ A}.
(b) [1 Point] Conclude from (a) that the mapping

(X, d) 3 x→ d(x,A) ∈ R+

is continuous.

16. [2 Points] Let A ⊆ X be closed and x /∈ A. Prove that d(x,A) > 0.

17. [2 Points] Prove that for any sets A,B ⊆ X

d(A,B) = d(A, B̄) = d(Ā, B) = d(Ā, B̄).

18. Prove the following properties of the interior:

(a) [1 Point] A ⊆ B implies A◦ ⊆ B◦.

(b) [1 Point] (A ∩B)◦ = A◦ ∩B◦ for any A,B ⊆ X.

(c) [2 Points] (A ∪ B)◦ = A◦ ∪ B◦ if A ⊆ X is arbitrary and B ⊆ X is
closed.

19. [2 Points] Let g be some function from C[a, b]. Prove that the set

{f ∈ C[a, b] | f(t) < g(t) for all t ∈ [a, b]}

is open in C[a, b].

20. Check whether the following sequences are convergent or not:

(a) [1 Point] X = l1, xn :=

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n times

, 0, 0, . . .

.

(b) [1 Point] X = l2, xn :=

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n2 times

, 0, 0, . . .

.

(c) [1 Point] X = l3, xn :=
(
1, 1

2
, . . . , 1

n
, 0, 0, . . .

)
.

21. [2 Points] Prove that the sequence

fn(t) := tn − t2n, t ∈ [0, 1],
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is not convergent in C[0, 1].

22. [2 Points] Prove that the space C[0, 1] of all continuous functions
f : [0, 1]→ R is not complete with respect to the metric

d(f, g) :=

(∫ 1

0

|f(t)− g(t)|2dt
)1/2

.

Hint: consider the sequence

fn(t) :=


−1, if − 1 ≤ t ≤ − 1

n
,

nt, if − 1
n
≤ t ≤ 1

n
,

1, if 1
n
≤ t ≤ 1.

23*. [3 Points] Let f be a twice continuously differentiable function on
R+ := {t ∈ R | t ≥ 0} obeying:

(a) f(0) = 0 and f(t) > 0 if t > 0; (b) f(t) is strictly increasing for t ≥ 0;
(c) f ′′(t) ≤ 0 for t > 0.

Show that ρ(x, y) := f(|x − y|) defines a metric on R. In particular, this
applies to f(t) := t

1+t
.

24*. [3 Points] Let f be a continuously differentiable function on R+ :=
{t ∈ R | t ≥ 0} obeying:

(a) f(0) = 0 and f(t) > 0 if t > 0; (b) f(t) is increasing for t ≥ 0; (c) f(t)
t

is decreasing for t > 0.
Show that ρ(x, y) := f(|x − y|) defines a metric on R. In particular, this
applies to f(t) := arctan t.

25*. [3 Points] Let Q be a metric space of all rational numbers with the
metric d(x, y) := |x − y|. Prove that the set M := {p ∈ Q | 2 < p2 < 3} is
closed and bounded, but not compact in Q.

26*. By definition, the space c consists of all convergent sequences x =
(xi)i∈N from R∞. Respectively, c0 is a subset of c consisting of all sequences
with limi→∞ xi = 0. Define the distance

d(x, y) = ‖x− y‖∞ := sup
i
|xi − yi|.

Show that:

(a) [3 Points] c and c0 are closed subsets in l∞; hence c and c0 are Banach
spaces with respect to the metric ‖x− y‖∞.
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(b) [3 Points] The spaces c and c0 are separable (in contrast to l∞).

27*. [3 Points] Show that a normed space (X, ‖ · ‖) is Banach if and only
if any series

∑
n≥1 xn, for which

∑
n≥1 ‖xn‖ <∞, is convergent in X.
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