QEM "Optimization", WS 2017/18

Part 1. Convergence in Metric Spaces

A Big List of Exercises to Start with

1. Prove that in any metric space (X, d) :
(a) [1 Point] $|d(x, z)-d(y, z)| \leq d(x, y)$ (inverse triangle inequality).
(b) $[1$ Point $]|d(x, z)-d(y, u)| \leq d(x, y)+d(z, u)$ (quadrangle inequality).
2. (a) $[\mathbf{1}$ Point $]$ Let $a, b, c \geq 0$ and $a \leq b+c$. Check that

$$
\frac{a}{1+a} \leq \frac{b}{1+b}+\frac{c}{1+c} .
$$

(b) $[\mathbf{1}$ Point $]$ Let $\|\cdot\|$ be an arbitrary norm on $\mathbb{R}^{n}, n \in \mathbb{N}$. Show that

$$
d(x, y):=\frac{\|x-y\|}{1+\|x-y\|}, \quad x, y \in \mathbb{R}^{n}
$$

defines a metric on \mathbb{R}^{n}.
(c) $[\mathbf{1}$ Point $]$ Show that $0 \leq d(x, y) \leq 1$ for all $x, y \in \mathbb{R}^{n}$.
(d) $[\mathbf{1}$ Point $]$ The metric $d(x, y)$ cannot be generated by any norm $\|\cdot\|_{d}$ on \mathbb{R}^{n}, i.e., the presentation $d(x, y)=\|x-y\|_{d}$ is impossible.
3. [2 Points] Check that

$$
d(x, y):=\frac{|x-y|}{\sqrt{1+x^{2}} \sqrt{1+y^{2}}}, \quad x, y \in \mathbb{R}
$$

defines a metric on the real line \mathbb{R}. Is this metric induced by some norm on \mathbb{R} ?
4. [2 Points] For $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ let us define

$$
d(x, y):=\left(\sqrt{\left|x_{1}-y_{1}\right|}+\sqrt{\left|x_{2}-y_{2}\right|}\right)
$$

Is it a metric on \mathbb{R}^{2} ?
5. [2 Points] Two metrics d_{1} and d_{2} on X are called equivalent if from $d_{1}\left(x_{n}, x\right) \rightarrow 0$ it follows that $d_{2}\left(x_{n}, x\right) \rightarrow 0$, and vice versa. In other words,
d_{1} and d_{2} define the same system of open sets. Prove that the following two metrics on $X=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ are equivalent:

$$
d_{1}(x, y):=|x-y|, \quad d_{2}(x, y):=|\tan x-\tan y| .
$$

6. Let (X, d) be a metric space.
(a) $[\mathbf{1}$ Point $]$ Show that

$$
d_{1}(x, y):=\min \{1, d(x, y)\}, \quad x, y \in X
$$

defines a new metric on X.
(b) $[\mathbf{1}$ Point $]$ Show that these metrics are equivalent.
7. [2 Points] Let X be a set, (Y, ρ) a metric space, and $F: X \rightarrow Y$ a one-to-one function. Show that

$$
d(x, y):=\rho(F(x), F(y)), \quad x, y \in X,
$$

defines a metric on X.
8. Let

$$
\mathbb{R}^{\infty}:=\left\{x=\left(x_{i}\right)_{i \in \mathbb{N}} \mid x_{i} \in \mathbb{R}, \forall i \in \mathbb{N}\right\}
$$

be the space of all real sequences.
(a) [2 Points] Using Exercise 2 check that both

$$
\begin{aligned}
& d(x, y):=\sum_{i} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}, \\
& d_{1}(x, y):=\sup _{i} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}, \\
& x=\left(x_{i}\right)_{i \in \mathbb{N}}, y=\left(y_{i}\right)_{i \in \mathbb{N}} \in \mathbb{R}^{\infty},
\end{aligned}
$$

define metrics on \mathbb{R}^{∞}.
(b) $[\mathbf{1}$ Point $]$ Show that

$$
0 \leq d(x, y) \leq d_{1}(x, y) \leq 1, \quad \forall x, y \in \mathbb{R}^{\infty}
$$

(c) [2 Points] What does it mean for the sequences $x^{(n)}=\left(x_{i}^{(n)}\right)_{i \in \mathbb{N}}, n \in \mathbb{N}$, to converge in these metrics? Show that $d\left(x^{(n)}, x\right) \rightarrow 0$ is equivalent to the pointwise convergence $\left|x_{i}^{(n)}-x_{i}\right| \rightarrow 0$ for each $i \in \mathbb{N}$, whereas $d_{1}\left(x^{(n)}, x\right) \rightarrow 0$ is equivalent to the uniform convergence $\sup _{i}\left|x_{i}^{(n)} \rightarrow x_{i}\right| \rightarrow 0$ as $n \rightarrow \infty$.
(d) [2 Points] Show that both spaces are complete.
(e*) [4 Points] Show that $\left(\mathbb{R}^{\infty}, d\right)$ is separable, but $\left(\mathbb{R}^{\infty}, d_{1}\right)$ is not.
9. Let

$$
l_{1}:=\left\{x=\left(x_{i}\right)_{i \in \mathbb{N}} \in \mathbb{R}^{\infty}\left|\sum_{i}\right| x_{i} \mid<\infty\right\}
$$

be a set of all summable real sequences. As usual, define

$$
\begin{aligned}
\left(x_{i}\right)_{i \in \mathbb{N}}+\left(y_{i}\right)_{i \in \mathbb{N}} & :=\left(x_{i}+y_{i}\right)_{i \in \mathbb{N}}, \\
a\left(x_{i}\right)_{i \in \mathbb{N}} & :=\left(a x_{i}\right)_{i \in \mathbb{N}}
\end{aligned}
$$

for all $x=\left(x_{i}\right)_{i \in \mathbb{N}}, y=\left(y_{i}\right)_{i \in \mathbb{N}} \in l_{1}$ and $a \in \mathbb{R}$. Show that:
(a) [1 Point $] l_{1}$ is a vector space with respect to the above operations.
(b) $[1$ Point $]$ Both

$$
\|x\|_{\infty}:=\sup _{i}\left|x_{i}\right| \text { and }\|x\|_{1}:=\sum_{i}\left|x_{i}\right|
$$

define norms on l_{1}. Furthermore, $\|x\|_{\infty} \leq\|x\|_{1}$.
(c) $[\mathbf{1}$ Point $]$ These norms are not equivalent, i.e., one cannot find some $C \in(0, \infty)$ such that $\|x\|_{1} \leq C\|x\|_{\infty}$ for all $x \in l_{1}$. To this end, in l_{1} construct a sequence $x^{(n)}=\left(x_{i}^{(n)}\right)_{i \in \mathbb{N}}, n \in \mathbb{N}$, such that

$$
\lim _{n \rightarrow \infty}\left\|x^{(n)}\right\|_{\infty}=0, \quad \lim _{n \rightarrow \infty}\left\|x^{(n)}\right\|_{1}=\infty
$$

(d) [2 Points] Let $0 \leq a \leq \infty$. Show that in l_{1} there exist sequences $x^{(n)}=\left(x_{i}^{(n)}\right)_{i \in \mathbb{N}}, n \in \mathbb{N}$, such that

$$
\lim _{n \rightarrow \infty} x_{i}^{(n)}=0 \text { for all } i \in \mathbb{N},
$$

but

$$
\lim _{n \rightarrow \infty}\left\|x^{(n)}\right\|_{\infty}=\lim _{n \rightarrow \infty}\left\|x^{(n)}\right\|_{1}=a
$$

10. For $p \in[1, \infty)$ define

$$
l_{p}:=\left\{x=\left(x_{i}\right)_{i \in \mathbb{N}} \in \mathbb{R}^{\infty} \mid\|x\|_{p}:=\left[\sum_{i}\left|x_{i}\right|^{p}\right]^{1 / p}<\infty\right\} .
$$

Show that:
(a) [1 Points] $\|\cdot\|_{p}$ is a norm on l_{p} [Hint: use Minkovski's inequality, see Lecture 4].
(b) $[2$ Points $]\left(l_{p},\|\cdot\|_{p}\right)$ is a Banach space.
(c) [2 Points] $\left(l_{p},\|\cdot\|_{p}\right)$ is separable [Hint: consider a countable subset of all finite sequences with $x_{i} \in \mathbb{Q}$].
(d) $[\mathbf{1}$ Point $] l_{p} \subset l_{p^{\prime}}$ whenever $p<p^{\prime}$.
11. Consider the discrete metric space (X, d) with

$$
d(x, y):= \begin{cases}0, & \text { if } x=y \\ 1, & \text { if } x \neq y\end{cases}
$$

(a) $[1$ Point $]$ Show that any set in (X, d) is open and closed simultaneously.
(b) $[1$ Point $]$ Describe all convergent sequences in (X, d).
(c) [2 Points] If (X, d) is separable or not?
12. (a) [1 Point] Prove that in any metric space (X, d), the closed ball defined by

$$
\overline{B_{r}(x)}:=\{y \in X \mid d(x, y) \leq r\}, \quad x \in X, r \in \mathbb{R}_{+},
$$

is a closed set.
(b) $[\mathbf{1}$ Point $]$ For each open ball

$$
B_{r}(x):=\{y \in X \mid d(x, y)<r\},
$$

its closure is contained in $\overline{B_{r}(x)}$.
(c) [2 Points] Show that in general there is no identity in (b). Hint: consider the discrete metric space from Exercise 7.
(d) [2 Points] Show that the closure of $B_{r}(x)$ coincides with $\overline{B_{r}(x)}$ in the space $C[a, b]$ with the uniform metric.
13. [2 Points] Show that a set $A \subseteq X$ is open iff $A \cap \partial A=\varnothing$ and A is closed if $\partial A \subseteq A$.
14. [2 Points] In \mathbb{R}^{2} consider two sets

$$
A:=\{(x, y) \mid y=0\} \text { and } B:=\{(x, y) \mid x y=1\} .
$$

Prove that $A \cap B=0$ but $\operatorname{dist}(A, B):=\inf \{d(x, y) \mid x \in A, y \in B\}=0$.
15. (a) [2 Points] Prove that for any points $x, y \in X$ and any nonempty set $A \subseteq X$

$$
|d(x, A)-d(y, A)| \leq d(x, y)
$$

Here, $d(x, A):=\inf \{d(x, z) \mid z \in A\}$.
(b) $[\mathbf{1}$ Point $]$ Conclude from (a) that the mapping

$$
(X, d) \ni x \rightarrow d(x, A) \in \mathbb{R}_{+}
$$

is continuous.
16. [2 Points] Let $A \subseteq X$ be closed and $x \notin A$. Prove that $d(x, A)>0$.
17. [2 Points] Prove that for any sets $A, B \subseteq X$

$$
d(A, B)=d(A, \bar{B})=d(\bar{A}, B)=d(\bar{A}, \bar{B})
$$

18. Prove the following properties of the interior:
(a) $[1$ Point $] A \subseteq B$ implies $A^{\circ} \subseteq B^{\circ}$.
(b) $[1$ Point $](A \cap B)^{\circ}=A^{\circ} \cap B^{\circ}$ for any $A, B \subseteq X$.
(c) [2 Points] $(A \cup B)^{\circ}=A^{\circ} \cup B^{\circ}$ if $A \subseteq X$ is arbitrary and $B \subseteq X$ is closed.
19. [2 Points] Let g be some function from $C[a, b]$. Prove that the set

$$
\{f \in C[a, b] \mid f(t)<g(t) \text { for all } t \in[a, b]\}
$$

is open in $C[a, b]$.
20. Check whether the following sequences are convergent or not:
(a) $[\mathbf{1}$ Point $] X=l_{1}, x_{n}:=(\underbrace{\frac{1}{n}, \ldots, \frac{1}{n}}_{n \text { times }}, 0,0, \ldots)$.
(b) [1 Point] $X=l_{2}, x_{n}:=(\underbrace{\frac{1}{n}, \ldots, \frac{1}{n}}_{n^{2} \text { times }}, 0,0, \ldots)$.
(c) $[1$ Point $] X=l_{3}, x_{n}:=\left(1, \frac{1}{2}, \ldots, \frac{1}{n}, 0,0, \ldots\right)$.
21. [2 Points] Prove that the sequence

$$
f_{n}(t):=t^{n}-t^{2 n}, \quad t \in[0,1]
$$

is not convergent in $C[0,1]$.
22. [2 Points] Prove that the space $C[0,1]$ of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ is not complete with respect to the metric

$$
d(f, g):=\left(\int_{0}^{1}|f(t)-g(t)|^{2} d t\right)^{1 / 2}
$$

Hint: consider the sequence

$$
f_{n}(t):= \begin{cases}-1, & \text { if }-1 \leq t \leq-\frac{1}{n} \\ n t, & \text { if }-\frac{1}{n} \leq t \leq \frac{1}{n} \\ 1, & \text { if } \frac{1}{n} \leq t \leq 1\end{cases}
$$

23*. [3 Points] Let f be a twice continuously differentiable function on $\mathbb{R}_{+}:=\{t \in \mathbb{R} \mid t \geq 0\}$ obeying:
(a) $f(0)=0$ and $f(t)>0$ if $t>0$; (b) $f(t)$ is strictly increasing for $t \geq 0$;
(c) $f^{\prime \prime}(t) \leq 0$ for $t>0$.

Show that $\rho(x, y):=f(|x-y|)$ defines a metric on \mathbb{R}. In particular, this applies to $f(t):=\frac{t}{1+t}$.
24*. [3 Points] Let f be a continuously differentiable function on $\mathbb{R}_{+}:=$ $\{t \in \mathbb{R} \mid t \geq 0\}$ obeying:
(a) $f(0)=0$ and $f(t)>0$ if $t>0$; (b) $f(t)$ is increasing for $t \geq 0$; (c) $\frac{f(t)}{t}$ is decreasing for $t>0$.
Show that $\rho(x, y):=f(|x-y|)$ defines a metric on \mathbb{R}. In particular, this applies to $f(t):=\arctan t$.
25*. [3 Points] Let \mathbb{Q} be a metric space of all rational numbers with the metric $d(x, y):=|x-y|$. Prove that the set $M:=\left\{p \in \mathbb{Q} \mid 2<p^{2}<3\right\}$ is closed and bounded, but not compact in \mathbb{Q}.
26*. By definition, the space c consists of all convergent sequences $x=$ $\left(x_{i}\right)_{i \in \mathbb{N}}$ from \mathbb{R}^{∞}. Respectively, c_{0} is a subset of c consisting of all sequences with $\lim _{i \rightarrow \infty} x_{i}=0$. Define the distance

$$
d(x, y)=\|x-y\|_{\infty}:=\sup _{i}\left|x_{i}-y_{i}\right| .
$$

Show that:
(a) [3 Points] c and c_{0} are closed subsets in l_{∞}; hence c and c_{0} are Banach spaces with respect to the metric $\|x-y\|_{\infty}$.
(b) [3 Points] The spaces c and c_{0} are separable (in contrast to l_{∞}).

27*. [3 Points] Show that a normed space $(X,\|\cdot\|)$ is Banach if and only if any series $\sum_{n \geq 1} x_{n}$, for which $\sum_{n \geq 1}\left\|x_{n}\right\|<\infty$, is convergent in X.

