QE "Optimization", WS 2017/18
 Problem Set No. 11

Submit your solutions by 27.11.2017.
The problems will be discussed in the tutorials.

Questions marked with a star (*) are slightly more challenging and can be skipped if you get too stuck.

1. [2 points] Prove that any intersection of convex sets is convex: if each $U_{i}, i \in I$, is convex and I is an arbitrary index set, then $\bigcap_{i \in I} U_{i}$ is convex.
2. [5 points] Determine whether the following sets are convex (if helpful, draw them). Briefly explain the answer.
(i) $\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1} \leq x_{2} \leq x_{3}\right\}$;
(ii) $\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2} \leq 1\right.$ and $\left.x_{1}^{2}+x_{2}^{2} \leq 1\right\}$;
(iii) $\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2} \leq 1\right.$ or $\left.x_{1}^{2}+x_{3}^{2} \leq 1\right\}$;
(iv) $\left\{x=\left(x_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n} \mid-1 \leq \sum_{i=1}^{n} x_{i} \leq 1\right\}$;
(v) $\left\{x=\left(x_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}^{2}=1\right\}$.

3*. [4 points] Show that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex (resp. concave) if and only if for each fixed $x, y \in \mathbb{R}^{n}$ the function $\varphi:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi(\lambda):=f(\lambda x+(1-\lambda) y)
$$

is convex (resp. concave) on $[0,1]$.
4. [3 points] Show that the distance function

$$
\mathbb{R}^{2 n} \ni(x, y) \rightarrow\|x-y\|, \quad x, y \in \mathbb{R}^{n}
$$

is convex. Use the definition of convexity directly.
5. [4 points] Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a concave function satisfying $f(0)=0$. Prove that for all $0 \leq \lambda \leq 1$ and $k \geq 1$ we have

$$
f(\lambda x) \geq \lambda f(x), \quad k f(x) \geq f(k x)
$$

6. [4 points] Show (by using the 2 nd order sufficient condition) that the function

$$
f(x, y)=\frac{x^{2}}{y}
$$

is convex on the domain $U:=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$.
7. [4 Points] Show that

$$
f(x, y):=\frac{1}{2} e^{-(x+y)}-e^{-x}-e^{y}
$$

is concave for $x, y>0$.
8*. [5 Points] Let

$$
f(x, y)=(\ln x)^{a}(\ln y)^{b}
$$

defined for $x>1, y>1$. Assume that $a>0, b>0$ and $a+b<1$. Show that f is strictly concave.
9. [5 Points] Consider the CES production functions with $a, b>0$

$$
f(x, y):=\left(a x^{p}+b y^{p}\right)^{1 / p}
$$

on the domain $U:=\{(x, y) \mid x>0, y>0\} \subset \mathbb{R}^{2}$. For which $p>0$ is this function convex / concave?

