# QE "Optimization", WS 2017/18 Problem Set No. 12 

Submit your solutions by 4.12 .2017 .
The problems will be discussed in the tutorials.

1. [6 Points] Using the Lagrange multiplier method, solve the constrained optimization problem in $\mathbb{R}^{2}$

$$
\begin{gathered}
\max / \min \quad f(x, y)=x y \\
\text { subject to the constraint } x^{2}+y^{2}=1 .
\end{gathered}
$$

i Explain why you expect the problem to be solvable;
ii Show that the constrained Qualification fails only at the point $x=y=$ 0 ;
iii Form the Lagrangean and write the 1st order conditions;
iv Find all 4 candidates for a solution of the constrained optimization problem;
v Choose the global max/min among them.
Answer: the max/min values of $f$ are $-1 / 2$ and $1 / 2$.
2. [7 points] Using the Lagrange multiplier method, solve the constrained optimization problem in $\mathbb{R}^{3}$

$$
\begin{array}{cc}
\max / \min & f(x, y, z)=x^{2}+y^{2}+z \\
\text { subject to } & (x-1)^{2}+y^{2}=5, y=z
\end{array}
$$

i Explain why you expect the problem to be solvable;
ii Simplify the problem by reducing to the case of 2 variables;
iii Check that the Constrained Qualification holds at all points obeying the equality constraint;
iv Form the Lagrangean and write the 1st order conditions;
v Find all candidates for a solution and show that the max/min values of $f$ are 11 and 1 respectively.
3. [6 Points] Consider the problem

$$
\begin{gathered}
\max \quad f(x, y)=2 x+3 y \\
\text { subject to } \sqrt{x}+\sqrt{y}=5 .
\end{gathered}
$$

Show that the Langrange multiplier method suggests the wrong solution $(x, y)=(9,4)$. Compare $f(9,4)$ and $f(25,0)$. Explain why the Lagrange theorem cannot be used here to find the solution.
4. [6 Points] Find the local extrema of the function

$$
\begin{gathered}
f(x, y)=x+2 y \\
\text { subject to } \quad x^{2}+y^{2}=5 .
\end{gathered}
$$

Apply the necessary and sufficient conditions of the 1st order.
5. [6 Points] Using the Lagrange multiplier method, solve the constrained optimization problem in $\mathbb{R}^{3}$

$$
\begin{array}{cc}
\max / \min & f(x, y, z)=x+y+z \\
\text { subject to } & x^{2}+y^{2}+z^{2}=12
\end{array}
$$

Apply necessary and sufficient conditions of the 1 st order.

