QE "Optimization", WS 2017/18

Problem Set No. 2 (based on Lecture Notes, Items 1.1-1.4)

Submit your solutions by 25.09 .2017 .
The problems will be discussed in the tutorials.

1. [4 Points] Find the supremum and infimum of each of the following sets in \mathbb{R}. Justify your answers.
i $\left\{\left.\frac{n}{n+1} \right\rvert\, n \in \mathbb{N}\right\}$
ii $\{a-b \mid a, b \in \mathbb{R}, 1<a<2,3<b<4\}$.
2. [4 Points] Determine whether or not the following sequences converge. Find the limits, if they exist. Justify your work.
i $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{3}, x_{n}:=\left((-1)^{n}, 4, \frac{1}{n}\right)$
ii $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}^{2}, x_{n}:=\left(\frac{n \sin n}{n^{2}+1}, \frac{(-1)^{n+1}}{n}\right)$.
3. [3 Points] Let $\mathbb{Q} \subset \mathbb{R}$ be the set of all rational numbers. Find its interior \mathbb{Q}, closure $\overline{\mathbb{Q}}$, and boundary $\partial \mathbb{Q}$.
4. [2 Points] Let X be a non-empty set and let d be the discrete metric;

$$
d(x, y):= \begin{cases}0, & \text { if } x=y \\ 1, & \text { if } x \neq y\end{cases}
$$

Describe all convergent sequences in the metric space (X, d).
5. Consider the space of continuous functions $C[0,1]$ with the max-norm.
(a) $[2$ Points $]$ Fix some function g from $C[0,1]$. Prove that the set

$$
\{f \in C[0,1] \mid f(t)<g(t) \text { for all } t \in[0,1]\}
$$

is open in $C[0,1]$.
(b) $[2$ Points $]$ Calculate the distance in $C[0,1]$ between the functions $f(t)=$ $2 t$ and $g(t)=1-t$.
(c) [3 Points] Prove that the sequence

$$
f_{n}(t):=t^{n}-t^{2 n}, t \in[0,1]
$$

is not convergent in $C[0,1]$.
6. Let X be a vector space equipped with a norm $\|x\|_{X}$.
(a) [3 Points] Prove that

$$
\rho_{1}(x, y):=\min \left\{1,\|x-y\|_{X}\right\}, x, y \in X
$$

defines a metric on X (the so-called Radar Screen metric).
(b) $[2$ Points $]$ Show that the function

$$
\rho_{2}(x, y):=\max \left\{1,\|x-y\|_{X}\right\}, x, y \in X
$$

is not a metric on X.

