QE "Optimization", WS 2017/18
 Problem Set No. 3

Submit your solutions by 02.10.2017.
The problems will be discussed in the tutorials.

Questions marked with a star (*) are slightly more challenging and can be skipped if you get too stuck.

1. (a) [2 Points] Prove that in any metric space (X, d) the closed ball defined by

$$
\overline{B_{r}(x)}:=\{y \in X \mid d(x, y) \leq r\}, x \in X, r \in \mathbb{R}_{+},
$$

is indeed a closed set.
(b) [2 Points] Prove that for each open ball

$$
B_{r}(x):=\{y \in X \mid d(x, y)<r\}
$$

its closure is always contained in $\overline{B_{r}(x)}$.
(c) [2 Points] Show that in general there is no identity in (b). Hint: consider the discrete metric space.
2.* (a) [2 Points] Prove that for any points $x, y \in X$ and any nonempty set $A \subseteq X$

$$
|d(x, A)-d(y, A)| \leq d(x, y)
$$

Here, $d(x, A):=\inf \{d(x, z) \mid z \in A\}$.
(b) $[\mathbf{1}$ Point $]$ Conclude from (a) that the mapping

$$
(X, d) \ni x \rightarrow d(x, A) \in \mathbb{R}_{+}
$$

is continuous.
3. [2 Points] Let $A \subseteq X$ be closed and $x \notin A$. Prove that $d(x, A)>0$.
4. [2 Points] Let (X, d) and (Y, ρ) be metric spaces. Show that if d is the discrete metric, then any function $f: X \rightarrow Y$ is continuous.
5. [2 Points] For a metric space (X, d) and a given $x_{0} \in X$, prove that the distance function

$$
X \ni x \rightarrow f(x):=d\left(x, x_{0}\right) \in \mathbb{R}
$$

is uniformly continuous.
6.* [3 Points] Prove that a function $f: \mathcal{I} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\frac{1}{1-x}
$$

is not uniformly continuous on the interval $\mathcal{I}=(0,1)$.

