
QE “Optimization”, WS 2017/18

Problem Set No. 4

————————————————————————————————

Submit your solutions by 09.10.2017.

The problems will be discussed in the tutorials.

————————————————————————————————

Questions marked with a star (*) are slightly more challenging and can be
skipped if you get too stuck.

A geometric progression is a sequence of the form (a, ar, ar2, ar3, ar4, . . .).
The sum of a geometric progression will appear several times in this problem
sheet. Hence, recall that the following summation formulae hold for all |β| <
1,

n∑
i=1

βi =
β − βn

1− β
,

∞∑
i=1

βi =
β

1− β
.

1. [14 Points] Recall that the space of p-summable sequences in R with the
p-norm ‖ · ‖p is denoted by lp. The p-norm is given by

‖(x1, x2, . . .)‖p =

(
∞∑
i=1

|xi|p
)1/p

.

Check whether the following sequences are convergent in the corresponding
lp space or not. Find the limits if they exist. Prove that the sequence does
not converge if not. [Be careful. We’re looking at sequences of sequences.]

Example:
X = l2, yn := (1, 2, 3, . . . , n, 0, 0, 0, . . .);
So y1 = (1, 0, 0, 0, . . .), y2 = (1, 2, 0, 0, . . .), y3 = (1, 2, 3, 0, 0 . . .), etc., and we
have norms ‖y1‖2 = 1, ‖y2‖2 =

√
5, ‖y3‖2 =

√
14, etc.

We see that the sequence (yn)n≥1 cannot converge because ‖yn − yn−1‖2 =
n→∞ and if yn were to converge, then ‖yn − yn−1‖2 would converge to 0.

(a) X = l1, yn :=
(
1
2
, 1
22
, . . . , 1

2n
, 0, 0, . . .

)
;

(b) X = l1, yn :=
(
n+1
n2 ,

n+2
n2 , . . . ,

2n
n2 , 0, 0, . . .

)
;
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(c) X = l1, yn :=

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n times

, 0, 0, . . .

;

(d) X = l1, yn :=

0, . . . , 0︸ ︷︷ ︸
n−1 times

, 1
nσ
, 1
(n+1)σ

, . . .

, σ > 1;

(e) X = l2, yn :=

 1

n
, 0, . . . , 0, 1︸ ︷︷ ︸

n

, 0, 0, . . .

;

(f) X = l2, yn :=

 1

n
, . . . ,

1

n︸ ︷︷ ︸
n2 times

, 0, 0, . . .

;

(g) X = l3, yn :=
(
1, 1

2
, . . . , 1

n
, 0, 0, . . .

)
.

2. [4 Points] Let (xn)n≥1 be a Cauchy sequence in a metric space (X, d).
Suppose that ∃ limk→∞ xnk =: x ∈ X for some subsequence (xnk)k≥1. Prove
that xn → x as n→∞.

3. [3 Points] Check the following inequality

d(xn, x
∗) ≤ βn

1− β
d(x1, x0), n ∈ N,

describing the speed of convergence in the Banach fixed point theorem.

Hint: Work by induction on n.
4. [5 Points] Let (X, d) be a complete metric space and let (xn)n≥1 be a
sequence in X such that there is 0 < β < 1 with

d(xn+2, xn+1) ≤ βd(xn+1, xn) for all n ∈ N.

Show that (xn)n≥1 is convergent.
Hint: What is the consequent relationship between d(xn+1, xn+1) and d(x2, x1)?
Use the triangle inequality to show that (xn)n≥1 is a Cauchy sequence. You
might want to use geometric series.

5. [5 Points] Let (X, d) be a complete metric space, and T : X → X be
such that the operator T n is a contraction for some n ∈ N. Show that T has
a unique fixed point.
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Hint: (i) Prove that T n has a unique fixed point, say x∗.

(ii) Check that d(Tx∗, x∗) = 0, i.e., x∗ is the unique fixed point for T .

6. [5 Points] Show that the map F defined by

f 7→ F (f), [F (f)](t) =
1

2

∫ 1

0

tsf(s) ds+
5

6
t, t ∈ [0, 1],

is a contraction in C([0, 1]). Use the second part of Banach’s fixed point
theorem concerning convergence of iterates to find the unique fixed point f ∗.

Hint: Is it true that F n(f0)(t) = fn(t) = cnt for some cn ∈ R? If yes, do we
have limn→∞ cn = 1? Choosing f0(t) wisely eases the computations!!

7. [4 Points] Check that the mapping

F (x) :=
x2 + 2

2x

is a contraction on the closed interval [1, 2]. Using the above, apply the
Banach fixed point theorem to show that the expression

1

x
− x

2

has exactly one root in the interval [1, 2].

Hint: To show that F is a contraction on [1, 2], rewrite |F (x) − F (y)| as
c|x− y||f(x, y)|, where c is a constant in (0, 1) and f(x, y) is a function such
that, for all x, y, one has |f(x, y)| ≤ 1.

8*. [4 Points] Prove that the space C([−1, 1]) is not complete with respect
to the metric

d(f, g) :=

(∫ 1

0

|f(t)− g(t)|2 dt
)1/2

.

Hint: Consider the sequence

fn(t) :=


−1 if − 1 ≤ t ≤ − 1

n
,

nt if − 1
n
≤ t ≤ 1

n
,

1 if 1
n
≤ t ≤ 1.

9*. [5 Points] Consider the functional sequence fn : R+ → R, n ∈ N,

fn(t) := cos

(
t

n

)
e−t, t ∈ R+ := [0,∞).
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(a) Find the pointwise limit of this sequence.

(b) Show that this sequence converges even uniformly on R+ (equipped with
the usual distance | · | from R). That is, show that ‖f − fn‖ → 0 as n→∞,
where f is the pointwise limit of fn and ‖g‖ := sup{|g(t)| : t ∈ R+}.
Hint: Use the elementary inequality cosx ≥ 1− x2

2
, x ∈ R+.
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