QE "Optimization", WS 2017/18
 Problem Set No. 4

Submit your solutions by 09.10.2017.
The problems will be discussed in the tutorials.

Questions marked with a star (*) are slightly more challenging and can be skipped if you get too stuck.
A geometric progression is a sequence of the form ($a, a r, a r^{2}, a r^{3}, a r^{4}, \ldots$). The sum of a geometric progression will appear several times in this problem sheet. Hence, recall that the following summation formulae hold for all $|\beta|<$ 1 ,

$$
\sum_{i=1}^{n} \beta^{i}=\frac{\beta-\beta^{n}}{1-\beta}, \quad \sum_{i=1}^{\infty} \beta^{i}=\frac{\beta}{1-\beta} .
$$

1. [14 Points] Recall that the space of p-summable sequences in \mathbb{R} with the p-norm $\|\cdot\|_{p}$ is denoted by l_{p}. The p-norm is given by

$$
\left\|\left(x_{1}, x_{2}, \ldots\right)\right\|_{p}=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

Check whether the following sequences are convergent in the corresponding l_{p} space or not. Find the limits if they exist. Prove that the sequence does not converge if not. [Be careful. We're looking at sequences of sequences.]

Example:

$X=l_{2}, y_{n}:=(1,2,3, \ldots, n, 0,0,0, \ldots)$;
So $y_{1}=(1,0,0,0, \ldots), y_{2}=(1,2,0,0, \ldots), y_{3}=(1,2,3,0,0 \ldots)$, etc., and we have norms $\left\|y_{1}\right\|_{2}=1,\left\|y_{2}\right\|_{2}=\sqrt{5},\left\|y_{3}\right\|_{2}=\sqrt{14}$, etc.
We see that the sequence $\left(y_{n}\right)_{n \geq 1}$ cannot converge because $\left\|y_{n}-y_{n-1}\right\|_{2}=$ $n \rightarrow \infty$ and if y_{n} were to converge, then $\left\|y_{n}-y_{n-1}\right\|_{2}$ would converge to 0 .
(a) $X=l_{1}, y_{n}:=\left(\frac{1}{2}, \frac{1}{2^{2}}, \ldots, \frac{1}{2^{n}}, 0,0, \ldots\right)$;
(b) $X=l_{1}, y_{n}:=\left(\frac{n+1}{n^{2}}, \frac{n+2}{n^{2}}, \ldots, \frac{2 n}{n^{2}}, 0,0, \ldots\right)$;
(c) $X=l_{1}, y_{n}:=(\underbrace{\frac{1}{n}, \ldots, \frac{1}{n}}_{n \text { times }}, 0,0, \ldots)$;
(d) $X=l_{1}, y_{n}:=(\underbrace{0, \ldots, 0}_{n-1 \text { times }}, \frac{1}{n^{\sigma}}, \frac{1}{(n+1)^{\sigma}}, \ldots), \sigma>1$;
(e) $X=l_{2}, y_{n}:=(\underbrace{\frac{1}{n}, 0, \ldots, 0,1}_{n}, 0,0, \ldots)$;
(f) $X=l_{2}, y_{n}:=(\underbrace{\frac{1}{n}, \ldots, \frac{1}{n}}_{n^{2} \text { times }}, 0,0, \ldots)$;
(g) $X=l_{3}, y_{n}:=\left(1, \frac{1}{2}, \ldots, \frac{1}{n}, 0,0, \ldots\right)$.
2. [4 Points] Let $\left(x_{n}\right)_{n \geq 1}$ be a Cauchy sequence in a metric space (X, d). Suppose that $\exists \lim _{k \rightarrow \infty} x_{n_{k}}=: x \in X$ for some subsequence $\left(x_{n_{k}}\right)_{k \geq 1}$. Prove that $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
3. [3 Points] Check the following inequality

$$
d\left(x_{n}, x^{*}\right) \leq \frac{\beta^{n}}{1-\beta} d\left(x_{1}, x_{0}\right), n \in \mathbb{N}
$$

describing the speed of convergence in the Banach fixed point theorem.
Hint: Work by induction on n.
4. [5 Points] Let (X, d) be a complete metric space and let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in X such that there is $0<\beta<1$ with

$$
d\left(x_{n+2}, x_{n+1}\right) \leq \beta d\left(x_{n+1}, x_{n}\right) \text { for all } n \in \mathbb{N}
$$

Show that $\left(x_{n}\right)_{n \geq 1}$ is convergent.
Hint: What is the consequent relationship between $d\left(x_{n+1}, x_{n+1}\right)$ and $d\left(x_{2}, x_{1}\right)$? Use the triangle inequality to show that $\left(x_{n}\right)_{n \geq 1}$ is a Cauchy sequence. You might want to use geometric series.
5. [5 Points] Let (X, d) be a complete metric space, and $T: X \rightarrow X$ be such that the operator T^{n} is a contraction for some $n \in \mathbb{N}$. Show that T has a unique fixed point.

Hint: (i) Prove that T^{n} has a unique fixed point, say x^{*}.
(ii) Check that $d\left(T x^{*}, x^{*}\right)=0$, i.e., x^{*} is the unique fixed point for T.
6. [5 Points] Show that the map F defined by

$$
f \mapsto F(f),[F(f)](t)=\frac{1}{2} \int_{0}^{1} t s f(s) d s+\frac{5}{6} t, t \in[0,1],
$$

is a contraction in $C([0,1])$. Use the second part of Banach's fixed point theorem concerning convergence of iterates to find the unique fixed point f^{*}.

Hint: Is it true that $F^{n}\left(f_{0}\right)(t)=f_{n}(t)=c_{n} t$ for some $c_{n} \in \mathbb{R}$? If yes, do we have $\lim _{n \rightarrow \infty} c_{n}=1$? Choosing $f_{0}(t)$ wisely eases the computations!!
7. [4 Points] Check that the mapping

$$
F(x):=\frac{x^{2}+2}{2 x}
$$

is a contraction on the closed interval [1,2]. Using the above, apply the Banach fixed point theorem to show that the expression

$$
\frac{1}{x}-\frac{x}{2}
$$

has exactly one root in the interval [1, 2].
Hint: To show that F is a contraction on [1,2], rewrite $|F(x)-F(y)|$ as $c|x-y||f(x, y)|$, where c is a constant in $(0,1)$ and $f(x, y)$ is a function such that, for all x, y, one has $|f(x, y)| \leq 1$.
8*. [4 Points] Prove that the space $C([-1,1])$ is not complete with respect to the metric

$$
d(f, g):=\left(\int_{0}^{1}|f(t)-g(t)|^{2} d t\right)^{1 / 2}
$$

Hint: Consider the sequence

$$
f_{n}(t):= \begin{cases}-1 & \text { if }-1 \leq t \leq-\frac{1}{n} \\ n t & \text { if }-\frac{1}{n} \leq t \leq \frac{1}{n} \\ 1 & \text { if } \frac{1}{n} \leq t \leq 1\end{cases}
$$

9*. [5 Points] Consider the functional sequence $f_{n}: \mathbb{R}_{+} \rightarrow \mathbb{R}, n \in \mathbb{N}$,

$$
f_{n}(t):=\cos \left(\frac{t}{n}\right) e^{-t}, t \in \mathbb{R}_{+}:=[0, \infty)
$$

(a) Find the pointwise limit of this sequence.
(b) Show that this sequence converges even uniformly on \mathbb{R}_{+}(equipped with the usual distance $|\cdot|$ from \mathbb{R}). That is, show that $\left\|f-f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, where f is the pointwise limit of f_{n} and $\|g\|:=\sup \left\{|g(t)|: t \in \mathbb{R}_{+}\right\}$.
Hint: Use the elementary inequality $\cos x \geq 1-\frac{x^{2}}{2}, x \in \mathbb{R}_{+}$.

