QE "Optimization", WS 2017/18

Problem Set No. 4

Submit your solutions by **09.10.2017**.

The problems will be discussed in the tutorials.

Questions marked with a star (*) are slightly more challenging and can be skipped if you get too stuck.

A geometric progression is a sequence of the form $(a, ar, ar^2, ar^3, ar^4, ...)$. The sum of a geometric progression will appear several times in this problem sheet. Hence, recall that the following summation formulae hold for all $|\beta| < 1$,

$$\sum_{i=1}^{n} \beta^{i} = \frac{\beta - \beta^{n}}{1 - \beta}, \quad \sum_{i=1}^{\infty} \beta^{i} = \frac{\beta}{1 - \beta}.$$

1. [14 Points] Recall that the space of *p*-summable sequences in \mathbb{R} with the *p*-norm $\|\cdot\|_p$ is denoted by l_p . The *p*-norm is given by

$$||(x_1, x_2, \ldots)||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}$$

Check whether the following sequences are convergent in the corresponding l_p space or not. Find the limits if they exist. Prove that the sequence does not converge if not. [Be careful. We're looking at sequences of sequences.]

Example:

 $X = l_2, y_n := (1, 2, 3, ..., n, 0, 0, 0, ...);$ So $y_1 = (1, 0, 0, 0, ...), y_2 = (1, 2, 0, 0, ...), y_3 = (1, 2, 3, 0, 0, ...),$ etc., and we have norms $||y_1||_2 = 1, ||y_2||_2 = \sqrt{5}, ||y_3||_2 = \sqrt{14}$, etc. We see that the sequence $(y_n)_{n\geq 1}$ cannot converge because $||y_n - y_{n-1}||_2 =$

 $n \to \infty \text{ and if } y_n \text{ were to converge, then } \|y_n - y_{n-1}\|_2 \text{ would converge to } 0.$ (a) $X = l_1, y_n := \left(\frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^n}, 0, 0, \dots\right);$ (b) $X = l_1, y_n := \left(\frac{n+1}{n^2}, \frac{n+2}{n^2}, \dots, \frac{2n}{n^2}, 0, 0, \dots\right);$

(c)
$$X = l_1, y_n := \left(\frac{1}{n}, \dots, \frac{1}{n}, 0, 0, \dots\right);$$

(d) $X = l_1, y_n := \left(\underbrace{0, \dots, 0}_{n-1 \text{ times}}, \frac{1}{n^{\sigma}}, \frac{1}{(n+1)^{\sigma}}, \dots\right), \sigma > 1;$
(e) $X = l_2, y_n := \left(\underbrace{\frac{1}{n}, 0, \dots, 0, 1, 0, 0, \dots}_{n}\right);$
(f) $X = l_2, y_n := \left(\underbrace{\frac{1}{n}, \dots, \frac{1}{n}, 0, 0, \dots}_{n^2 \text{ times}}\right);$
(g) $X = l_3, y_n := (1, \frac{1}{2}, \dots, \frac{1}{n}, 0, 0, \dots).$

2. [4 Points] Let $(x_n)_{n\geq 1}$ be a Cauchy sequence in a metric space (X, d). Suppose that $\exists \lim_{k\to\infty} x_{n_k} =: x \in X$ for some subsequence $(x_{n_k})_{k\geq 1}$. Prove that $x_n \to x$ as $n \to \infty$.

3. [**3** Points] Check the following inequality

$$d(x_n, x^*) \le \frac{\beta^n}{1-\beta} d(x_1, x_0), \ n \in \mathbb{N},$$

describing the speed of convergence in the Banach fixed point theorem.

Hint: Work by induction on n.

4. [5 Points] Let (X, d) be a complete metric space and let $(x_n)_{n\geq 1}$ be a sequence in X such that there is $0 < \beta < 1$ with

$$d(x_{n+2}, x_{n+1}) \le \beta d(x_{n+1}, x_n) \text{ for all } n \in \mathbb{N}.$$

Show that $(x_n)_{n\geq 1}$ is convergent.

Hint: What is the consequent relationship between $d(x_{n+1}, x_{n+1})$ and $d(x_2, x_1)$? Use the triangle inequality to show that $(x_n)_{n\geq 1}$ is a Cauchy sequence. You might want to use geometric series.

5. [5 Points] Let (X, d) be a complete metric space, and $T: X \to X$ be such that the operator T^n is a contraction for some $n \in \mathbb{N}$. Show that T has a unique fixed point.

Hint: (i) Prove that T^n has a unique fixed point, say x^* .

(ii) Check that d(Tx*, x*) = 0, i.e., x* is the unique fixed point for T.
6. [5 Points] Show that the map F defined by

$$f \mapsto F(f), \ [F(f)](t) = \frac{1}{2} \int_0^1 tsf(s) \, ds + \frac{5}{6}t, \ t \in [0, 1],$$

is a contraction in C([0,1]). Use the second part of Banach's fixed point theorem concerning convergence of iterates to find the unique fixed point f^* .

Hint: Is it true that $F^n(f_0)(t) = f_n(t) = c_n t$ for some $c_n \in \mathbb{R}$? If yes, do we have $\lim_{n\to\infty} c_n = 1$? Choosing $f_0(t)$ wisely eases the computations!! **7.** [4 Points] Check that the mapping

$$F(x) := \frac{x^2 + 2}{2x}$$

is a contraction on the closed interval [1, 2]. Using the above, apply the Banach fixed point theorem to show that the expression

$$\frac{1}{x} - \frac{x}{2}$$

has exactly one root in the interval [1, 2].

Hint: To show that F is a contraction on [1, 2], rewrite |F(x) - F(y)| as c|x - y||f(x, y)|, where c is a constant in (0, 1) and f(x, y) is a function such that, for all x, y, one has $|f(x, y)| \le 1$.

8*. [4 Points] Prove that the space C([-1, 1]) is not complete with respect to the metric

$$d(f,g) := \left(\int_0^1 |f(t) - g(t)|^2 \, dt\right)^{1/2}.$$

Hint: Consider the sequence

$$f_n(t) := \begin{cases} -1 & \text{if } -1 \le t \le -\frac{1}{n}, \\ nt & \text{if } -\frac{1}{n} \le t \le \frac{1}{n}, \\ 1 & \text{if } \frac{1}{n} \le t \le 1. \end{cases}$$

9*. [5 Points] Consider the functional sequence $f_n \colon \mathbb{R}_+ \to \mathbb{R}, n \in \mathbb{N}$,

$$f_n(t) := \cos\left(\frac{t}{n}\right)e^{-t}, t \in \mathbb{R}_+ := [0, \infty).$$

(a) Find the pointwise limit of this sequence.

(b) Show that this sequence converges even uniformly on \mathbb{R}_+ (equipped with the usual distance $|\cdot|$ from \mathbb{R}). That is, show that $||f - f_n|| \to 0$ as $n \to \infty$, where f is the pointwise limit of f_n and $||g|| := \sup\{|g(t)| : t \in \mathbb{R}_+\}$. **Hint:** Use the elementary inequality $\cos x \ge 1 - \frac{x^2}{2}, x \in \mathbb{R}_+$.