QE "Optimization", WS 2017/18

Problem Set No. 6

Submit your solutions by **23.10.2017**, 12 noon. The problems will be discussed in the tutorials.

1. [3 Points] Let A, B be two compact sets in a metric space (X, d). Prove that $A \cap B$ and $A \cup B$ are also compact.

2. [2 Points] Under which conditions is a *discrete* metric space (X, d) compact?

3. [2 Points] Show that if $f: X \to Y$ is continuous and X is compact, then f(X) is compact in Y.

4. [8 Points] Prove or disprove compactness of the following sets in \mathbb{R}^2 :

(i)
$$A := (\mathbb{Q} \cap [0, 1]) \times [0, 1];$$

(ii)
$$B := \{(x, y) \in \mathbb{R}^2 \mid x = 0\};$$

(ii)
$$C = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\} \times [0, 1];$$

(iv)
$$D := \left\{ \left(\frac{1}{n}, \frac{n-1}{n}\right) \mid n \in \mathbb{N} \right\}.$$

5*. [5 Points] Prove that $\overline{B_1(0)}$ is not (sequentially) compact in l_{∞} .

6*. [**5** Points] Apply the Weierstrass theorem to prove the following statement:

Let $K \subset \mathbb{R}^2$ be a compact set of the plane with the Euclidean distance $d(x,y) := |x-y|, x, y \in \mathbb{R}^2$. Then there exists a point $x^* \in K$ which is the furthest point from the origin in K, i.e.,

$$d(x^*, 0) := \max_{x \in K} d(x, 0).$$

7. [3 Points] Let X = C[0, 1] with the supremum norm and let A be the subset defined by

 $A := \{ f \in C[0,1] \mid f(0) = 1 \}.$

Show that A is closed.