QE "Optimization", WS 2017/18
 Problem Set No. 7

Submit your solutions by $\mathbf{3 0 . 1 0 . 2 0 1 7}, 12$ noon.
The problems will be discussed in the tutorials.

1. [6 Points] Show from the definition (the existence of the limit in Definition 2.1.1) that the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are partially differentiable with respect to both x and y at all points $(x, y) \in \mathbb{R}^{2}$, where f is given by
(a) $f(x, y)=2 x+y$
(b) $f(x, y)=x^{2}+y^{2}$.

Also from the definition, calculate all partial derivatives at the point $(2,3)$.
2. [6 Points] Calculate the gradient of the functions
(a) $f(x, y, z)=x^{2}+z e^{2 y},(x, y, z) \in \mathbb{R}^{3}$,
(b) $g(x, y, z)=e^{x y z},(x, y, z) \in \mathbb{R}^{3}$.
3. [3 Points] Calculate the directional derivative of the function $f(x, y)=$ $\sin (x y)$ at point $(1,0)$ along direction $v=(1 / 2, \sqrt{3} / 2)$.
4. [4 Points] Calculate the directional derivative of the function g from Problem 2(b) at point $(1,1,1)$ along direction $v=(1 / \sqrt{6}, \sqrt{2 / 3},-1 / \sqrt{6})$.
5. [3 Points] Calculate the directional derivative of the function

$$
f(x, y, z)=x^{3}+2 z e^{3 y}, \quad(x, y, z) \in \mathbb{R}^{3}
$$

at point $(-1,0,1)$ along direction $v=(1 / 2,-1 / 2,1 / \sqrt{2})$.
6. [6 Points] Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y):= \begin{cases}\frac{y^{3}}{\sqrt{x^{2}+y^{2}}}, & \text { if }(x, y) \neq 0 \\ 0, & \text { if }(x, y)=0\end{cases}
$$

Show that f is totally differentiable at $(0,0)$. Hint: Apply Theorem 2.3.

