QE "Optimization", WS 2017/18
 Problem Set No. 9

Submit your solutions by 13.11.2017.
The problems will be discussed in the tutorials.

1. [4 Points] Consider the function

$$
F(x, y, z):=x^{2}-y^{2}+z^{3} .
$$

(a) If $x=6$ and $y=3$, find z which satisfies $F(x, y, z)=0$.
(b) Does this equation define z as an implicit function of x, y near $x=6$, $y=3$?
(c) If so, compute $\partial z / \partial x(6,3)$ and $\partial z / \partial y(6,3)$.
2. [4 Points] Consider the function

$$
F(x, y, z)=x^{4}+2 x \cos y+\sin z
$$

Show that the equation $F(x, y, z)=0$ defines z as an implicit function of x, y near $x=y=z=0$. Compute $\partial z / \partial x$ and $\partial z / \partial y$ at this point.
3. [10 Points] Consider the equation

$$
x^{3}+3 y^{2}+4 x z^{2}-3 z^{2} y=1
$$

Does this equation define z as a function of x, y :
(a) in the neighbourhood of $x=1, y=1$?
(b) in the neighbourhood of $x=1, y=0$?
(c) in the neighbourhood of $x=1 / 2, y=0$?

If so, compute $\partial z / \partial x$ and $\partial z / \partial y$ at these points.
4. [5 Points] Check that the system of equations

$$
\left\{\begin{array}{l}
u+x e^{y}+v=e-1 \\
x+e^{u+v^{2}}-y=e^{-1}
\end{array}\right.
$$

defines $u=u(x, y)$ and $v=v(x, y)$ as differentiable functions of x, y around the point $(x, y, u, v)=(1,1,-1,0)$. Differentiate the system and find the values of $u_{x}^{\prime}, u_{y}^{\prime}, v_{x}^{\prime}, v_{y}^{\prime}$ at this point.
5. [4 Points] Show that the map

$$
f(x, y):=\left(x+e^{y}, y+e^{-x}\right)
$$

is everywhere locally invertible. Calculate $D f^{-1}(x, y)$ at $x=1, y=-1$.
6. [6 Points] Show that at each $(x, y) \in \mathbb{R}^{2}$ the map

$$
f(x, y):=\left(e^{x} \cos y, e^{x} \sin y\right)
$$

is locally invertible but is not globally invertible. Calculate $D f^{-1}(x, y)$ at $x=0, y=0$.

