## **OQE - PROBLEM SET 10 - SOLUTIONS**

**Exercise 1.** Let  $f: U \to \mathbb{R}$  be a  $\mathcal{C}^2$ -function, where U is an open subset of  $\mathbb{R}^2$ . Let moreover  $(x_0, y_0)$  be a critical point of f satisfying

$$\det D^2 f(x_0, y_0) = \det \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} = -1 < 0.$$

Then  $(x_0, y_0)$  is a saddle point (see Theorem 2.11.2).

**Exercise 2.** We want to find and classify the critical points of the function  $f : \mathbb{R}^2 \to \mathbb{R}$  that is defined by

$$(x,y) \mapsto f(x,y) = x^3 + y^3 - 3xy.$$

To do so, we compute the gradient of f

$$\nabla f(x,y) = (3x^2 - 3y, 3y^2 - 3x)$$

and the points at each it is equal to (0,0). We solve

$$\begin{cases} x^2 - y = 0\\ y^2 - x = 0 \end{cases}$$

getting the points P = (0, 0) and Q = (1, 1). To determine the nature of the critical points P and Q we compute the Hessian of f:

$$D^2 f(x,y) = \begin{bmatrix} 6x & -3\\ -3 & 6y \end{bmatrix}$$

We then compute

$$A = D^2 f(P) = \begin{bmatrix} 0 & -3 \\ -3 & 0 \end{bmatrix}$$
 and  $B = D^2 f(Q) = \begin{bmatrix} 6 & -3 \\ -3 & 6 \end{bmatrix}$ .

In view of Proposition 2.11.4, the maxtrix B is positive definite and so, thanks to Theorem 2.11.2, the point Q is a strict local minimum; Q is however not a global minimum since, for example, one has f(0, -5) = -25 < -1 = f(Q). The point Pis a saddle point because A is indefinite: indeed one has

$$\begin{bmatrix} 1 & 1 \end{bmatrix} D^2 f(P) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -3 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = -6 < 0$$

while

$$\begin{bmatrix} 1 & -1 \end{bmatrix} D^2 f(P) \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -3 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 6 > 0.$$

**Exercise 3.** Let  $f : \mathbb{R}^2 \to \mathbb{R}$  be defined by  $(x, y) \mapsto f(x, y) = xe^{-x}(y^2 - 4y)$ . (a) We want to find and classify all critical points of f. To this end, we compute

$$\nabla f(x,y) = (e^{-x}(1-x)(y^2-4y), xe^{-x}(2y-4))$$

Since the image of the exponential function is  $\mathbb{R}_{>0}$ , the stationary points of f are exactly the pairs  $(x, y) \in \mathbb{R}^2$  that are solutions to the following system

$$\begin{cases} (1-x)(y^2 - 4y) = 0\\ x(2y - 4)) = 0 \end{cases}$$

With not much work, one shows that the stationary points of f are (0,0), (0,4), and (1,2). To decide the nature of the critical points, we compute

$$D^{2}f(x,y) = \begin{bmatrix} (y^{2} - 4y)e^{-x}(x-2) & (2y-4)e^{-x}(1-x) \\ (2y-4)e^{-x}(1-x) & 2xe^{-x} \end{bmatrix}$$

and thus we have

$$D^2 f(0,0) = \begin{bmatrix} 0 & -4 \\ -4 & 0 \end{bmatrix}, \ D^2 f(0,4) = \begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix}, \text{ and } D^2 f(1,2) = \begin{bmatrix} \frac{4}{e} & 0 \\ 0 & \frac{2}{e} \end{bmatrix}.$$

It follows from Proposition 2.11.4 and Theorem 2.11.2 that (0,0) and (0,4) are saddle points, while (1,2) is a strict local minimum.

(b) We show that f has neither a global maximum nor a global minimum. From (a), we know that there are no candidate points for local maxima (since the stationary points are either saddle or local minima). Moreover, since

$$f(-5,5) = -20e^5 < -\frac{4}{e} = f(1,2),$$

the local minimum (1,2) is not a global minimum and so f has no global minima either.

(c) Let the subset S of  $\mathbb{R}^2$  be defined by  $S = [0, 5] \times [0, 4]$ . We claim that  $f_{|S|}$  has a global maximum and a global minimum. Indeed, the subset S is compact by the Heine-Borel theorem and so the claim follows from Weierstrass's theorem.

(d) We compute the global extrema of  $f_{|S}$ . Thanks to (a) and (b), we know that the global extrema of  $f_{|S}$  belong to  $\partial S \cup \{(1,2)\}$ . We compute

i. 
$$f(0, y) = 0;$$
  
ii.  $f(5, y) = \frac{5}{e^5}(y^2 - 4y);$   
iii.  $f(x, 0) = 0;$   
iv.  $f(x, 4) = 0;$   
v.  $f(1, 2) = -\frac{4}{e}.$ 

One can check that, for each  $y \in [0, 4]$ , one has  $y^2 - 4y \leq 0$  with local minimum equal to -4 for y = 2. Since  $f(5, 2) = -\frac{20}{e^5} > -\frac{4}{e} = f(1, 2)$ , the global minimum of  $f_{|S|}$  corresponds to the point (1, 2). On the other hand, the global maxima are given by all points in the set  $\{(0, y), (x, 0), (x, 4) \in S\}$ .

**Exercise 4.** Let  $a, b, p, t \in \mathbb{R}_{>0}$  be such that p > a + t. Let moreover x be a variable standing for the number of units of a certain good. Let the functions  $c, e, \tau, \pi : \mathbb{R}_{\geq 0} \to \mathbb{R}$  be defined by

- *i.*  $c(x) = ax + bx^2$ , the cost of production;
- *ii.* e(x) = px, the amount earned;
- *iii.*  $\tau(x) = tx$ , the tax;
- iv.  $\pi(x) = e(x) c(x) \tau(x)$ , the profit.
- (a) We want to find  $x^* \in \mathbb{R}_{\geq 0}$  maximizing the profit. To do so, we first write

$$\pi(x) = px - tx - ax - bx^2$$

and therefore compute

$$\pi'(x) = p - t - a - 2bx = 0 \iff x = \frac{p - t - a}{2b}.$$

Since  $\pi''(x) = -2b < 0$ , we have that  $x^* = \frac{p-t-a}{2b}$  is indeed a local maximum. The optimal profit is then  $\pi^* = \pi(x^*) = \frac{(p-t-a)^2}{4b}$ .

(b) We want to prove that  $\partial \pi^* / \partial p = x^*$ . Using the envelope theorem, we have

$$\frac{\partial \pi^*}{\partial p}(p,t,a,b) = \frac{\partial \pi}{\partial p}(x^*,p,t,a,b) = \frac{\partial (px - tx - ax - bx^2)}{\partial p}(x^*,p,t,a,b) = x^*.$$

We have thus that, whenever p is increasing, the optimal profit  $\pi^*$  increases proportionally to the amount of the good that is produced.