OQE - PROBLEM SET 10 - SOLUTIONS

Exercise 1. Let $f: U \rightarrow \mathbb{R}$ be a \mathcal{C}^{2}-function, where U is an open subset of \mathbb{R}^{2}. Let moreover $\left(x_{0}, y_{0}\right)$ be a critical point of f satisfying

$$
\operatorname{det} D^{2} f\left(x_{0}, y_{0}\right)=\operatorname{det}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=-1<0
$$

Then $\left(x_{0}, y_{0}\right)$ is a saddle point (see Theorem 2.11.2).
Exercise 2. We want to find and classify the critical points of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that is defined by

$$
(x, y) \mapsto f(x, y)=x^{3}+y^{3}-3 x y
$$

To do so, we compute the gradient of f

$$
\nabla f(x, y)=\left(3 x^{2}-3 y, 3 y^{2}-3 x\right)
$$

and the points at each it is equal to $(0,0)$. We solve

$$
\left\{\begin{array}{l}
x^{2}-y=0 \\
y^{2}-x=0
\end{array}\right.
$$

getting the points $P=(0,0)$ and $Q=(1,1)$. To determine the nature of the critical points P and Q we compute the Hessian of f :

$$
D^{2} f(x, y)=\left[\begin{array}{cc}
6 x & -3 \\
-3 & 6 y
\end{array}\right]
$$

We then compute

$$
A=D^{2} f(P)=\left[\begin{array}{cc}
0 & -3 \\
-3 & 0
\end{array}\right] \text { and } B=D^{2} f(Q)=\left[\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right]
$$

In view of Proposition 2.11.4, the maxtrix B is positive definite and so, thanks to Theorem 2.11.2, the point Q is a strict local minimum; Q is however not a global minimum since, for example, one has $f(0,-5)=-25<-1=f(Q)$. The point P is a saddle point because A is indefinite: indeed one has

$$
\left[\begin{array}{ll}
1 & 1
\end{array}\right] D^{2} f(P)\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
0 & -3 \\
-3 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=-6<0
$$

while

$$
\left[\begin{array}{cc}
1 & -1
\end{array}\right] D^{2} f(P)\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{cc}
1 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & -3 \\
-3 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=6>0
$$

Exercise 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $(x, y) \mapsto f(x, y)=x e^{-x}\left(y^{2}-4 y\right)$.
(a) We want to find and classify all critical points of f. To this end, we compute

$$
\nabla f(x, y)=\left(e^{-x}(1-x)\left(y^{2}-4 y\right), x e^{-x}(2 y-4)\right)
$$

Since the image of the exponential function is $\mathbb{R}_{>0}$, the stationary points of f are exacly the pairs $(x, y) \in \mathbb{R}^{2}$ that are solutions to the following system

$$
\left\{\begin{array}{l}
(1-x)\left(y^{2}-4 y\right)=0 \\
x(2 y-4))=0
\end{array} .\right.
$$

With not much work, one shows that the stationary points of f are $(0,0),(0,4)$, and $(1,2)$. To decide the nature of the critical points, we compute

$$
D^{2} f(x, y)=\left[\begin{array}{cc}
\left(y^{2}-4 y\right) e^{-x}(x-2) & (2 y-4) e^{-x}(1-x) \\
(2 y-4) e^{-x}(1-x) & 2 x e^{-x}
\end{array}\right]
$$

and thus we have

$$
D^{2} f(0,0)=\left[\begin{array}{cc}
0 & -4 \\
-4 & 0
\end{array}\right], D^{2} f(0,4)=\left[\begin{array}{ll}
0 & 4 \\
4 & 0
\end{array}\right], \quad \text { and } \quad D^{2} f(1,2)=\left[\begin{array}{cc}
\frac{4}{e} & 0 \\
0 & \frac{2}{e}
\end{array}\right]
$$

It follows from Proposition 2.11.4 and Theorem 2.11.2 that $(0,0)$ and $(0,4)$ are saddle points, while $(1,2)$ is a strict local minimum.
(b) We show that f has neither a global maximum nor a global minimum. From (a), we know that there are no candidate points for local maxima (since the stationary points are either saddle or local minima). Moreover, since

$$
f(-5,5)=-20 e^{5}<-\frac{4}{e}=f(1,2)
$$

the local minimum $(1,2)$ is not a global minimum and so f has no global minima either.
(c) Let the subset S of \mathbb{R}^{2} be defined by $S=[0,5] \times[0,4]$. We claim that $f_{\mid S}$ has a global maximum and a global minimum. Indeed, the subset S is compact by the Heine-Borel theorem and so the claim follows from Weierstrass's theorem.
(d) We compute the global extrema of $f_{\mid S}$. Thanks to (a) and (b), we know that the global extrema of $f_{\mid S}$ belong to $\partial S \cup\{(1,2)\}$. We compute
i. $f(0, y)=0$;
ii. $f(5, y)=\frac{5}{e^{5}}\left(y^{2}-4 y\right)$;
iii. $f(x, 0)=0$;
iv. $f(x, 4)=0$;
v. $f(1,2)=-\frac{4}{e}$.

One can check that, for each $y \in[0,4]$, one has $y^{2}-4 y \leq 0$ with local minimum equal to -4 for $y=2$. Since $f(5,2)=-\frac{20}{e^{5}}>-\frac{4}{e}=f(1,2)$, the global minimum of $f_{\mid S}$ corresponds to the point $(1,2)$. On the other hand, the global maxima are given by all points in the set $\{(0, y),(x, 0),(x, 4) \in S\}$.

Exercise 4. Let $a, b, p, t \in \mathbb{R}_{>0}$ be such that $p>a+t$. Let moreover x be a variable standing for the number of units of a certain good. Let the functions $c, e, \tau, \pi: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be defined by
i. $c(x)=a x+b x^{2}$, the cost of production;
ii. $e(x)=p x$, the amount earned;
iii. $\tau(x)=t x$, the tax;
iv. $\pi(x)=e(x)-c(x)-\tau(x)$, the profit.
(a) We want to find $x^{*} \in \mathbb{R}_{\geq 0}$ maximizing the profit. To do so, we first write

$$
\pi(x)=p x-t x-a x-b x^{2}
$$

and therefore compute

$$
\pi^{\prime}(x)=p-t-a-2 b x=0 \Longleftrightarrow x=\frac{p-t-a}{2 b}
$$

Since $\pi^{\prime \prime}(x)=-2 b<0$, we have that $x^{*}=\frac{p-t-a}{2 b}$ is indeed a local maximum. The optimal profit is then $\pi^{*}=\pi\left(x^{*}\right)=\frac{(p-t-a)^{2}}{4 b}$.
(b) We want to prove that $\partial \pi^{*} / \partial p=x^{*}$. Using the envelope theorem, we have

$$
\frac{\partial \pi^{*}}{\partial p}(p, t, a, b)=\frac{\partial \pi}{\partial p}\left(x^{*}, p, t, a, b\right)=\frac{\partial\left(p x-t x-a x-b x^{2}\right)}{\partial p}\left(x^{*}, p, t, a, b\right)=x^{*}
$$

We have thus that, whenever p is increasing, the optimal profit π^{*} increases proportionally to the amount of the good that is produced.

