OQE - PROBLEM SET 11 - SOLUTIONS

Exercise 1. Let $\left\{U_{i}\right\}_{i \in I}$ be a collection of convex sets. We claim that the set $U=\bigcap_{i \in I} U_{i}$ is convex. To prove so, let $x, y \in U$ and let $\lambda \in[0,1]$. For each $i \in I$, the elements x, y belong to U_{i} and so, by the convexity of U_{i}, also $\lambda x+(1-\lambda) y$ belongs to U_{i}. As a consequence, $\lambda x+(1-\lambda) y$ belongs to $\bigcap_{i \in I} U_{i}=U$ and, the choice of x, y, λ being arbitrary, it follows that U is convex.

Exercise 2. We determine whether the following sets are convex:
(a) $A=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1} \leq x_{2} \leq x_{3}\right\} ;$
(b) $B=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}$;
(c) $C=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2} \leq 1\right.$ or $\left.x_{1}^{2}+x_{3}^{2} \leq 1\right\}$;
(d) $D=\left\{\left(x_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}:\left|\sum_{i=1}^{n} x_{i}\right| \leq 1\right\}$;
(e) $E=\left\{\left(x_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}: \sum_{i=1}^{n} x_{i}^{2}=1\right\}$.
(a) We claim that A is convex. Let indeed $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ in A and let moreover $\lambda \in[0,1]$. Since both λ and $1-\lambda$ are non-negative, we have

$$
\lambda x_{1}+(1-\lambda) y_{1} \leq \lambda x_{2}+(1-\lambda) y_{2} \leq \lambda x_{3}+(1-\lambda) y_{3}
$$

and thus $\lambda x+(1-\lambda) y$ belongs to A.
(b) We claim that B is convex. To show this, we take the elements $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ in B and $\lambda \in[0,1]$. We claim that $\lambda x+(1-\lambda) y$ lives in B. We recall that, for each $a, b \in \mathbb{R}$, one has $(a-b)^{2} \geq 0$ and thus $a b \leq\left(a^{2}+b^{2}\right) / 2$. In view of this, we write $\mu=1-\lambda$ and compute

$$
\begin{aligned}
\left(\lambda x_{1}+\mu y_{1}\right)^{2}+\left(\lambda x_{2}+\mu y_{2}\right)^{2} & =\lambda^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 \lambda \mu\left(x_{1} y_{1}+x_{2} y_{2}\right)+\mu^{2}\left(y_{1}^{2}+y_{2}^{2}\right) \\
& \leq \lambda^{2}+2 \lambda \mu \frac{\left(x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}\right)}{2}+\mu^{2} \\
& \leq \lambda^{2}+2 \lambda \mu+\mu^{2} \\
& =(\lambda+\mu)^{2}=1 .
\end{aligned}
$$

(c) We claim that C is not convex. We define $x=(0,-1,5)$ and $y=(0,-2,-1)$, which are clearly elements of C. Set now $\lambda=1 / 2$ and write $z=(x+y) / 2$. Then we have

$$
z_{1}^{2}+z_{2}^{2}=\left(\frac{-1-2}{2}\right)^{2}=\frac{9}{4}>1
$$

and also

$$
z_{1}^{2}+z_{3}^{2}=\left(\frac{5-1}{2}\right)^{2}=4>1
$$

so C is not convex and the claim is proven.
(d) We claim that D is convex. Let indeed $x=\left(x_{i}\right)_{i=1}^{n}$ and $y=\left(y_{i}\right)_{i=1}^{n}$ be elemets of D and let moreover $\lambda \in[0,1]$. Set $\mu=1-\lambda$. Then one has

$$
\left|\sum_{i=1}^{n}\left(\lambda x_{i}+\mu y_{i}\right)\right| \leq\left|\sum_{i=1}^{n} \lambda x_{i}\right|+\left|\sum_{i=1}^{n} \mu y_{i}\right|=\lambda\left|\sum_{i=1}^{n} x_{i}\right|+\mu\left|\sum_{i=1}^{n} y_{i}\right| \leq \lambda+\mu=1
$$

and therefore $\lambda x+\mu y$ belongs to D. The choice of x, y, λ being abitrary, D is convex.
(e) We claim that E is not convex. Indeed, for each $x \in E$ also $-x$ belongs to E, but $\frac{1}{2} x+\frac{1}{2}(-x)=0$ does not belong to E.

Exercise 3. For each $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and for each $x, y \in \mathbb{R}^{n}$, define $\phi_{f, x, y}:[0,1] \rightarrow \mathbb{R}$ by

$$
\lambda \mapsto \phi_{f, x, y}(\lambda)=f(\lambda x+(1-\lambda) y) .
$$

Fix now $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We claim that the following are equivalent:
(a) the function f is convex;
(b) for each $x, y \in \mathbb{R}^{n}$, the function $\phi_{f, x, y}$ is convex.

Let $\lambda_{1}, \lambda_{2}, \delta \in[0,1]$ and define $\mu_{i}=1-\lambda_{i}$ and $\epsilon=1-\delta$. Fix moreover $x, y \in \mathbb{R}^{n}$ and, to light the notation, write $\phi=\phi_{f, x, y}$. Then we have
(1) $\phi\left(\delta \lambda_{1}+\epsilon \lambda_{2}\right)=f\left(\delta\left(\lambda_{1} x+\mu_{1} y\right)+\epsilon\left(\lambda_{2} x+\mu_{2} y\right)\right)$; and
(2) $\delta \phi\left(\lambda_{1}\right)+\epsilon \phi\left(\lambda_{2}\right)=\delta f\left(\lambda_{1} x+\mu_{1} y\right)+\epsilon f\left(\lambda_{2} x+\mu_{2} y\right)$.

The implication $(a) \Rightarrow(b)$ is clear from (1) and (2). To prove $(b) \Rightarrow(a)$, let $\lambda \in[0,1]$. Setting $\delta=\lambda$ and $\left(\lambda_{1}, \lambda_{2}\right)=(1,0)$, it follows from (1) and (2) that, if ϕ is convex, then

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y) .
$$

All choices involved being arbitrary, the claim is proven. An analogue statement involving concavity can be proven in a similar way.

Exercise 4. We prove that the Euclidean distance $d: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$, defined by

$$
x=\left(x_{i}\right)_{i=1}^{2 n} \mapsto d(x)=\left\|\left(x_{i}\right)_{i=1}^{n}-\left(x_{i}\right)_{i=n+1}^{2 n}\right\|
$$

is a convex function. To this end, let $x=\left(x_{i}\right)_{i=1}^{2 n}$ and $y=\left(y_{i}\right)_{i=1}^{2 n}$ be elements of $\mathbb{R}^{2 n}$ and let $\lambda \in[0,1]$. Set moreover $\mu=1-\lambda$. Then we have

$$
\begin{aligned}
d(\lambda x+\mu y) & =\left\|\left(\lambda x_{i}+\mu y_{i}\right)_{i=1}^{n}-\left(\lambda x_{i}+\mu y_{i}\right)_{i=n+1}^{2 n}\right\| \\
& =\left\|\lambda\left(x_{i}-x_{i+n}\right)_{i=1}^{n}+\mu\left(y_{i}-y_{i+n}\right)_{i=1}^{n}\right\| \\
& \leq \lambda\left\|\left(x_{i}-x_{i+n}\right)_{i=1}^{n}\right\|+\mu\left\|\left(y_{i}-y_{i+n}\right)_{i=1}^{n}\right\| \\
& =\lambda d(x)+\mu d(y) .
\end{aligned}
$$

The choices of x, y, λ being arbitrary, the function d is convex.

Exercise 5. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a concave function satisfying $f(0)=0$. We will show that, for each $x \in \mathbb{R}^{n}, \lambda \in[0,1]$, and $k \in \mathbb{R}_{\geq 1}$, one has
(a) $f(\lambda x) \geq \lambda f(x)$; and
(b) $k f(x) \geq f(k x)$.

Fix $x \in \mathbb{R}^{n}, \lambda \in[0,1]$, and $k \in \mathbb{R}_{\geq 1}$. Since $-f$ is convex, we have

$$
-f(\lambda x)=-f(\lambda x+(1-\lambda) 0) \leq-\lambda f(x)-(1-\lambda) f(0)=-\lambda f(x)
$$

and so (a) is proven. To prove (b), we note that $1 / k \in[0,1]$ and so, applying (a), we get

$$
k f(x)=k f\left(\frac{1}{k} k x\right) \geq k \frac{1}{k} f(k x)=f(k x)
$$

Exercise 6. Let $U=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ and let $f: U \rightarrow \mathbb{R}$ be defined by

$$
(x, y) \mapsto f(x, y)=\frac{x^{2}}{y}
$$

We claim that f is convex. In order to apply Theorem 3.1.4, we compute

$$
D^{2} f(x, y)=\left[\begin{array}{cc}
2 / y & -2 x / y^{2} \\
-2 x / y^{2} & 2 x^{2} / y^{3}
\end{array}\right]
$$

and therefore we have

$$
\operatorname{det} D^{2} f(x, y)=\frac{4 x^{2}}{y^{4}}-\frac{4 x^{2}}{y^{4}}=0 .
$$

However, the elements $2 / y$ and $2 x^{2} / y^{3}$ are both non-negative and so $D^{2} f$ is positive semi-definite. It follows that f is convex.

Exercise 7. Let $U=\left\{(x, y) \in \mathbb{R}^{2}: x, y>0\right\}$ and define $f: U \rightarrow \mathbb{R}$ by

$$
(x, y) \mapsto f(x, y)=\frac{1}{2} e^{-(x+y)}-e^{-x}-e^{y}
$$

We claim that f is concave. To show this, we compute

$$
D^{2} f(x, y)=\left[\begin{array}{cc}
e^{-(x+y)} / 2-e^{-x} & e^{-(x+y)} / 2 \\
e^{-(x+y)} / 2 & e^{-(x+y)} / 2-e^{y}
\end{array}\right]
$$

and therefore

$$
\begin{aligned}
\operatorname{det} D^{2} f(x, y) & =\left(\frac{e^{-(x+y)}}{2}-e^{-x}\right)\left(\frac{e^{-(x+y)}}{2}-e^{y}\right)-\frac{e^{-2(x+y)}}{4} \\
& =-\frac{e^{-x}}{2}-\frac{e^{-2 x} e^{-y}}{2}+e^{-x} e^{y} \\
& =\frac{e^{-x}}{2}\left(2 e^{y}-e^{-x} e^{-y}-1\right)
\end{aligned}
$$

If we take $(x, y) \in U$, then both x and y are positive and therefore $e^{y}>1$ and $e^{-x} e^{-y}<1$ and thus $\operatorname{det} D^{2} f(x, y)>0$. Moreover, we have

$$
\frac{e^{-(x+y)}}{2}-e^{-x}=\frac{e^{-x}}{2}\left(e^{-y}-2\right)<0
$$

and therefore $D^{2} f$ is negative definite. It follows that f is concave.

Exercise 8. Let $U=\left\{(x, y) \in \mathbb{R}^{2}: x, y>1\right\}$ and a, b be positive real numbers satisfying $a+b<1$. Let moreover $f: U \rightarrow \mathbb{R}$ be defined by

$$
(x, y) \mapsto f(x, y)=(\log x)^{a}(\log y)^{b} .
$$

We claim that f is strictly concave. We will use the following fact (stronger version of Lemma 3.3.1): If $g: U \rightarrow \mathbb{R}$ is strictly concave and $l: \mathbb{R} \rightarrow \mathbb{R}$ is increasing and concave, then $l \circ g$ is strictly concave. We define
(1) $g: U \rightarrow \mathbb{R}$ by $(x, y) \mapsto g(x, y)=\log (f(x, y))$;
(2) $l_{1}: \mathbb{R} \rightarrow \mathbb{R}$ by $x \mapsto l_{1}(x)=-e^{-x}$ (concave increasing);
(3) $l_{2}: \mathbb{R}_{<0} \rightarrow \mathbb{R}$ by $-1 / x$ (concave increasing).

We observe that, for each $(x, y) \in U$, one has

$$
l_{2} l_{1} g(x, y)=-\frac{1}{-e^{-\log (f(x, y))}}=e^{\log (f(x, y))}=f(x, y)
$$

and thus to prove that $f(x, y)$ is concave, it suffices to prove that g is strictly concave. For each $(x, y) \in U$, the element $f(x, y)$ is positive (so g is well-defined) and moreover we have

$$
g(x, y)=\log (f(x, y))=\log \left((\log x)^{a}(\log y)^{b}\right)=a \log \log x+b \log \log y .
$$

For each $(x, y) \in U$, we compute

$$
\nabla g(x, y)=\left(\frac{a}{x \log x}, \frac{b}{x \log x}\right)
$$

and therefore we have

$$
D^{2} g(x, y)=\left[\begin{array}{cc}
-a(1+\log x) /(x \log x)^{2} & 0 \\
0 & -b(1+\log y) /(y \log y)^{2}
\end{array}\right]
$$

The matrix $D^{2} g(x, y)$ being negative definite for any choice of $(x, y) \in U$, it follows that g is strictly concave.

Exercise 9. Let $U=\left\{(x, y) \in \mathbb{R}^{2}: x, y>0\right\}$ and let $a, b, p \in \mathbb{R}_{>0}$. Define $f: U \rightarrow \mathbb{R}$ by

$$
(x, y) \mapsto f(x, y)=\left(a x^{p}+b y^{p}\right)^{1 / p}
$$

We claim that
(a) f is convex for $p \geq 1$;
(b) f is concave for $p \leq 1$.

We separate the two cases.
(a) Assume that $p \geq 1$. We will use the following fact (which is very easy to prove):

Fact 1. Let V be a convex subset of \mathbb{R}^{n} and let $\phi: V \rightarrow \mathbb{R}$ be a function. Let moreover $\delta: V \rightarrow V$ be a linear bijection (as defined in Section 1.10). Then ϕ is convex if and only if $\phi \circ \delta$ is convex.

Define the map $\delta: U \rightarrow U$ by $(x, y) \mapsto\left(a^{1 / p} x, b^{1 / p} y\right)$. Then $f=\|\cdot\|_{p} \circ \delta$. Since norms are convex functions and δ is a linear bijection, Fact 1 yields that f is convex.
(b) Assume now that $p \leq 1$ and let $g: U \rightarrow \mathbb{R}$ be defined, for each $(x, y) \in U$, by $g(x, y)=a x^{p}+b y^{p}$. Then, for each $(x, y) \in U$, we have

$$
D^{2} g(x, y)=\left[\begin{array}{cc}
p(p-1) x^{p-2} & 0 \\
0 & p(p-1) y^{p-2}
\end{array}\right]
$$

and so $D^{2} g(x, y)$ is negative semi-definite for any choice of $(x, y) \in U$. It follows that g is concave. Using the same trick from Exercise 8, we get, for any choice of $(x, y) \in U$, that

$$
-\frac{1}{-e^{-\log (g(x, y)) / p}}=\frac{1}{e^{-\log (g(x, y)) / p}}=e^{\log (g(x, y)) / p}=e^{\log (f(x, y))}=f(x, y)
$$

and therefore f is concave.

