OQE - PROBLEM SET 11 - SOLUTIONS

Exercise 1. Let $\{U_i\}_{i \in I}$ be a collection of convex sets. We claim that the set $U = \bigcap_{i \in I} U_i$ is convex. To prove so, let $x, y \in U$ and let $\lambda \in [0, 1]$. For each $i \in I$, the elements x, y belong to U_i and so, by the convexity of U_i , also $\lambda x + (1 - \lambda)y$ belongs to U_i . As a consequence, $\lambda x + (1 - \lambda)y$ belongs to $\bigcap_{i \in I} U_i = U$ and, the choice of x, y, λ being arbitrary, it follows that U is convex.

Exercise 2. We determine whether the following sets are convex:

- (a) $A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 \le x_2 \le x_3\};$
- (b) $B = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 \le 1\};$
- (c) $C = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 \le 1 \text{ or } x_1^2 + x_3^2 \le 1\};$ (d) $D = \{(x_i)_{i=1}^n \in \mathbb{R}^n : |\sum_{i=1}^n x_i| \le 1\};$ (e) $E = \{(x_i)_{i=1}^n \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 = 1\}.$

(a) We claim that A is convex. Let indeed $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ in A and let moreover $\lambda \in [0, 1]$. Since both λ and $1 - \lambda$ are non-negative, we have

$$\lambda x_1 + (1 - \lambda)y_1 \le \lambda x_2 + (1 - \lambda)y_2 \le \lambda x_3 + (1 - \lambda)y_3$$

and thus $\lambda x + (1 - \lambda)y$ belongs to A.

(b) We claim that B is convex. To show this, we take the elements $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ in B and $\lambda \in [0, 1]$. We claim that $\lambda x + (1 - \lambda)y$ lives in B. We recall that, for each $a, b \in \mathbb{R}$, one has $(a-b)^2 \ge 0$ and thus $ab \le (a^2+b^2)/2$. In view of this, we write $\mu = 1 - \lambda$ and compute

$$\begin{aligned} (\lambda x_1 + \mu y_1)^2 + (\lambda x_2 + \mu y_2)^2 &= \lambda^2 (x_1^2 + x_2^2) + 2\lambda \mu (x_1 y_1 + x_2 y_2) + \mu^2 (y_1^2 + y_2^2) \\ &\leq \lambda^2 + 2\lambda \mu \frac{(x_1^2 + y_1^2 + x_2^2 + y_2^2)}{2} + \mu^2 \\ &\leq \lambda^2 + 2\lambda \mu + \mu^2 \\ &= (\lambda + \mu)^2 = 1. \end{aligned}$$

(c) We claim that C is not convex. We define x = (0, -1, 5) and y = (0, -2, -1), which are clearly elements of C. Set now $\lambda = 1/2$ and write z = (x + y)/2. Then we have

$$z_1^2 + z_2^2 = \left(\frac{-1-2}{2}\right)^2 = \frac{9}{4} > 1$$

and also

$$z_1^2 + z_3^2 = \left(\frac{5-1}{2}\right)^2 = 4 > 1$$

so C is not convex and the claim is proven.

(d) We claim that D is convex. Let indeed $x = (x_i)_{i=1}^n$ and $y = (y_i)_{i=1}^n$ be elemets of D and let moreover $\lambda \in [0, 1]$. Set $\mu = 1 - \lambda$. Then one has

$$\left|\sum_{i=1}^{n} (\lambda x_i + \mu y_i)\right| \le \left|\sum_{i=1}^{n} \lambda x_i\right| + \left|\sum_{i=1}^{n} \mu y_i\right| = \lambda \left|\sum_{i=1}^{n} x_i\right| + \mu \left|\sum_{i=1}^{n} y_i\right| \le \lambda + \mu = 1$$

and therefore $\lambda x + \mu y$ belongs to *D*. The choice of x, y, λ being abitrary, *D* is convex.

(e) We claim that E is not convex. Indeed, for each $x \in E$ also -x belongs to E, but $\frac{1}{2}x + \frac{1}{2}(-x) = 0$ does not belong to E.

Exercise 3. For each $f : \mathbb{R}^n \to \mathbb{R}$ and for each $x, y \in \mathbb{R}^n$, define $\phi_{f,x,y} : [0,1] \to \mathbb{R}$ by

$$\lambda \mapsto \phi_{f,x,y}(\lambda) = f(\lambda x + (1 - \lambda)y).$$

Fix now $f : \mathbb{R}^n \to \mathbb{R}$. We claim that the following are equivalent:

- (a) the function f is convex;
- (b) for each $x, y \in \mathbb{R}^n$, the function $\phi_{f,x,y}$ is convex.

Let $\lambda_1, \lambda_2, \delta \in [0, 1]$ and define $\mu_i = 1 - \lambda_i$ and $\epsilon = 1 - \delta$. Fix moreover $x, y \in \mathbb{R}^n$ and, to light the notation, write $\phi = \phi_{f,x,y}$. Then we have

- (1) $\phi(\delta\lambda_1 + \epsilon\lambda_2) = f(\delta(\lambda_1x + \mu_1y) + \epsilon(\lambda_2x + \mu_2y));$ and
- (2) $\delta\phi(\lambda_1) + \epsilon\phi(\lambda_2) = \delta f(\lambda_1 x + \mu_1 y) + \epsilon f(\lambda_2 x + \mu_2 y).$

The implication $(a) \Rightarrow (b)$ is clear from (1) and (2). To prove $(b) \Rightarrow (a)$, let $\lambda \in [0,1]$. Setting $\delta = \lambda$ and $(\lambda_1, \lambda_2) = (1,0)$, it follows from (1) and (2) that, if ϕ is convex, then

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

All choices involved being arbitrary, the claim is proven. An analogue statement involving concavity can be proven in a similar way.

Exercise 4. We prove that the Euclidean distance $d : \mathbb{R}^{2n} \to \mathbb{R}$, defined by

$$x = (x_i)_{i=1}^{2n} \mapsto d(x) = \|(x_i)_{i=1}^n - (x_i)_{i=n+1}^{2n}\|$$

is a convex function. To this end, let $x = (x_i)_{i=1}^{2n}$ and $y = (y_i)_{i=1}^{2n}$ be elements of \mathbb{R}^{2n} and let $\lambda \in [0, 1]$. Set moreover $\mu = 1 - \lambda$. Then we have

$$d(\lambda x + \mu y) = \|(\lambda x_i + \mu y_i)_{i=1}^n - (\lambda x_i + \mu y_i)_{i=n+1}^{2n}\|$$

= $\|\lambda (x_i - x_{i+n})_{i=1}^n + \mu (y_i - y_{i+n})_{i=1}^n\|$
 $\leq \lambda \|(x_i - x_{i+n})_{i=1}^n\| + \mu \|(y_i - y_{i+n})_{i=1}^n\|$
= $\lambda d(x) + \mu d(y).$

The choices of x, y, λ being arbitrary, the function d is convex.

Exercise 5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a concave function satisfying f(0) = 0. We will show that, for each $x \in \mathbb{R}^n$, $\lambda \in [0, 1]$, and $k \in \mathbb{R}_{\geq 1}$, one has

- (a) $f(\lambda x) \ge \lambda f(x)$; and
- (b) $kf(x) \ge f(kx)$.

Fix $x \in \mathbb{R}^n$, $\lambda \in [0, 1]$, and $k \in \mathbb{R}_{\geq 1}$. Since -f is convex, we have

$$-f(\lambda x) = -f(\lambda x + (1-\lambda)0) \le -\lambda f(x) - (1-\lambda)f(0) = -\lambda f(x)$$

and so (a) is proven. To prove (b), we note that $1/k \in [0,1]$ and so, applying (a), we get

$$kf(x) = kf\left(\frac{1}{k}kx\right) \ge k\frac{1}{k}f(kx) = f(kx).$$

Exercise 6. Let $U = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ and let $f : U \to \mathbb{R}$ be defined by

$$(x,y)\mapsto f(x,y)=\frac{x^2}{y}.$$

We claim that f is convex. In order to apply Theorem 3.1.4, we compute

$$D^{2}f(x,y) = \begin{bmatrix} 2/y & -2x/y^{2} \\ -2x/y^{2} & 2x^{2}/y^{3} \end{bmatrix}$$

and therefore we have

$$\det D^2 f(x,y) = \frac{4x^2}{y^4} - \frac{4x^2}{y^4} = 0.$$

However, the elements 2/y and $2x^2/y^3$ are both non-negative and so D^2f is positive semi-definite. It follows that f is convex.

Exercise 7. Let $U = \{(x, y) \in \mathbb{R}^2 : x, y > 0\}$ and define $f : U \to \mathbb{R}$ by

$$(x,y) \mapsto f(x,y) = \frac{1}{2}e^{-(x+y)} - e^{-x} - e^{y}.$$

We claim that f is concave. To show this, we compute

$$D^{2}f(x,y) = \begin{bmatrix} e^{-(x+y)}/2 - e^{-x} & e^{-(x+y)}/2\\ e^{-(x+y)}/2 & e^{-(x+y)}/2 - e^{y} \end{bmatrix}$$

and therefore

$$\det D^2 f(x,y) = \left(\frac{e^{-(x+y)}}{2} - e^{-x}\right) \left(\frac{e^{-(x+y)}}{2} - e^y\right) - \frac{e^{-2(x+y)}}{4}$$
$$= -\frac{e^{-x}}{2} - \frac{e^{-2x}e^{-y}}{2} + e^{-x}e^y$$
$$= \frac{e^{-x}}{2}(2e^y - e^{-x}e^{-y} - 1).$$

If we take $(x, y) \in U$, then both x and y are positive and therefore $e^y > 1$ and $e^{-x}e^{-y} < 1$ and thus det $D^2f(x, y) > 0$. Moreover, we have

$$\frac{e^{-(x+y)}}{2} - e^{-x} = \frac{e^{-x}}{2}(e^{-y} - 2) < 0$$

and therefore $D^2 f$ is negative definite. It follows that f is concave.

Exercise 8. Let $U = \{(x, y) \in \mathbb{R}^2 : x, y > 1\}$ and a, b be positive real numbers satisfying a + b < 1. Let moreover $f : U \to \mathbb{R}$ be defined by

$$(x, y) \mapsto f(x, y) = (\log x)^a (\log y)^b.$$

We claim that f is strictly concave. We will use the following fact (stronger version of Lemma 3.3.1): If $g: U \to \mathbb{R}$ is strictly concave and $l: \mathbb{R} \to \mathbb{R}$ is increasing and concave, then $l \circ g$ is strictly concave. We define

- (1) $g: U \to \mathbb{R}$ by $(x, y) \mapsto g(x, y) = \log(f(x, y));$
- (2) $l_1 : \mathbb{R} \to \mathbb{R}$ by $x \mapsto l_1(x) = -e^{-x}$ (concave increasing);
- (3) $l_2 : \mathbb{R}_{<0} \to \mathbb{R}$ by -1/x (concave increasing).

We observe that, for each $(x, y) \in U$, one has

$$l_2 l_1 g(x, y) = -\frac{1}{-e^{-\log(f(x, y))}} = e^{\log(f(x, y))} = f(x, y)$$

and thus to prove that f(x, y) is concave, it suffices to prove that g is strictly concave. For each $(x, y) \in U$, the element f(x, y) is positive (so g is well-defined) and moreover we have

$$g(x,y) = \log(f(x,y)) = \log((\log x)^a (\log y)^b) = a \log \log x + b \log \log y.$$

For each $(x, y) \in U$, we compute

$$\nabla g(x,y) = \left(\frac{a}{x\log x}, \frac{b}{x\log x}\right)$$

and therefore we have

$$D^2 g(x,y) = \begin{bmatrix} -a(1+\log x)/(x\log x)^2 & 0\\ 0 & -b(1+\log y)/(y\log y)^2 \end{bmatrix}.$$

The matrix $D^2g(x, y)$ being negative definite for any choice of $(x, y) \in U$, it follows that g is strictly concave.

Exercise 9. Let $U = \{(x, y) \in \mathbb{R}^2 : x, y > 0\}$ and let $a, b, p \in \mathbb{R}_{>0}$. Define $f: U \to \mathbb{R}$ by

$$(x,y) \mapsto f(x,y) = (ax^p + by^p)^{1/p}.$$

We claim that

- (a) f is convex for $p \ge 1$;
- (b) f is concave for $p \leq 1$.

We separate the two cases.

(a) Assume that $p \ge 1$. We will use the following fact (which is very easy to prove):

Fact 1. Let V be a convex subset of \mathbb{R}^n and let $\phi : V \to \mathbb{R}$ be a function. Let moreover $\delta : V \to V$ be a linear bijection (as defined in Section 1.10). Then ϕ is convex if and only if $\phi \circ \delta$ is convex.

Define the map $\delta: U \to U$ by $(x, y) \mapsto (a^{1/p}x, b^{1/p}y)$. Then $f = \|\cdot\|_p \circ \delta$. Since norms are convex functions and δ is a linear bijection, Fact 1 yields that f is convex. (b) Assume now that $p \leq 1$ and let $g: U \to \mathbb{R}$ be defined, for each $(x, y) \in U$, by $g(x, y) = ax^p + by^p$. Then, for each $(x, y) \in U$, we have

$$D^{2}g(x,y) = \begin{bmatrix} p(p-1)x^{p-2} & 0\\ 0 & p(p-1)y^{p-2} \end{bmatrix}$$

and so $D^2g(x,y)$ is negative semi-definite for any choice of $(x,y) \in U$. It follows that g is concave. Using the same trick from Exercise 8, we get, for any choice of $(x,y) \in U$, that

 $-\frac{1}{-e^{-\log(g(x,y))/p}} = \frac{1}{e^{-\log(g(x,y))/p}} = e^{\log(g(x,y))/p} = e^{\log(f(x,y))} = f(x,y)$

and therefore f is concave.