OQE - PROBLEM SET 12 - SOLUTIONS

Exercise 1. We consider the constrained optimization problem in \mathbb{R}^{2}

$$
\min / \max f(x, y)=x y
$$

$$
\text { subject to the constraint } x^{2}+y^{2}=1
$$

To this end, we define the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $(x, y) \mapsto g(x, y)=x^{2}+y^{2}-1$.
(a) We expect the problem to be solvable for the following reasons. The subset $D=\left\{(x, y) \in \mathbb{R}^{2}: g(x, y)=0\right\}$ is closed and bounded in \mathbb{R}^{2}, and thus compact. Since the function $f: D \rightarrow \mathbb{R}$ is continuous, Weierstrass's theorem guarantees the existence of both a maximum and a minimum in D.
(b) The constrained qualification fails only at the point $(0,0)$. Indeed, for each $(x, y) \in \mathbb{R}^{2}$, one computes $\nabla g(x, y)=(2 x, 2 y)$, which is equal to $(0,0)$ if and only if $(x, y)=(0,0)$.
(c) We form the Lagrangean associated to the given EC problem by taking $\lambda \in \mathbb{R}$ and defining

$$
\mathcal{L}(x, y, \lambda)=f(x, y)-\lambda g(x, y)=x y-\lambda\left(x^{2}+y^{2}-1\right)
$$

The first order conditions are then the following

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial x}(x, y, \lambda)=y-2 \lambda x=0 \tag{e1}\\
\frac{\partial \mathcal{L}}{\partial y}(x, y, \lambda)=x-2 \lambda y=0 \\
\frac{\partial \mathcal{L}}{\partial \lambda}(x, y, \lambda)=-x^{2}-y^{2}+1=0
\end{array}\right.
$$

(d) We derive from (e1) that the four candidate solutions for our EC problem are $(1 / \sqrt{2}, 1 / \sqrt{2}),(-1 / \sqrt{2}, 1 / \sqrt{2}),(1 / \sqrt{2},-1 / \sqrt{2})$, and $(-1 / \sqrt{2},-1 / \sqrt{2})$.
(e) To compute which points from (d) are maxima or minima, we calculate
(1) $f(1 / \sqrt{2}, 1 / \sqrt{2})=1 / 2$ (maximum);
(2) $f(-1 / \sqrt{2}, 1 / \sqrt{2})=-1 / 2$ (minimum);
(3) $f(1 / \sqrt{2},-1 / \sqrt{2})=-1 / 2$ (minimum);
(4) $f(-1 / \sqrt{2},-1 / \sqrt{2})=1 / 2$ (maximum).

Exercise 2. We consider the constrained optimization problem in \mathbb{R}^{3}

$$
\begin{gathered}
\max / \min f(x, y, z)=x^{2}+y^{2}+z \\
\text { subject to }(x-1)^{2}+y^{2}=5, y=z
\end{gathered}
$$

(a) The reason why we expect the given EC problem to be solvable is the following. Define $C=\left\{(x, y, z) \in \mathbb{R}^{3}:(x-1)^{2}+y^{2}=5\right\}$ and let $\pi=\left\{(x, y, y) \in \mathbb{R}^{3}\right\}$. Both
C and π are closed subsets of \mathbb{R}^{3} and therefore also

$$
D=C \cap \pi=\left\{(x, y, z) \in \mathbb{R}^{3}:(x-1)^{2}+y^{2}=5, y=z\right\}
$$

is closed in \mathbb{R}^{3}. Moreover, each $(x, y, z) \in D$ satisfies $(x-1)^{2}, y^{2} \leq 5$, from which it follows that

$$
\|(x, y, z)\|^{2}=x^{2}+y^{2}+z^{2}=x^{2}+2 y^{2} \leq(1+\sqrt{5})^{2}+10
$$

and therefore D is bounded. It follows that D is compact and, $f: D \rightarrow \mathbb{R}$ being continuous, f admits both a global maximum and a global minimum on D.
(b) Though the given EC problem involves three variables, we can reduce it to the case of two variables. Indeed, since each $(x, y, z) \in D$ satisfies $y=z$, we can reduce to studying $\tilde{f}: C \rightarrow \mathbb{R}$, where $\tilde{f}(x, y)=f(x, y, y)=x^{2}+y(y+1)$. Note: here we are slightly abusing notation, since C is a subset of \mathbb{R}^{3} and not \mathbb{R}^{2}.
(c) To check that the constrained qualification holds at each point of C, define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $(x, y) \mapsto g(x, y)=(x-1)^{2}+y^{2}-5$. We compute, at each point of the domain, $\nabla g(x, y)=(2 x-2,2 y)$, which is equal to $(0,0)$ if and only if $(x, y)=(1,0) \notin C$.
(d) We form the Lagrangean associated to the given EC problem by taking $\lambda \in \mathbb{R}$ and defining

$$
\mathcal{L}(x, y, \lambda)=\tilde{f}(x, y)-\lambda g(x, y)=x^{2}+y^{2}+y-\lambda\left((x-1)^{2}+y^{2}-5\right) .
$$

The first order conditions are then the following

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial x}(x, y, \lambda)=2 x-2 \lambda x+2 \lambda=0 \tag{e2}\\
\frac{\partial \mathcal{L}}{\partial y}(x, y, \lambda)=2 y-2 \lambda y+1=0 \\
\frac{\partial \mathcal{L}}{\partial \lambda}(x, y, \lambda)=-(x-1)^{2}-y^{2}+5=0
\end{array}\right.
$$

(e) We derive the candidate solutions from (e2). Indeed, from (e2.2), we know that $y \neq 0$ and, from the combination of (e2.1), (e2.2), and (e2.3), we also have $x \neq 0$. Computing $y(\mathrm{e} 2.1)-x(\mathrm{e} 2.2)=0$, we can rewrite (e.2) as

$$
\left\{\begin{array}{l}
2 \lambda y-x=0 \\
2 y-x+1=0 \\
(x-1)^{2}+y^{2}=5
\end{array}\right.
$$

Solving the new system leads to finding the points $(3,1,1)$ and $(-1,-1,-1)$. We conclude by computing
(1) $f(3,1,1)=11$ (maximum);
(2) $f(-1,-1,-1)=1$ (minimum).

Exercise 3. We consider the EC problem in $U=\left\{(x, y) \in \mathbb{R}^{2}: x, y \geq 0\right\}$

$$
\max f(x, y)=2 x+3 y
$$

subject to $\sqrt{x}+\sqrt{y}=5$.
For each $x, y \in U$, write $g(x, y)=\sqrt{x}+\sqrt{y}-5$ and, given $\lambda \in \mathbb{R}$, write

$$
\mathcal{L}(x, y, \lambda)=f(x, y)-\lambda g(x, y)=2 x+3 y-\lambda(\sqrt{x}+\sqrt{y}-5)
$$

Following the Lagrange multiplier method, we have to solve the system associated to the first order conditions, i.e.

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial x}(x, y, \lambda)=2-\lambda /(2 \sqrt{x})=0 \tag{e3}\\
\frac{\partial \mathcal{L}}{\partial y}(x, y, \lambda)=3-\lambda /(2 \sqrt{y})=0 \\
\frac{\partial \mathcal{L}}{\partial \lambda}(x, y, \lambda)=-\sqrt{x}-\sqrt{y}+5=0
\end{array} .\right.
$$

The unique triple (λ, x, y) solving $(\mathrm{e} 3)$ is $(16,9,4)$, corresponding to $f(9,4)=30$. However, if we compute $f(25,0)=50$, we have $f(9,4)<f(25,0)$ and so the Lagrangean method does not return a maximum point. The reason for this, is that f is not partially differentiable (neither in x nor y) for $x=0$ or $y=0$.

Exercise 4. We find the local extrema in \mathbb{R}^{2} of

$$
\begin{gathered}
f(x, y)=x+2 y \\
\text { subject to } x^{2}+y^{2}=5
\end{gathered}
$$

To this end, we define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $(x, y) \mapsto g(x, y)=x^{2}+y^{2}-5$ and, for $\lambda \in \mathbb{R}$, we define

$$
\mathcal{L}(x, y, \lambda)=f(x, y)-\lambda g(x, y)=x+2 y-\lambda\left(x^{2}+y^{2}-5\right)
$$

Following the Lagrange multiplier method, we solve the system associated to the first order conditions, i.e.

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial x}(x, y, \lambda)=1-2 \lambda x=0 \tag{e4}\\
\frac{\partial \mathcal{L}}{\partial y}(x, y, \lambda)=2-2 \lambda y=0 \\
\frac{\partial \mathcal{L}}{\partial \lambda}(x, y, \lambda)=-x^{2}-y^{2}+5=0
\end{array}\right.
$$

Solving (e4), we find the two candidate local extrema (1,2), with $\lambda=1 / 2$, and $(-1,-2)$, with $\lambda=-1 / 2$. Define $D=\left\{(x, y) \in \mathbb{R}^{2}: g(x, y)=0\right\}$. The subset D being compact, f achieves both a maximum and a minimum on D. Moreover, since $\nabla g(x, y)=(-2 x,-2 y)$, both $(1,2)$ and $(-1,-2)$ will be local extrema of D. We calculate
(1) $f(1,2)=5$ (maximum);
(2) $f(-1,-2)=-5$ (minimum).

Relying on Theorem 4.3.1, one could have looked at the functions
i. $\mathcal{L}^{+}(x, y)=x+2 y-\left(x^{2}+y^{2}-5\right) / 2 \quad($ for $\lambda=1 / 2)$
ii. $\mathcal{L}^{-}(x, y)=x+2 y+\left(x^{2}+y^{2}-5\right) / 2 \quad($ for $\lambda=-1 / 2)$
which have Hessians respectively equal to

$$
D^{2} \mathcal{L}^{+}(x, y)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \text { and } D^{2} \mathcal{L}^{-}(x, y)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Since $D^{2} \mathcal{L}^{+}(x, y)$ is negative definite and $D^{2} \mathcal{L}^{-}(x, y)$ is positive definite, Theorem 4.3.1 would give that $(1,2)$ is a global maximum and $(-1,-2)$ a global minimum.

Exercise 5. We will use the Lagrange multiplier method to solve the constrained optimization problem in \mathbb{R}^{3}

$$
\begin{gathered}
\max / \min f(x, y, z)=x+y+z \\
\text { subject to } x^{2}+y^{2}+z^{2}=12
\end{gathered}
$$

We start by defining $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $(x, y, z) \mapsto x^{2}+y^{2}+z^{2}-12$ and the associated set of zeroes $D=\left\{(x, y, z) \in \mathbb{R}^{3}: g(x, y, z)=0\right\}$. For $\lambda \in \mathbb{R}$, we define moreover

$$
\mathcal{L}(x, y, z, \lambda)=f(x, y, z)-\lambda g(x, y, z)=x+y+z-\lambda\left(x^{2}+y^{2}+z^{2}-12\right)
$$

and compute, for each $(x, y, z, \lambda) \in \mathbb{R}^{4}$

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial x}(x, y, z, \lambda)=1-2 \lambda x=0 \tag{e5}\\
\frac{\partial \mathcal{L}}{\partial y}(x, y, z, \lambda)=1-2 \lambda y=0 \\
\frac{\partial \mathcal{L}}{\partial y}(x, y, z, \lambda)=1-2 \lambda z=0 \\
\frac{\partial \mathcal{L}}{\partial \lambda}(x, y, z, \lambda)=-x^{2}-y^{2}-z^{2}+12=0
\end{array} .\right.
$$

Moreover, $\nabla g(x, y, z)=(1,1,1)$ and so no point in D fails the constraint qualification. Solving (e5), we find points $(2,2,2)$, with $\lambda=1 / 4$, and ($-2,-2,-2$), with $\lambda=-1 / 4$. By looking at the functions
i. $\mathcal{L}^{+}(x, y, z)=x+y+z-\left(x^{2}+y^{2}-5\right) / 4 \quad($ for $\lambda=1 / 4)$
ii. $\mathcal{L}^{-}(x, y, z)=x+y+z+\left(x^{2}+y^{2}-5\right) / 4 \quad($ for $\lambda=-1 / 4)$
and computing
$D^{2} \mathcal{L}^{+}(x, y, z)=\left[\begin{array}{ccc}-1 / 2 & 0 & 0 \\ 0 & -1 / 2 & 0 \\ 0 & 0 & -1 / 2\end{array}\right]$ and $D^{2} \mathcal{L}^{-}(x, y, z)=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1 / 2\end{array}\right]$,
we derive from Theorem 4.3 .1 that $(2,2,2)$ is a global maximum and $(-2,-2,-2)$ is a global minimum.

