OQE - PROBLEM SET 12 - SOLUTIONS

Exercise 1. We consider the constrained optimization problem in \mathbb{R}^2

$$\min / \max f(x, y) = xy$$

subject to the constraint $x^2 + y^2 = 1$.

To this end, we define the function $g : \mathbb{R}^2 \to \mathbb{R}$ by $(x, y) \mapsto g(x, y) = x^2 + y^2 - 1$. (a) We expect the problem to be solvable for the following reasons. The subset $D = \{(x, y) \in \mathbb{R}^2 : g(x, y) = 0\}$ is closed and bounded in \mathbb{R}^2 , and thus compact. Since the function $f : D \to \mathbb{R}$ is continuous, Weierstrass's theorem guarantees the existence of both a maximum and a minimum in D.

(b) The constrained qualification fails only at the point (0,0). Indeed, for each $(x,y) \in \mathbb{R}^2$, one computes $\nabla g(x,y) = (2x,2y)$, which is equal to (0,0) if and only if (x,y) = (0,0).

(c) We form the Lagrangean associated to the given EC problem by taking $\lambda \in \mathbb{R}$ and defining

$$\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y) = xy - \lambda (x^2 + y^2 - 1).$$

The first order conditions are then the following

(e1)
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x,y,\lambda) = y - 2\lambda x = 0\\ \frac{\partial \mathcal{L}}{\partial y}(x,y,\lambda) = x - 2\lambda y = 0\\ \frac{\partial \mathcal{L}}{\partial \lambda}(x,y,\lambda) = -x^2 - y^2 + 1 = 0 \end{cases}$$

(d) We derive from (e1) that the four candidate solutions for our EC problem are $(1/\sqrt{2}, 1/\sqrt{2}), (-1/\sqrt{2}, 1/\sqrt{2}), (1/\sqrt{2}, -1/\sqrt{2}), \text{ and } (-1/\sqrt{2}, -1/\sqrt{2}).$

(e) To compute which points from (d) are maxima or minima, we calculate

- (1) $f(1/\sqrt{2}, 1/\sqrt{2}) = 1/2$ (maximum);
- (2) $f(-1/\sqrt{2}, 1/\sqrt{2}) = -1/2$ (minimum);
- (3) $f(1/\sqrt{2}, -1/\sqrt{2}) = -1/2$ (minimum);
- (4) $f(-1/\sqrt{2}, -1/\sqrt{2}) = 1/2$ (maximum).

Exercise 2. We consider the constrained optimization problem in \mathbb{R}^3

$$\max / \min f(x, y, z) = x^{2} + y^{2} + z$$

subject to $(x - 1)^{2} + y^{2} = 5, y = z$.

(a) The reason why we expect the given EC problem to be solvable is the following. Define $C = \{(x, y, z) \in \mathbb{R}^3 : (x - 1)^2 + y^2 = 5\}$ and let $\pi = \{(x, y, y) \in \mathbb{R}^3\}$. Both

C and π are closed subsets of \mathbb{R}^3 and therefore also

$$D = C \cap \pi = \{(x, y, z) \in \mathbb{R}^3 : (x - 1)^2 + y^2 = 5, y = z\}$$

is closed in \mathbb{R}^3 . Moreover, each $(x, y, z) \in D$ satisfies $(x - 1)^2, y^2 \leq 5$, from which it follows that

$$\|(x,y,z)\|^2 = x^2 + y^2 + z^2 = x^2 + 2y^2 \le (1+\sqrt{5})^2 + 10$$

and therefore D is bounded. It follows that D is compact and, $f: D \to \mathbb{R}$ being continuous, f admits both a global maximum and a global minimum on D.

(b) Though the given EC problem involves three variables, we can reduce it to the case of two variables. Indeed, since each $(x, y, z) \in D$ satisfies y = z, we can reduce to studying $\tilde{f}: C \to \mathbb{R}$, where $\tilde{f}(x, y) = f(x, y, y) = x^2 + y(y + 1)$. Note: here we are slightly abusing notation, since C is a subset of \mathbb{R}^3 and not \mathbb{R}^2 .

(c) To check that the constrained qualification holds at each point of C, define $g: \mathbb{R}^2 \to \mathbb{R}$ by $(x, y) \mapsto g(x, y) = (x - 1)^2 + y^2 - 5$. We compute, at each point of the domain, $\nabla g(x, y) = (2x - 2, 2y)$, which is equal to (0, 0) if and only if $(x, y) = (1, 0) \notin C$.

(d) We form the Lagrangean associated to the given EC problem by taking $\lambda \in \mathbb{R}$ and defining

$$\mathcal{L}(x, y, \lambda) = \tilde{f}(x, y) - \lambda g(x, y) = x^2 + y^2 + y - \lambda((x - 1)^2 + y^2 - 5).$$

The first order conditions are then the following

(e2)
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x,y,\lambda) = 2x - 2\lambda x + 2\lambda = 0\\ \frac{\partial \mathcal{L}}{\partial y}(x,y,\lambda) = 2y - 2\lambda y + 1 = 0\\ \frac{\partial \mathcal{L}}{\partial \lambda}(x,y,\lambda) = -(x-1)^2 - y^2 + 5 = 0 \end{cases}$$

(e) We derive the candidate solutions from (e2). Indeed, from (e2.2), we know that $y \neq 0$ and, from the combination of (e2.1),(e2.2), and (e2.3), we also have $x \neq 0$. Computing y(e2.1) - x(e2.2) = 0, we can rewrite (e.2) as

$$\begin{cases} 2\lambda y - x = 0\\ 2y - x + 1 = 0\\ (x - 1)^2 + y^2 = 5 \end{cases}$$

Solving the new system leads to finding the points (3, 1, 1) and (-1, -1, -1). We conclude by computing

- (1) f(3,1,1) = 11 (maximum);
- (2) f(-1, -1, -1) = 1 (minimum).

Exercise 3. We consider the EC problem in $U = \{(x, y) \in \mathbb{R}^2 : x, y \ge 0\}$

$$\max f(x, y) = 2x + 3y$$

subject to $\sqrt{x} + \sqrt{y} = 5$

For each $x, y \in U$, write $g(x, y) = \sqrt{x} + \sqrt{y} - 5$ and, given $\lambda \in \mathbb{R}$, write

$$\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y) = 2x + 3y - \lambda(\sqrt{x} + \sqrt{y} - 5)$$

Following the Lagrange multiplier method, we have to solve the system associated to the first order conditions, i.e.

(e3)
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x,y,\lambda) = 2 - \lambda/(2\sqrt{x}) = 0\\ \frac{\partial \mathcal{L}}{\partial y}(x,y,\lambda) = 3 - \lambda/(2\sqrt{y}) = 0\\ \frac{\partial \mathcal{L}}{\partial \lambda}(x,y,\lambda) = -\sqrt{x} - \sqrt{y} + 5 = 0 \end{cases}$$

The unique triple (λ, x, y) solving (e3) is (16, 9, 4), corresponding to f(9, 4) = 30. However, if we compute f(25, 0) = 50, we have f(9, 4) < f(25, 0) and so the Lagrangean method does not return a maximum point. The reason for this, is that f is not partially differentiable (neither in x nor y) for x = 0 or y = 0.

Exercise 4. We find the local extrema in \mathbb{R}^2 of

$$f(x, y) = x + 2y$$

subject to $x^2 + y^2 = 5$

To this end, we define $g: \mathbb{R}^2 \to \mathbb{R}$ by $(x, y) \mapsto g(x, y) = x^2 + y^2 - 5$ and, for $\lambda \in \mathbb{R}$, we define

$$\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y) = x + 2y - \lambda (x^2 + y^2 - 5).$$

Following the Lagrange multiplier method, we solve the system associated to the first order conditions, i.e.

(e4)
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x,y,\lambda) = 1 - 2\lambda x = 0\\ \frac{\partial \mathcal{L}}{\partial y}(x,y,\lambda) = 2 - 2\lambda y = 0\\ \frac{\partial \mathcal{L}}{\partial \lambda}(x,y,\lambda) = -x^2 - y^2 + 5 = 0 \end{cases}$$

Solving (e4), we find the two candidate local extrema (1,2), with $\lambda = 1/2$, and (-1,-2), with $\lambda = -1/2$. Define $D = \{(x,y) \in \mathbb{R}^2 : g(x,y) = 0\}$. The subset D being compact, f achieves both a maximum and a minimum on D. Moreover, since $\nabla g(x,y) = (-2x,-2y)$, both (1,2) and (-1,-2) will be local extrema of D. We calculate

- (1) f(1,2) = 5 (maximum);
- (2) f(-1, -2) = -5 (minimum).

Relying on Theorem 4.3.1, one could have looked at the functions

i. $\mathcal{L}^+(x,y) = x + 2y - (x^2 + y^2 - 5)/2$ (for $\lambda = 1/2$) *ii*. $\mathcal{L}^-(x,y) = x + 2y + (x^2 + y^2 - 5)/2$ (for $\lambda = -1/2$) which have Hessians respectively equal to

$$D^{2}\mathcal{L}^{+}(x,y) = \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}$$
 and $D^{2}\mathcal{L}^{-}(x,y) = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$.

Since $D^2 \mathcal{L}^+(x, y)$ is negative definite and $D^2 \mathcal{L}^-(x, y)$ is positive definite, Theorem 4.3.1 would give that (1, 2) is a global maximum and (-1, -2) a global minimum.

Exercise 5. We will use the Lagrange multiplier method to solve the constrained optimization problem in \mathbb{R}^3

$$\max / \min f(x, y, z) = x + y + z$$

subject to $x^2 + y^2 + z^2 = 12$.

We start by defining $g : \mathbb{R}^3 \to \mathbb{R}$ by $(x, y, z) \mapsto x^2 + y^2 + z^2 - 12$ and the associated set of zeroes $D = \{(x, y, z) \in \mathbb{R}^3 : g(x, y, z) = 0\}$. For $\lambda \in \mathbb{R}$, we define moreover

 $\mathcal{L}(x,y,z,\lambda) = f(x,y,z) - \lambda g(x,y,z) = x + y + z - \lambda (x^2 + y^2 + z^2 - 12)$

•

and compute, for each $(x,y,z,\lambda)\in \mathbb{R}^4$

(e5)
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x, y, z, \lambda) = 1 - 2\lambda x = 0\\ \frac{\partial \mathcal{L}}{\partial y}(x, y, z, \lambda) = 1 - 2\lambda y = 0\\ \frac{\partial \mathcal{L}}{\partial y}(x, y, z, \lambda) = 1 - 2\lambda z = 0\\ \frac{\partial \mathcal{L}}{\partial \lambda}(x, y, z, \lambda) = -x^2 - y^2 - z^2 + 12 = 0 \end{cases}$$

Moreover, $\nabla g(x, y, z) = (1, 1, 1)$ and so no point in D fails the constraint qualification. Solving (e5), we find points (2, 2, 2), with $\lambda = 1/4$, and (-2, -2, -2), with $\lambda = -1/4$. By looking at the functions

i.
$$\mathcal{L}^+(x, y, z) = x + y + z - (x^2 + y^2 - 5)/4$$
 (for $\lambda = 1/4$)
ii. $\mathcal{L}^-(x, y, z) = x + y + z + (x^2 + y^2 - 5)/4$ (for $\lambda = -1/4$)

and computing

$$D^{2}\mathcal{L}^{+}(x,y,z) = \begin{bmatrix} -1/2 & 0 & 0\\ 0 & -1/2 & 0\\ 0 & 0 & -1/2 \end{bmatrix} \text{ and } D^{2}\mathcal{L}^{-}(x,y,z) = \begin{bmatrix} 1/2 & 0 & 0\\ 0 & 1/2 & 0\\ 0 & 0 & 1/2 \end{bmatrix},$$

we derive from Theorem 4.3.1 that (2, 2, 2) is a global maximum and (-2, -2, -2) is a global minimum.