
OQE - PROBLEM SET 12 - SOLUTIONS

Exercise 1. We consider the constrained optimization problem in R2

min /max f(x, y) = xy

subject to the constraint x2 + y2 = 1.

To this end, we define the function g : R2 → R by (x, y) 7→ g(x, y) = x2 + y2 − 1.

(a) We expect the problem to be solvable for the following reasons. The subset

D = {(x, y) ∈ R2 : g(x, y) = 0} is closed and bounded in R2, and thus compact.

Since the function f : D → R is continuous, Weierstrass’s theorem guarantees the

existence of both a maximum and a minimum in D.

(b) The constrained qualification fails only at the point (0, 0). Indeed, for each

(x, y) ∈ R2, one computes ∇g(x, y) = (2x, 2y), which is equal to (0, 0) if and only

if (x, y) = (0, 0).

(c) We form the Lagrangean associated to the given EC problem by taking λ ∈ R
and defining

L(x, y, λ) = f(x, y)− λg(x, y) = xy − λ(x2 + y2 − 1).

The first order conditions are then the following

(e1)


∂L
∂x (x, y, λ) = y − 2λx = 0

∂L
∂y (x, y, λ) = x− 2λy = 0

∂L
∂λ (x, y, λ) = −x2 − y2 + 1 = 0

.

(d) We derive from (e1) that the four candidate solutions for our EC problem are

(1/
√

2, 1/
√

2), (−1/
√

2, 1/
√

2), (1/
√

2,−1/
√

2), and (−1/
√

2,−1/
√

2).

(e) To compute which points from (d) are maxima or minima, we calculate

(1) f(1/
√

2, 1/
√

2) = 1/2 (maximum);

(2) f(−1/
√

2, 1/
√

2) = −1/2 (minimum);

(3) f(1/
√

2,−1/
√

2) = −1/2 (minimum);

(4) f(−1/
√

2,−1/
√

2) = 1/2 (maximum).

Exercise 2. We consider the constrained optimization problem in R3

max /min f(x, y, z) = x2 + y2 + z

subject to (x− 1)2 + y2 = 5, y = z.

(a) The reason why we expect the given EC problem to be solvable is the following.

Define C = {(x, y, z) ∈ R3 : (x − 1)2 + y2 = 5} and let π = {(x, y, y) ∈ R3}. Both
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C and π are closed subsets of R3 and therefore also

D = C ∩ π = {(x, y, z) ∈ R3 : (x− 1)2 + y2 = 5, y = z}

is closed in R3. Moreover, each (x, y, z) ∈ D satisfies (x − 1)2, y2 ≤ 5, from which

it follows that

‖(x, y, z)‖2 = x2 + y2 + z2 = x2 + 2y2 ≤ (1 +
√

5)2 + 10

and therefore D is bounded. It follows that D is compact and, f : D → R being

continuous, f admits both a global maximum and a global minimum on D.

(b) Though the given EC problem involves three variables, we can reduce it to the

case of two variables. Indeed, since each (x, y, z) ∈ D satisfies y = z, we can reduce

to studying f̃ : C → R, where f̃(x, y) = f(x, y, y) = x2 + y(y + 1). Note: here we

are slightly abusing notation, since C is a subset of R3 and not R2.

(c) To check that the constrained qualification holds at each point of C, define

g : R2 → R by (x, y) 7→ g(x, y) = (x − 1)2 + y2 − 5. We compute, at each point

of the domain, ∇g(x, y) = (2x − 2, 2y), which is equal to (0, 0) if and only if

(x, y) = (1, 0) /∈ C.

(d) We form the Lagrangean associated to the given EC problem by taking λ ∈ R
and defining

L(x, y, λ) = f̃(x, y)− λg(x, y) = x2 + y2 + y − λ((x− 1)2 + y2 − 5).

The first order conditions are then the following

(e2)


∂L
∂x (x, y, λ) = 2x− 2λx+ 2λ = 0

∂L
∂y (x, y, λ) = 2y − 2λy + 1 = 0

∂L
∂λ (x, y, λ) = −(x− 1)2 − y2 + 5 = 0

.

(e) We derive the candidate solutions from (e2). Indeed, from (e2.2), we know that

y 6= 0 and, from the combination of (e2.1),(e2.2), and (e2.3), we also have x 6= 0.

Computing y(e2.1)− x(e2.2) = 0, we can rewrite (e.2) as
2λy − x = 0

2y − x+ 1 = 0

(x− 1)2 + y2 = 5

.

Solving the new system leads to finding the points (3, 1, 1) and (−1,−1,−1). We

conclude by computing

(1) f(3, 1, 1) = 11 (maximum);

(2) f(−1,−1,−1) = 1 (minimum).

Exercise 3. We consider the EC problem in U = {(x, y) ∈ R2 : x, y ≥ 0}
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max f(x, y) = 2x+ 3y

subject to
√
x+
√
y = 5.

For each x, y ∈ U , write g(x, y) =
√
x+
√
y − 5 and, given λ ∈ R, write

L(x, y, λ) = f(x, y)− λg(x, y) = 2x+ 3y − λ(
√
x+
√
y − 5).

Following the Lagrange multiplier method, we have to solve the system associated

to the first order conditions, i.e.

(e3)


∂L
∂x (x, y, λ) = 2− λ/(2

√
x) = 0

∂L
∂y (x, y, λ) = 3− λ/(2√y) = 0

∂L
∂λ (x, y, λ) = −

√
x−√y + 5 = 0

.

The unique triple (λ, x, y) solving (e3) is (16, 9, 4), corresponding to f(9, 4) = 30.

However, if we compute f(25, 0) = 50, we have f(9, 4) < f(25, 0) and so the

Lagrangean method does not return a maximum point. The reason for this, is that

f is not partially differentiable (neither in x nor y) for x = 0 or y = 0.

Exercise 4. We find the local extrema in R2 of

f(x, y) = x+ 2y

subject to x2 + y2 = 5.

To this end, we define g : R2 → R by (x, y) 7→ g(x, y) = x2 + y2 − 5 and, for λ ∈ R,

we define

L(x, y, λ) = f(x, y)− λg(x, y) = x+ 2y − λ(x2 + y2 − 5).

Following the Lagrange multiplier method, we solve the system associated to the

first order conditions, i.e.

(e4)


∂L
∂x (x, y, λ) = 1− 2λx = 0

∂L
∂y (x, y, λ) = 2− 2λy = 0

∂L
∂λ (x, y, λ) = −x2 − y2 + 5 = 0

.

Solving (e4), we find the two candidate local extrema (1, 2), with λ = 1/2, and

(−1,−2), with λ = −1/2. Define D = {(x, y) ∈ R2 : g(x, y) = 0}. The subset D

being compact, f achieves both a maximum and a minimum on D. Moreover, since

∇g(x, y) = (−2x,−2y), both (1, 2) and (−1,−2) will be local extrema of D. We

calculate

(1) f(1, 2) = 5 (maximum);

(2) f(−1,−2) = −5 (minimum).

Relying on Theorem 4.3.1, one could have looked at the functions

i. L+(x, y) = x+ 2y − (x2 + y2 − 5)/2 (for λ = 1/2)

ii. L−(x, y) = x+ 2y + (x2 + y2 − 5)/2 (for λ = −1/2)
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which have Hessians respectively equal to

D2L+(x, y) =

[
−1 0

0 −1

]
and D2L−(x, y) =

[
1 0

0 1

]
.

Since D2L+(x, y) is negative definite and D2L−(x, y) is positive definite, Theorem

4.3.1 would give that (1, 2) is a global maximum and (−1,−2) a global minimum.

Exercise 5. We will use the Lagrange multiplier method to solve the constrained

optimization problem in R3

max /min f(x, y, z) = x+ y + z

subject to x2 + y2 + z2 = 12.

We start by defining g : R3 → R by (x, y, z) 7→ x2 + y2 + z2− 12 and the associated

set of zeroes D = {(x, y, z) ∈ R3 : g(x, y, z) = 0}. For λ ∈ R, we define moreover

L(x, y, z, λ) = f(x, y, z)− λg(x, y, z) = x+ y + z − λ(x2 + y2 + z2 − 12)

and compute, for each (x, y, z, λ) ∈ R4

(e5)



∂L
∂x (x, y, z, λ) = 1− 2λx = 0

∂L
∂y (x, y, z, λ) = 1− 2λy = 0

∂L
∂y (x, y, z, λ) = 1− 2λz = 0

∂L
∂λ (x, y, z, λ) = −x2 − y2 − z2 + 12 = 0

.

Moreover, ∇g(x, y, z) = (1, 1, 1) and so no point in D fails the constraint qualifi-

cation. Solving (e5), we find points (2, 2, 2), with λ = 1/4, and (−2,−2,−2), with

λ = −1/4. By looking at the functions

i. L+(x, y, z) = x+ y + z − (x2 + y2 − 5)/4 (for λ = 1/4)

ii. L−(x, y, z) = x+ y + z + (x2 + y2 − 5)/4 (for λ = −1/4)

and computing

D2L+(x, y, z) =

−1/2 0 0

0 −1/2 0

0 0 −1/2

 and D2L−(x, y, z) =

1/2 0 0

0 1/2 0

0 0 1/2

 ,
we derive from Theorem 4.3.1 that (2, 2, 2) is a global maximum and (−2,−2,−2)

is a global minimum.


