OQE - PROBLEM SET 13 - SOLUTIONS

Exercise 1. We look at the inequality constraint optimization problem in \mathbb{R}^2

$$\max f(x, y) = xy$$

subject to $x^2 + y^2 \le 1$.

(a) Define $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ and observe that D is closed and bounded, hence compact. The function f being continuous, it achieves a global maximum on D.

(b) We define $g : \mathbb{R}^2 \to \mathbb{R}$ by $(x, y) \mapsto g(x, y) = x^2 + y^2 - 1$. We consequently compute, for each $(x, y) \in \mathbb{R}^2$, the gradient of g to be $\nabla g(x, y) = (2x, 2y)$ which is equal to (0, 0) if and only if (x, y) = (0, 0). However, since the constraint is not active at (0, 0), this gives us no problems.

(c) For $(x, y) \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}_{>0}$, we define the Lagrangian function

$$\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y) = xy - \lambda (x^2 + y^2 - 1)$$

and consequently we impose

(KKT-1)
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x,y,\lambda) = y - 2\lambda x = 0\\ \frac{\partial \mathcal{L}}{\partial y}(x,y,\lambda) = x - 2\lambda y = 0 \end{cases}$$

and also

(KKT-2)
$$\begin{cases} x^2 + y^2 - 1 = 0 \text{ if } \lambda > 0\\ x^2 + y^2 - 1 < 0 \text{ if } \lambda = 0 \end{cases}$$

(d) Solving the systems in (c), one finds the three points

(1) (0,0); (2) $(\sqrt{2}/2, \sqrt{2}/2);$ (3) $(-\sqrt{2}/2, -\sqrt{2}/2).$

(e) We compute

- (1) f(0,0) = 0;
- (2) $f(\sqrt{2}/2, \sqrt{2}/2) = 1/2;$

(3)
$$f(-\sqrt{2}/2, -\sqrt{2}/2) = 1/2$$

The global maximum on D has thus value 1/2 and is achieved in $(\sqrt{2}/2, \sqrt{2}/2)$ and $(-\sqrt{2}/2, -\sqrt{2}/2)$.

Exercise 2. Let $a, b \in \mathbb{R}$ and consider the inequality constraint optimization problem on \mathbb{R}^2 given by

$$\max / \min f(x, y) = ax + by$$

subject to $x^2 + y^2 \le 1$.

(a) Assume that a = b = 0. Then the function f is equal to the constant function 0 and each element of \mathbb{R}^2 is a maximum/minimum of f in \mathbb{R}^2 and therefore the same applies to every element of $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$.

Suppose, from now on, that $a \neq 0$ or $b \neq 0$.

(b) Let $g: \mathbb{R}^2 \to \mathbb{R}$ be defined by $(x, y) \mapsto^2 + y^2 - 1$ and let D be as in (a). To find the maxima of f, we define, for $x, y \in \mathbb{R}$ and $\lambda \in \mathbb{R}_{\geq 0}$, the Lagrangian function

$$\mathcal{L}(x, y, \lambda) = f(x, y) - \lambda g(x, y) = ax + by - \lambda (x^2 + y^2 - 1)$$

and we impose

(KKT-1)
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x, y, \lambda) = a - 2\lambda x = 0\\ \frac{\partial \mathcal{L}}{\partial y}(x, y, \lambda) = b - 2\lambda y = 0 \end{cases}$$

and also

(KKT-2)
$$\begin{cases} x^2 + y^2 - 1 = 0 \text{ if } \lambda > 0\\ x^2 + y^2 - 1 < 0 \text{ if } \lambda = 0 \end{cases}$$

Solving the systems, we get two points:

- (1) (0,0) corresponds to $\lambda = 0$ and refers back to (a); and
- (2) $P = (a/(\sqrt{a^2 + b^2}), b/(\sqrt{a^2 + b^2}))$ with $f(P) = \sqrt{a^2 + b^2}$ and corresponding to $\lambda_P = \sqrt{a^2 + b^2}/2$

so P is the point in D in which f achieves its global maximum. To compute the minima of f in D, one applies the same method to -f, finding the minimum point $Q = (-a/(\sqrt{a^2 + b^2}), -b/(\sqrt{a^2 + b^2}))$ with $f(Q) = -\sqrt{a^2 + b^2}$ and corresponding to $\lambda_Q = -\sqrt{a^2 + b^2}/2$.

(c) As $\lambda_P, \lambda_Q > 0$, one can reduce to an EC problem and look at the functions

i.
$$\mathcal{L}_P(x,y) = f(x,y) - \lambda_P g(x,y) = ax + by - \sqrt{a^2 + b^2}(x^2 + y^2 - 1)/2;$$

ii. $\mathcal{L}_Q(x,y) = f(x,y) - \lambda_P g(x,y) = ax + by + \sqrt{a^2 + b^2}(x^2 + y^2 - 1)/2.$

The associated Hessians are then

$$D^{2}\mathcal{L}_{P}(x,y) = \begin{bmatrix} -2\lambda_{P} & 0\\ 0 & -2\lambda_{P} \end{bmatrix} = \begin{bmatrix} -\sqrt{a^{2}+b^{2}} & 0\\ 0 & -\sqrt{a^{2}+b^{2}} \end{bmatrix}$$

and

$$D^{2}\mathcal{L}_{Q}(x,y) = \begin{bmatrix} -2\lambda_{Q} & 0\\ 0 & -2\lambda_{Q} \end{bmatrix} = \begin{bmatrix} \sqrt{a^{2}+b^{2}} & 0\\ 0 & \sqrt{a^{2}+b^{2}} \end{bmatrix}$$

Theorem 4.3.1 yields that P is a global maximum and Q is a global minimum of f in D.

Exercise 3. Let $U = \{(x, y) \in \mathbb{R}^2_{\geq 0}\}$ and consider the inequality constraint problem on U

$$\max u(x, y) = x^{1/2} y^{1/2}$$

subject to $x^2 + y^2 \le 400, x + y \le 28.$

(a-b) Define $g_1 : \mathbb{R}^2 \to \mathbb{R}$ by $(x, y) \mapsto g_1(x, y) = x^2 + y^2 - 400$ and let also $g_2 : \mathbb{R}^2 \to \mathbb{R}$ be defined by $(x, y) \mapsto g_2(x, y) = x + y - 28$. We compute the Jacobian associated to $g = (g_1, g_2)$ at any point $(x, y) \in \mathbb{R}^2$:

$$Dg(x,y) = \begin{bmatrix} 2x & 2y\\ 1 & 1 \end{bmatrix}$$

and note that the system

$$\begin{cases} 2x - 2y = 0\\ x^2 + y^2 = 400\\ x + y = 28 \end{cases}$$

has no solution, so CQ is satisfied whenever both g_1 and g_2 are active constraint at a point (x, y). In all other cases CQ is trivially satisfied. We now observe that, if $(x, 0), (0, y) \in U$, then f(x, 0) = f(0, y) = 0 and, since u achieves only nonnegative values and we are concerned with finding the maximum value of f, we can restrict our investigation to the domain $U^* = \{(x, y) \in U : xy \neq 0\}$. We define, for $(x, y) \in U^*$ and $\lambda, \mu \in \mathbb{R}_{\geq 0}$, the Lagrangian function

$$\mathcal{L}(x, y, \lambda, \mu) = u(x, y) - \lambda g_1(x, y) - \mu g_2(x, y)$$

= $x^{1/2} y^{1/2} - \lambda (x^2 + y^2 - 400) - \mu (x + y - 28)$

and we impose consequently

(KKT-1)
$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x,y,\lambda,\mu) = \frac{1}{2}x^{-1/2}y^{1/2} - 2\lambda x - \mu = 0\\ \frac{\partial \mathcal{L}}{\partial y}(x,y,\lambda,\mu) = \frac{1}{2}x^{1/2}y^{-1/2} - 2\lambda y - \mu = 0 \end{cases}$$

and also

(KKT-2)
$$\begin{cases} x^2 + y^2 - 400 = 0 \text{ if } \lambda > 0\\ x^2 + y^2 - 400 < 0 \text{ if } \lambda = 0\\ x + y - 28 = 0 \text{ if } \mu > 0\\ x + y - 28 < 0 \text{ if } \mu = 0 \end{cases}$$

From (KKT-1) we derive

$$\frac{1}{2}x^{-1/2}y^{1/2} - 2\lambda x = \frac{1}{2}x^{1/2}y^{-1/2} - 2\lambda y$$

.

which is satisfied if and only if

$$x^{-1/2}y^{-1/2}(y-x) = 4\lambda(x-y).$$

The latter is satisfied if and only if

$$x = y$$
 or $\lambda = -\frac{1}{4}x^{-1/2}y^{-1/2}$.

However, for any choice of $(x, y) \in U^*$, the value $-\frac{1}{4}x^{-1/2}y^{-1/2}$ is negative and therefore we must have x = y. Thanks to (KKT-2), we then find the point (14, 14) for which we have f(14, 14) = 14.

(c) For $i \in \{1, 2\}$, define $D_i = \{(x, y) \in \mathbb{R}^2 : g_1(x, u)\}$. Then D_1 is bounded and D_1 and D_2 are both closed. Since U is also closed, it follows that $D_1 \cap D_2 \cap U$ is closed and bounded, thus compact. The function u being continuous, it achieves both a maximum and a minimum on $D_1 \cap D_2 \cap U$ and therefore (14, 14) is a global maximum of f on the given domain.