OQE - PROBLEM SET 13 - SOLUTIONS

Exercise 1. We look at the inequality constraint optimization problem in \mathbb{R}^{2}

$$
\begin{gathered}
\max f(x, y)=x y \\
\text { subject to } x^{2}+y^{2} \leq 1
\end{gathered}
$$

(a) Define $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ and observe that D is closed and bounded, hence compact. The function f being continuous, it achieves a global maximum on D.
(b) We define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $(x, y) \mapsto g(x, y)=x^{2}+y^{2}-1$. We consequently compute, for each $(x, y) \in \mathbb{R}^{2}$, the gradient of g to be $\nabla g(x, y)=(2 x, 2 y)$ which is equal to $(0,0)$ if and only if $(x, y)=(0,0)$. However, since the constraint is not active at $(0,0)$, this gives us no problems.
(c) For $(x, y) \in \mathbb{R}^{2}$ and $\lambda \in \mathbb{R}_{\geq 0}$, we define the Lagrangian function

$$
\mathcal{L}(x, y, \lambda)=f(x, y)-\lambda g(x, y)=x y-\lambda\left(x^{2}+y^{2}-1\right)
$$

and consequently we impose
(KKT-1)

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial x}(x, y, \lambda)=y-2 \lambda x=0 \\
\frac{\partial \mathcal{L}}{\partial y}(x, y, \lambda)=x-2 \lambda y=0
\end{array}\right.
$$

and also
(KKT-2)

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-1=0 \text { if } \lambda>0 \\
x^{2}+y^{2}-1<0 \text { if } \lambda=0
\end{array}\right.
$$

(d) Solving the systems in (c), one finds the three points
(1) $(0,0)$;
(2) $(\sqrt{2} / 2, \sqrt{2} / 2)$;
(3) $(-\sqrt{2} / 2,-\sqrt{2} / 2)$.
(e) We compute
(1) $f(0,0)=0$;
(2) $f(\sqrt{2} / 2, \sqrt{2} / 2)=1 / 2$;
(3) $f(-\sqrt{2} / 2,-\sqrt{2} / 2)=1 / 2$.

The global maximum on D has thus value $1 / 2$ and is achieved in $(\sqrt{2} / 2, \sqrt{2} / 2)$ and $(-\sqrt{2} / 2,-\sqrt{2} / 2)$.

Exercise 2. Let $a, b \in \mathbb{R}$ and consider the inequality constraint optimization problem on \mathbb{R}^{2} given by

$$
\begin{gathered}
\max / \min f(x, y)=a x+b y \\
\text { subject to } x^{2}+y^{2} \leq 1
\end{gathered}
$$

(a) Assume that $a=b=0$. Then the function f is equal to the constant funciton 0 and each element of \mathbb{R}^{2} is a maximum/minimum of f in \mathbb{R}^{2} and therefore the same applies to every element of $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$.

$$
\text { Suppose, from now on, that } a \neq 0 \text { or } b \neq 0 \text {. }
$$

(b) Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $(x, y) \mapsto^{2}+y^{2}-1$ and let D be as in (a). To find the maxima of f, we define, for $x, y \in \mathbb{R}$ and $\lambda \in \mathbb{R}_{\geq 0}$, the Lagrangian function

$$
\mathcal{L}(x, y, \lambda)=f(x, y)-\lambda g(x, y)=a x+b y-\lambda\left(x^{2}+y^{2}-1\right)
$$

and we impose
(KKT-1)

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial x}(x, y, \lambda)=a-2 \lambda x=0 \\
\frac{\partial \mathcal{L}}{\partial y}(x, y, \lambda)=b-2 \lambda y=0
\end{array}\right.
$$

and also
(KKT-2)

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-1=0 \text { if } \lambda>0 \\
x^{2}+y^{2}-1<0 \text { if } \lambda=0
\end{array} .\right.
$$

Solving the systems, we get two points:
(1) $(0,0)$ - corresponds to $\lambda=0$ and refers back to (a); and
(2) $P=\left(a /\left(\sqrt{a^{2}+b^{2}}\right), b /\left(\sqrt{a^{2}+b^{2}}\right)\right)$ with $f(P)=\sqrt{a^{2}+b^{2}}$ and corresponding to $\lambda_{P}=\sqrt{a^{2}+b^{2}} / 2$
so P is the point in D in which f achieves its global maximum. To compute the minima of f in D, one applies the same method to $-f$, finding the minimum point $Q=\left(-a /\left(\sqrt{a^{2}+b^{2}}\right),-b /\left(\sqrt{a^{2}+b^{2}}\right)\right)$ with $f(Q)=-\sqrt{a^{2}+b^{2}}$ and corresponding to $\lambda_{Q}=-\sqrt{a^{2}+b^{2}} / 2$.
(c) As $\lambda_{P}, \lambda_{Q}>0$, one can reduce to an EC problem and look at the functions

$$
\begin{aligned}
& \text { i. } \quad \mathcal{L}_{P}(x, y)=f(x, y)-\lambda_{P} g(x, y)=a x+b y-\sqrt{a^{2}+b^{2}}\left(x^{2}+y^{2}-1\right) / 2 \\
& \text { ii. } \mathcal{L}_{Q}(x, y)=f(x, y)-\lambda_{P} g(x, y)=a x+b y+\sqrt{a^{2}+b^{2}}\left(x^{2}+y^{2}-1\right) / 2
\end{aligned}
$$

The associated Hessians are then

$$
D^{2} \mathcal{L}_{P}(x, y)=\left[\begin{array}{cc}
-2 \lambda_{P} & 0 \\
0 & -2 \lambda_{P}
\end{array}\right]=\left[\begin{array}{cc}
-\sqrt{a^{2}+b^{2}} & 0 \\
0 & -\sqrt{a^{2}+b^{2}}
\end{array}\right]
$$

and

$$
D^{2} \mathcal{L}_{Q}(x, y)=\left[\begin{array}{cc}
-2 \lambda_{Q} & 0 \\
0 & -2 \lambda_{Q}
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{a^{2}+b^{2}} & 0 \\
0 & \sqrt{a^{2}+b^{2}}
\end{array}\right] .
$$

Theorem 4.3.1 yields that P is a global maximum and Q is a global minimum of f in D.

Exercise 3. Let $U=\left\{(x, y) \in \mathbb{R}_{\geq 0}^{2}\right\}$ and consider the inequality constraint problem on U

$$
\max u(x, y)=x^{1 / 2} y^{1 / 2}
$$

$$
\text { subject to } x^{2}+y^{2} \leq 400, x+y \leq 28
$$

(a-b) Define $g_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $(x, y) \mapsto g_{1}(x, y)=x^{2}+y^{2}-400$ and let also $g_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $(x, y) \mapsto g_{2}(x, y)=x+y-28$. We compute the Jacobian associated to $g=\left(g_{1}, g_{2}\right)$ at any point $(x, y) \in \mathbb{R}^{2}$:

$$
D g(x, y)=\left[\begin{array}{cc}
2 x & 2 y \\
1 & 1
\end{array}\right]
$$

and note that the system

$$
\left\{\begin{array}{l}
2 x-2 y=0 \\
x^{2}+y^{2}=400 \\
x+y=28
\end{array}\right.
$$

has no solution, so CQ is satisfied whenever both g_{1} and g_{2} are active constraint at a point (x, y). In all other cases CQ is trivially satisfied. We now observe that, if $(x, 0),(0, y) \in U$, then $f(x, 0)=f(0, y)=0$ and, since u achieves only nonnegative values and we are concerned with finding the maximum value of f, we can restrict our investigation to the domain $U^{*}=\{(x, y) \in U: x y \neq 0\}$. We define, for $(x, y) \in U^{*}$ and $\lambda, \mu \in \mathbb{R}_{\geq 0}$, the Lagrangian function

$$
\begin{aligned}
\mathcal{L}(x, y, \lambda, \mu) & =u(x, y)-\lambda g_{1}(x, y)-\mu g_{2}(x, y) \\
& =x^{1 / 2} y^{1 / 2}-\lambda\left(x^{2}+y^{2}-400\right)-\mu(x+y-28)
\end{aligned}
$$

and we impose consequently

$$
\left\{\begin{array}{l}
\frac{\partial \mathcal{L}}{\partial x}(x, y, \lambda, \mu)=\frac{1}{2} x^{-1 / 2} y^{1 / 2}-2 \lambda x-\mu=0 \tag{KKT-1}\\
\frac{\partial \mathcal{L}}{\partial y}(x, y, \lambda, \mu)=\frac{1}{2} x^{1 / 2} y^{-1 / 2}-2 \lambda y-\mu=0
\end{array}\right.
$$

and also
(KKT-2)

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-400=0 \text { if } \lambda>0 \\
x^{2}+y^{2}-400<0 \text { if } \lambda=0 \\
x+y-28=0 \text { if } \mu>0 \\
x+y-28<0 \text { if } \mu=0
\end{array} .\right.
$$

From (KKT-1) we derive

$$
\frac{1}{2} x^{-1 / 2} y^{1 / 2}-2 \lambda x=\frac{1}{2} x^{1 / 2} y^{-1 / 2}-2 \lambda y
$$

which is satisfied if and only if

$$
x^{-1 / 2} y^{-1 / 2}(y-x)=4 \lambda(x-y) .
$$

The latter is satisfied if and only if

$$
x=y \quad \text { or } \quad \lambda=-\frac{1}{4} x^{-1 / 2} y^{-1 / 2} .
$$

However, for any choice of $(x, y) \in U^{*}$, the value $-\frac{1}{4} x^{-1 / 2} y^{-1 / 2}$ is negative and therefore we must have $x=y$. Thanks to (KKT-2), we then find the point $(14,14)$ for which we have $f(14,14)=14$.
(c) For $i \in\{1,2\}$, define $D_{i}=\left\{(x, y) \in \mathbb{R}^{2}: g_{1}(x, u)\right\}$. Then D_{1} is bounded and D_{1} and D_{2} are both closed. Since U is also closed, it follows that $D_{1} \cap D_{2} \cap U$ is closed and bounded, thus compact. The function u being continuous, it achieves both a maximum and a minimum on $D_{1} \cap D_{2} \cap U$ and therefore $(14,14)$ is a global maximum of f on the given domain.

