OQE - PROBLEM SET 2 - SOLUTIONS

Exercise 1. We find infimum and supremum of the following sets

$$
\begin{aligned}
& X=\left\{\frac{n}{n+1}\right\}_{n \in \mathbb{N}} ; \\
& Y=\{a-b: a, b \in \mathbb{R}, 1<a<2,3<b<4\}
\end{aligned}
$$

We claim the following:
(a) $\inf X=\frac{1}{2}$ and $\sup X=1$.
(b) $\inf Y=-3$ and $\sup Y=-1$.
(a) We observe that, if n, m are elements of \mathbb{N}, then $\frac{n}{n+1} \leq \frac{m}{m+1}$ if and only if $n \leq m$. It follows that, for each $n \in \mathbb{N}$, one has

$$
\frac{1}{2}=\frac{1}{1+1} \leq \frac{n}{n+1}
$$

Since $\frac{1}{2}$ is an element of X, it follows that $\frac{1}{2}=\inf X$. We now prove $\sup X=1$. For each $n \in \mathbb{N}$, one has $n<n+1$, and therefore $\sup X \leq 1$. Let now s be an upper bound of X and assume by contradiction that $s<1$. Then the set X is contained in $[0, s]$. It follows that the sequence $\left(x_{n}\right)_{n}$, defined by $x_{n}=\frac{n}{n+1}$, is a sequence in $[0, s]$ which converges to 1 in \mathbb{R}. However, 1 does not belong to $[0, s]$, which is a contradiction to Theorem 1.3.8 from the notes.
(b) It is not difficult to show that $-3 \leq \inf Y \leq-2 \leq \sup Y \leq-1$. Let now $l=\sup Y$ and assume, by contradiction, that $l<-1$. Define $\delta=|-1-l|$, so that $0<\delta \leq 1$. We define $a=2-\frac{\delta}{4}$ and $b=3+\frac{\delta}{4}$: it follows from their definitions that $1<a<2$ and $3<b<4$. However, one computes $a-b=-1-\frac{\delta}{2}>-1-\delta=l$, giving a contradiction to the minimality of l. We have proven thus that $\sup Y=-1$. To prove that $\inf Y=-3$, one uses a similar argument.

Exercise 2. We determine whether or not the following sequences
(a) $\bar{x}=\left(\left((-1)^{n}, 4, \frac{1}{n}\right)\right)_{n \in \mathbb{N}}$
(b) $\bar{y}=\left(\left(\frac{n \sin n}{n^{2}+1}, \frac{(-1)^{n+1}}{n}\right)\right)_{n \in \mathbb{N}}$
converge respectively in \mathbb{R}^{3} and \mathbb{R}^{2}.
(a) We claim that \bar{x} does not converge in \mathbb{R}^{3}. Assume by contradiction that \bar{x} converges to a point $x=\left(x_{1}, x_{2}, x_{3}\right)$ in \mathbb{R}^{3}. Then, for each $\epsilon>0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that, for all $n>N_{\epsilon}$, one has

$$
\left(x_{1}-(-1)^{n}\right)^{2}+\left(x_{2}-4\right)^{2}+\left(x_{3}-\frac{1}{n}\right)^{2}<\epsilon^{2}
$$

Fix $0<\epsilon<\frac{1}{2}$ and let $n>N$ be odd. Then we have

$$
\left(x_{1}+1\right)^{2}+\left(x_{2}-4\right)^{2}+\left(x_{3}-\frac{1}{n}\right)^{2}=\left(x_{1}-(-1)^{n}\right)^{2}+\left(x_{2}-4\right)^{2}+\left(x_{3}-\frac{1}{n}\right)^{2}<\epsilon^{2}
$$

and also
$\left(x_{1}-1\right)^{2}+\left(x_{2}-4\right)^{2}+\left(x_{3}-\frac{1}{n}\right)^{2}=\left(x_{1}-(-1)^{n+1}\right)^{2}+\left(x_{2}-4\right)^{2}+\left(x_{3}-\frac{1}{n}\right)^{2}<\epsilon^{2}$. However, one between $x_{1}+1$ and $x_{1}-1$ is larger than 1 and therefore $\epsilon>1$, which contradicts our choice of ϵ.
(b) We prove that \bar{y} converges to $(0,0)$ in \mathbb{R}^{2}. We observe that, since sin is a function $\mathbb{R} \rightarrow[-1,1]$, one has, for each $n \in \mathbb{N}$, that

$$
\frac{-n}{n^{2}+1} \leq \frac{n \sin n}{n^{2}+1} \leq \frac{n}{n^{2}+1}
$$

and so, since both sequences $\left(\frac{-n}{n^{2}+1}\right)_{n}$ and $\left(\frac{n}{n^{2}+1}\right)_{n}$ tend to 0 as n goes to infinity, also $\left(\frac{n \sin n}{n^{2}+1}\right)_{n}$ is convergent to 0 . With a similar argument, one shows that $\left(\frac{(-1)^{n}}{n}\right)_{n}$ is convergent to 0 and therefore $\bar{y} \rightarrow(0,0)$.

Exercise 3. We compute interior, closure, and boundary of \mathbb{Q} in \mathbb{R}. We claim

- $\mathbb{Q}=\emptyset$.
- $\overline{\mathbb{Q}}=\partial \mathbb{Q}=\mathbb{R}$.

To prove that the interior of \mathbb{Q} is empty, we work by contradiction. Assume that x is an element of \mathbb{Q} and let $\epsilon>0$ be such that $\mathrm{B}_{\epsilon}(x) \subseteq \mathbb{Q}$. Since the sequence $\left(\frac{\sqrt{2}}{n}\right)_{n>0}$ converges to 0 , there exists $n \in \mathbb{N}$ such that $\frac{\sqrt{2}}{n}<\epsilon$. Fix such n. Then the element $x+\frac{\sqrt{2}}{n}$ belongs to $\mathrm{B}_{\epsilon}(x) \backslash \mathbb{Q}$. Contradiction. Hence $\mathbb{\mathbb { Q }}=\emptyset$ and so $\overline{\mathbb{Q}}=\partial \mathbb{Q}$. Use a similar trick to prove that, for every element x of \mathbb{R} and for every $\epsilon>0$, one has $\mathbb{Q} \cap \mathrm{B}_{\epsilon}(x) \neq \emptyset$.

Exercise 4. Let X be a non-empty set and let d be the discete metric on it. We show that the convergent sequences in (X, d) are exactly the stationary sequences, i.e. sequences $\left(x_{n}\right)_{n}$ such that there exists $N \in \mathbb{N}$ and $x \in X$ such that, for all $n>N$, one has $x_{n}=x$. Let indeed $\left(x_{n}\right)_{n}$ be a sequence in X. Then

$$
\begin{gathered}
\left(x_{n}\right)_{n} \text { converges to a point } x \in X \\
\mathbb{\imath}
\end{gathered}
$$

for each $\epsilon>0$ there exists $N \in \mathbb{N}$ such that, for all $n>N$, one has $d\left(x_{n}, x\right)<\epsilon$ ॥
for each $1>\epsilon>0$ there exists $N \in \mathbb{N}$ such that, for all $n>N$, one has

$$
\begin{gathered}
d\left(x_{n}, x\right)<\epsilon<1 \\
\mathbb{y}
\end{gathered}
$$

for each $1>\epsilon>0$ there exists $N \in \mathbb{N}$ such that, for all $n>N$, one has

$$
\begin{gathered}
d\left(x_{n}, x\right)=0 \\
\mathbb{~}
\end{gathered}
$$

there exists $N \in \mathbb{N}$ such that, for all $n>N$, one has $x_{n}=x$.
Exercise 5. Let $C[0,1]$ be the collection of continuous maps $[0,1] \rightarrow \mathbb{R}$ and let $\|\cdot\|$ denote the max-norm on it, i.e. the norm associating to each $f \in C[0,1]$ the
element $\|f\|=\max _{t \in[0,1]}|f(t)|$ of \mathbb{R}.
(a) We first prove that, if $g \in C[0,1]$, then the set

$$
A_{g}=\{f \in C[0,1] \mid \forall t \in[0,1]: f(t)<g(t)\}
$$

is open in $C[0,1]$. Fix g and let $f \in A_{g}$. We prove that there exists $\epsilon>0$ such that $\mathrm{B}_{\epsilon}(f)$ is contained in A_{g}. Define $\epsilon=\frac{1}{2} \min _{t \in[0,1]}|g(t)-f(t)|$. Since $f \in A_{g}$, the number ϵ is positive and so, for each $t \in[0,1]$, one has $f(t)+\epsilon<g(t)$. Let now $h \in \mathrm{~B}_{\epsilon}(f)$. It follows that, for each $t \in[0,1]$, one has $h(t)<f(t)+\epsilon<g(t)$ and therefore $h \in A_{g}$. We have proven that $\mathrm{B}_{\epsilon}(f) \subseteq A_{g}$ and, the choice of f being arbitrary, A_{g} is open.
(b) Let f and g be respectively defined by $t \mapsto f(t)=2 t$ and $t \mapsto g(t)=1-t$. Then we compute

$$
\|f-g\|=\max _{t \in[0,1]}|f(t)-g(t)|=\max _{t \in[0,1]}|3 t-1|=2
$$

(c) We prove that the sequence $\bar{f}=\left(f_{n}(t)\right)_{n}$, defined by $f_{n}(t)=t^{n}-t^{2 n}$ is not convergent in $C[0,1]$. We will do so by contradiction. Assume that \bar{f} has a limit f in $C[0,1]$. Then, for each $\epsilon>0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that, for all $n>N_{\epsilon}$, one has $\left\|f-f_{n}\right\|<\epsilon$. Let now $\epsilon=\frac{1}{32}$ and choose $n>N_{\epsilon}$. Then one has

$$
\left\|f_{n}-f_{2 n}\right\|=\max _{t \in[0,1]}\left|\left(t^{n}-t^{2 n}\right)-\left(t^{2 n}-t^{4 n}\right)\right|=\max _{t \in[0,1]}\left|t^{n}-2 t^{2 n}+t^{4 n}\right|
$$

and so, since $0 \leq \frac{1}{\sqrt[n]{2}} \leq 1$, we get

$$
\left\|f_{n}-f_{2 n}\right\| \geq\left|\left(\frac{1}{\sqrt[n]{2}}\right)^{n}-2\left(\frac{1}{\sqrt[n]{2}}\right)^{2 n}+\left(\frac{1}{\sqrt[n]{2}}\right)^{4 n}\right|=\left(\frac{1}{2}-2 \frac{1}{4}+\frac{1}{16}\right)=\frac{1}{16}
$$

Then, as a consequence of the triangle inequality, one gets

$$
\frac{1}{32}=\frac{1}{16}-\epsilon \leq\left\|f_{2 n}-f_{n}\right\|-\left\|f-f_{2 n}\right\| \leq\left\|f-f_{n}\right\|<\epsilon=\frac{1}{32}
$$

Contradiction.
Exercise 6. Let $(X,\|\cdot\|)$ be a normed space. Define, for all $x, y \in X$
(a) $\rho_{1}(x, y)=\min \{1,\|x-y\|\}$;
(b) $\rho_{2}(x, y)=\max \{1,\|x-y\|\}$.
(a) We claim that ρ_{1} defines a metric on X, while ρ_{2} does not. We start from ρ_{1}. Using the defining properties of a norm, one shows that

$$
\rho_{1}(x, x)=\min \{1,\|x-x\|\}=\min \{1,\|0\|\}=0
$$

and also that

$$
\rho_{1}(x, y)=\min \{1,\|x-y\|\}=\min \{1,\|y-x\|\}=\rho_{1}(y, x)
$$

To prove the triangle inequality, one argues that, as a consequence of Lemma 1.1.7 from the notes, for all x, y, the following holds

$$
\rho_{1}(x, z)=\min \{1,\|x-z\|\} \leq \min \{1,\|x-y\|+\|y-z\|\}
$$

$$
\leq \min \{1,\|x-y\|\}+\min \{1,\|y-z\|\}=\rho_{1}(x, y)+\rho_{1}(y, z) .
$$

We have proven that ρ_{1} satisfies all requirements for being a metric on X and therefore so it is.
(b) To prove that ρ_{2} is not a metric in general we fix $x \in X$. Then

$$
\rho_{2}(x, x)=\max \{1,\|x-x\|\}=\max \{1,\|0\|\}=1,
$$

which contradicts the identity axiom for metrics.

