OQE - PROBLEM SET 2 - SOLUTIONS

Exercise 1. We find infimum and supremum of the following sets

$$X = \{\frac{n}{n+1}\}_{n \in \mathbb{N}};$$

$$Y = \{a - b : a, b \in \mathbb{R}, 1 < a < 2, 3 < b < 4\}.$$

We claim the following:

- (a) $\inf X = \frac{1}{2}$ and $\sup X = 1$.
- (b) inf Y = -3 and sup Y = -1.

(a) We observe that, if n,m are elements of \mathbb{N} , then $\frac{n}{n+1} \leq \frac{m}{m+1}$ if and only if $n \leq m$. It follows that, for each $n \in \mathbb{N}$, one has

$$\frac{1}{2}=\frac{1}{1+1}\leq \frac{n}{n+1}$$

Since $\frac{1}{2}$ is an element of X, it follows that $\frac{1}{2} = \inf X$. We now prove $\sup X = 1$. For each $n \in \mathbb{N}$, one has n < n+1, and therefore $\sup X \leq 1$. Let now s be an upper bound of X and assume by contradiction that s < 1. Then the set X is contained in [0, s]. It follows that the sequence $(x_n)_n$, defined by $x_n = \frac{n}{n+1}$, is a sequence in [0,s] which converges to 1 in $\mathbb R.$ However, 1 does not belong to [0,s], which is a contradiction to Theorem 1.3.8 from the notes.

(b) It is not difficult to show that $-3 \leq \inf Y \leq -2 \leq \sup Y \leq -1$. Let now $l = \sup Y$ and assume, by contradiction, that l < -1. Define $\delta = |-1 - l|$, so that $0 < \delta \leq 1$. We define $a = 2 - \frac{\delta}{4}$ and $b = 3 + \frac{\delta}{4}$: it follows from their definitions that 1 < a < 2 and 3 < b < 4. However, one computes $a - b = -1 - \frac{\delta}{2} > -1 - \delta = l$, giving a contradiction to the minimality of l. We have proven thus that $\sup Y = -1$. To prove that $\inf Y = -3$, one uses a similar argument.

Exercise 2. We determine whether or not the following sequences

- (a) $\bar{x} = (((-1)^n, 4, \frac{1}{n}))_{n \in \mathbb{N}}$ (b) $\bar{y} = ((\frac{n \sin n}{n^2 + 1}, \frac{(-1)^{n+1}}{n}))_{n \in \mathbb{N}}$

converge respectively in \mathbb{R}^3 and \mathbb{R}^2 .

(a) We claim that \bar{x} does not converge in \mathbb{R}^3 . Assume by contradiction that \bar{x} converges to a point $x = (x_1, x_2, x_3)$ in \mathbb{R}^3 . Then, for each $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that, for all $n > N_{\epsilon}$, one has

$$(x_1 - (-1)^n)^2 + (x_2 - 4)^2 + (x_3 - \frac{1}{n})^2 < \epsilon^2.$$

Fix $0 < \epsilon < \frac{1}{2}$ and let n > N be odd. Then we have

$$(x_1+1)^2 + (x_2-4)^2 + (x_3-\frac{1}{n})^2 = (x_1-(-1)^n)^2 + (x_2-4)^2 + (x_3-\frac{1}{n})^2 < \epsilon^2$$

and also

$$(x_1 - 1)^2 + (x_2 - 4)^2 + (x_3 - \frac{1}{n})^2 = (x_1 - (-1)^{n+1})^2 + (x_2 - 4)^2 + (x_3 - \frac{1}{n})^2 < \epsilon^2.$$

However, one between $x_1 + 1$ and $x_1 - 1$ is larger than 1 and therefore $\epsilon > 1$, which contradicts our choice of ϵ .

(b) We prove that \bar{y} converges to (0,0) in \mathbb{R}^2 . We observe that, since sin is a function $\mathbb{R} \to [-1,1]$, one has, for each $n \in \mathbb{N}$, that

$$\frac{-n}{n^2+1} \le \frac{n\sin n}{n^2+1} \le \frac{n}{n^2+1}$$

and so, since both sequences $(\frac{-n}{n^2+1})_n$ and $(\frac{n}{n^2+1})_n$ tend to 0 as n goes to infinity, also $(\frac{n \sin n}{n^2+1})_n$ is convergent to 0. With a similar argument, one shows that $(\frac{(-1)^n}{n})_n$ is convergent to 0 and therefore $\bar{y} \to (0,0)$.

Exercise 3. We compute interior, closure, and boundary of \mathbb{Q} in \mathbb{R} . We claim

- $\mathring{\mathbb{Q}} = \emptyset$.
- $\overline{\mathbb{Q}} = \partial \mathbb{Q} = \mathbb{R}.$

To prove that the interior of \mathbb{Q} is empty, we work by contradiction. Assume that x is an element of $\mathring{\mathbb{Q}}$ and let $\epsilon > 0$ be such that $B_{\epsilon}(x) \subseteq \mathring{\mathbb{Q}}$. Since the sequence $(\frac{\sqrt{2}}{n})_{n>0}$ converges to 0, there exists $n \in \mathbb{N}$ such that $\frac{\sqrt{2}}{n} < \epsilon$. Fix such n. Then the element $x + \frac{\sqrt{2}}{n}$ belongs to $B_{\epsilon}(x) \setminus \mathbb{Q}$. Contradiction. Hence $\mathring{\mathbb{Q}} = \emptyset$ and so $\overline{\mathbb{Q}} = \partial \mathbb{Q}$. Use a similar trick to prove that, for every element x of \mathbb{R} and for every $\epsilon > 0$, one has $\mathbb{Q} \cap B_{\epsilon}(x) \neq \emptyset$.

Exercise 4. Let X be a non-empty set and let d be the discete metric on it. We show that the convergent sequences in (X, d) are exactly the stationary sequences, i.e. sequences $(x_n)_n$ such that there exists $N \in \mathbb{N}$ and $x \in X$ such that, for all n > N, one has $x_n = x$. Let indeed $(x_n)_n$ be a sequence in X. Then

 $(x_n)_n$ converges to a point $x \in X$

for each $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that, for all n > N, one has $d(x_n, x) < \epsilon$

for each $1 > \epsilon > 0$ there exists $N \in \mathbb{N}$ such that, for all n > N, one has $d(x_n, x) < \epsilon < 1$

for each $1 > \epsilon > 0$ there exists $N \in \mathbb{N}$ such that, for all n > N, one has $d(x_n, x) = 0$

there exists $N \in \mathbb{N}$ such that, for all n > N, one has $x_n = x$.

Exercise 5. Let C[0,1] be the collection of continuous maps $[0,1] \to \mathbb{R}$ and let $\|\cdot\|$ denote the max-norm on it, i.e. the norm associating to each $f \in C[0,1]$ the

 $\mathbf{2}$

element $||f|| = \max_{t \in [0,1]} |f(t)|$ of \mathbb{R} .

(a) We first prove that, if $g \in C[0, 1]$, then the set

$$A_g = \{ f \in C[0, 1] \mid \forall t \in [0, 1] : f(t) < g(t) \}$$

is open in C[0,1]. Fix g and let $f \in A_g$. We prove that there exists $\epsilon > 0$ such that $B_{\epsilon}(f)$ is contained in A_g . Define $\epsilon = \frac{1}{2} \min_{t \in [0,1]} |g(t) - f(t)|$. Since $f \in A_g$, the number ϵ is positive and so, for each $t \in [0,1]$, one has $f(t) + \epsilon < g(t)$. Let now $h \in B_{\epsilon}(f)$. It follows that, for each $t \in [0,1]$, one has $h(t) < f(t) + \epsilon < g(t)$ and therefore $h \in A_g$. We have proven that $B_{\epsilon}(f) \subseteq A_g$ and, the choice of f being arbitrary, A_g is open.

(b) Let f and g be respectively defined by $t \mapsto f(t) = 2t$ and $t \mapsto g(t) = 1 - t$. Then we compute

$$||f - g|| = \max_{t \in [0,1]} |f(t) - g(t)| = \max_{t \in [0,1]} |3t - 1| = 2.$$

(c) We prove that the sequence $\overline{f} = (f_n(t))_n$, defined by $f_n(t) = t^n - t^{2n}$ is not convergent in C[0, 1]. We will do so by contradiction. Assume that \overline{f} has a limit f in C[0, 1]. Then, for each $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that, for all $n > N_{\epsilon}$, one has $||f - f_n|| < \epsilon$. Let now $\epsilon = \frac{1}{32}$ and choose $n > N_{\epsilon}$. Then one has

$$||f_n - f_{2n}|| = \max_{t \in [0,1]} |(t^n - t^{2n}) - (t^{2n} - t^{4n})| = \max_{t \in [0,1]} |t^n - 2t^{2n} + t^{4n}|$$

and so, since $0 \leq \frac{1}{\sqrt[n]{2}} \leq 1$, we get

$$\|f_n - f_{2n}\| \ge \left| \left(\frac{1}{\sqrt[n]{2}}\right)^n - 2\left(\frac{1}{\sqrt[n]{2}}\right)^{2n} + \left(\frac{1}{\sqrt[n]{2}}\right)^{4n} \right| = \left(\frac{1}{2} - 2\frac{1}{4} + \frac{1}{16}\right) = \frac{1}{16}.$$

Then, as a consequence of the triangle inequality, one gets

$$\frac{1}{32} = \frac{1}{16} - \epsilon \le ||f_{2n} - f_n|| - ||f - f_{2n}|| \le ||f - f_n|| < \epsilon = \frac{1}{32}$$

Contradiction.

Exercise 6. Let $(X, \|\cdot\|)$ be a normed space. Define, for all $x, y \in X$

- (a) $\rho_1(x,y) = \min\{1, \|x-y\|\};$
- (b) $\rho_2(x, y) = \max\{1, \|x y\|\}.$

(a) We claim that ρ_1 defines a metric on X, while ρ_2 does not. We start from ρ_1 . Using the defining properties of a norm, one shows that

$$\rho_1(x, x) = \min\{1, \|x - x\|\} = \min\{1, \|0\|\} = 0$$

and also that

$$\rho_1(x,y) = \min\{1, \|x-y\|\} = \min\{1, \|y-x\|\} = \rho_1(y,x).$$

To prove the triangle inequality, one argues that, as a consequence of Lemma 1.1.7 from the notes, for all x, y, the following holds

$$\rho_1(x,z) = \min\{1, \|x-z\|\} \le \min\{1, \|x-y\| + \|y-z\|\}$$

$$\leq \min\{1, \|x - y\|\} + \min\{1, \|y - z\|\} = \rho_1(x, y) + \rho_1(y, z).$$

We have proven that ρ_1 satisfies all requirements for being a metric on X and therefore so it is.

(b) To prove that ρ_2 is not a metric in general we fix $x \in X$. Then

 $\rho_2(x,x) = \max\{1, \|x-x\|\} = \max\{1, \|0\|\} = 1,$

which contradicts the identity axiom for metrics.