
OQE - PROBLEM SET 2 - SOLUTIONS

Exercise 1. We find infimum and supremum of the following sets

X = { n
n+1}n∈N;

Y = {a− b : a, b ∈ R, 1 < a < 2, 3 < b < 4}.
We claim the following:

(a) inf X = 1
2 and supX = 1.

(b) inf Y = −3 and supY = −1.

(a) We observe that, if n,m are elements of N, then n
n+1 ≤

m
m+1 if and only if

n ≤ m. It follows that, for each n ∈ N, one has

1

2
=

1

1 + 1
≤ n

n+ 1
.

Since 1
2 is an element of X, it follows that 1

2 = inf X. We now prove supX = 1.

For each n ∈ N, one has n < n+1, and therefore supX ≤ 1. Let now s be an upper

bound of X and assume by contradiction that s < 1. Then the set X is contained

in [0, s]. It follows that the sequence (xn)n, defined by xn = n
n+1 , is a sequence in

[0, s] which converges to 1 in R. However, 1 does not belong to [0, s], which is a

contradiction to Theorem 1.3.8 from the notes.

(b) It is not difficult to show that −3 ≤ inf Y ≤ −2 ≤ supY ≤ −1. Let now

l = supY and assume, by contradiction, that l < −1. Define δ = | − 1− l|, so that

0 < δ ≤ 1. We define a = 2− δ
4 and b = 3 + δ

4 : it follows from their definitions that

1 < a < 2 and 3 < b < 4. However, one computes a − b = −1 − δ
2 > −1 − δ = l,

giving a contradiction to the minimality of l. We have proven thus that supY = −1.

To prove that inf Y = −3, one uses a similar argument.

Exercise 2. We determine whether or not the following sequences

(a) x̄ = (((−1)n, 4, 1
n ))n∈N

(b) ȳ = ((n sinn
n2+1 ,

(−1)n+1

n ))n∈N

converge respectively in R3 and R2.

(a) We claim that x̄ does not converge in R3. Assume by contradiction that x̄

converges to a point x = (x1, x2, x3) in R3. Then, for each ε > 0, there exists

Nε ∈ N such that, for all n > Nε, one has

(x1 − (−1)n)2 + (x2 − 4)2 + (x3 −
1

n
)2 < ε2.

Fix 0 < ε < 1
2 and let n > N be odd. Then we have

(x1 + 1)2 + (x2 − 4)2 + (x3 −
1

n
)2 = (x1 − (−1)n)2 + (x2 − 4)2 + (x3 −

1

n
)2 < ε2

1
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and also

(x1 − 1)2 + (x2 − 4)2 + (x3 −
1

n
)2 = (x1 − (−1)n+1)2 + (x2 − 4)2 + (x3 −

1

n
)2 < ε2.

However, one between x1 + 1 and x1− 1 is larger than 1 and therefore ε > 1, which

contradicts our choice of ε.

(b) We prove that ȳ converges to (0, 0) in R2. We observe that, since sin is a

function R→ [−1, 1], one has, for each n ∈ N, that

−n
n2 + 1

≤ n sinn

n2 + 1
≤ n

n2 + 1

and so, since both sequences ( −nn2+1 )n and ( n
n2+1 )n tend to 0 as n goes to infinity,

also (n sinn
n2+1 )n is convergent to 0. With a similar argument, one shows that ( (−1)n

n )n

is convergent to 0 and therefore ȳ → (0, 0).

Exercise 3. We compute interior, closure, and boundary of Q in R. We claim

• Q̊ = ∅.
• Q = ∂Q = R.

To prove that the interior of Q is empty, we work by contradiction. Assume that

x is an element of Q̊ and let ε > 0 be such that Bε(x) ⊆ Q̊. Since the sequence

(
√
2
n )n>0 converges to 0, there exists n ∈ N such that

√
2
n < ε. Fix such n. Then the

element x+
√
2
n belongs to Bε(x) \Q. Contradiction. Hence Q̊ = ∅ and so Q = ∂Q.

Use a similar trick to prove that, for every element x of R and for every ε > 0, one

has Q ∩ Bε(x) 6= ∅.

Exercise 4. Let X be a non-empty set and let d be the discete metric on it. We

show that the convergent sequences in (X, d) are exactly the stationary sequences,

i.e. sequences (xn)n such that there exists N ∈ N and x ∈ X such that, for all

n > N , one has xn = x. Let indeed (xn)n be a sequence in X. Then

(xn)n converges to a point x ∈ X
m

for each ε > 0 there exists N ∈ N such that, for all n > N , one has d(xn, x) < ε

m
for each 1 > ε > 0 there exists N ∈ N such that, for all n > N , one has

d(xn, x) < ε < 1

m
for each 1 > ε > 0 there exists N ∈ N such that, for all n > N , one has

d(xn, x) = 0

m
there exists N ∈ N such that, for all n > N , one has xn = x.

Exercise 5. Let C[0, 1] be the collection of continuous maps [0, 1] → R and let

‖ · ‖ denote the max-norm on it, i.e. the norm associating to each f ∈ C[0, 1] the
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element ‖f‖ = maxt∈[0,1] |f(t)| of R.

(a) We first prove that, if g ∈ C[0, 1], then the set

Ag = {f ∈ C[0, 1] | ∀t ∈ [0, 1] : f(t) < g(t)}

is open in C[0, 1]. Fix g and let f ∈ Ag. We prove that there exists ε > 0 such

that Bε(f) is contained in Ag. Define ε = 1
2 mint∈[0,1] |g(t) − f(t)|. Since f ∈ Ag,

the number ε is positive and so, for each t ∈ [0, 1], one has f(t) + ε < g(t). Let

now h ∈ Bε(f). It follows that, for each t ∈ [0, 1], one has h(t) < f(t) + ε < g(t)

and therefore h ∈ Ag. We have proven that Bε(f) ⊆ Ag and, the choice of f being

arbitrary, Ag is open.

(b) Let f and g be respectively defined by t 7→ f(t) = 2t and t 7→ g(t) = 1 − t.
Then we compute

‖f − g‖ = max
t∈[0,1]

|f(t)− g(t)| = max
t∈[0,1]

|3t− 1| = 2.

(c) We prove that the sequence f̄ = (fn(t))n, defined by fn(t) = tn − t2n is not

convergent in C[0, 1]. We will do so by contradiction. Assume that f̄ has a limit f

in C[0, 1]. Then, for each ε > 0, there exists Nε ∈ N such that, for all n > Nε, one

has ‖f − fn‖ < ε. Let now ε = 1
32 and choose n > Nε. Then one has

‖fn − f2n‖ = max
t∈[0,1]

|(tn − t2n)− (t2n − t4n)| = max
t∈[0,1]

|tn − 2t2n + t4n|

and so, since 0 ≤ 1
n√2
≤ 1, we get

‖fn − f2n‖ ≥
∣∣∣( 1

n
√

2

)n
− 2

( 1
n
√

2

)2n

+
( 1

n
√

2

)4n∣∣∣ =
(1

2
− 2

1

4
+

1

16

)
=

1

16
.

Then, as a consequence of the triangle inequality, one gets

1

32
=

1

16
− ε ≤ ‖f2n − fn‖ − ‖f − f2n‖ ≤ ‖f − fn‖ < ε =

1

32
.

Contradiction.

Exercise 6. Let (X, ‖ · ‖) be a normed space. Define, for all x, y ∈ X
(a) ρ1(x, y) = min{1, ‖x− y‖};
(b) ρ2(x, y) = max{1, ‖x− y‖}.

(a) We claim that ρ1 defines a metric on X, while ρ2 does not. We start from ρ1.

Using the defining properties of a norm, one shows that

ρ1(x, x) = min{1, ‖x− x‖} = min{1, ‖0‖} = 0

and also that

ρ1(x, y) = min{1, ‖x− y‖} = min{1, ‖y − x‖} = ρ1(y, x).

To prove the triangle inequality, one argues that, as a consequence of Lemma 1.1.7

from the notes, for all x, y, the following holds

ρ1(x, z) = min{1, ‖x− z‖} ≤ min{1, ‖x− y‖+ ‖y − z‖}
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≤ min{1, ‖x− y‖}+ min{1, ‖y − z‖} = ρ1(x, y) + ρ1(y, z).

We have proven that ρ1 satisfies all requirements for being a metric on X and

therefore so it is.

(b) To prove that ρ2 is not a metric in general we fix x ∈ X. Then

ρ2(x, x) = max{1, ‖x− x‖} = max{1, ‖0‖} = 1,

which contradicts the identity axiom for metrics.


