OQE - PROBLEM SET 3 - SOLUTIONS

Exercise 1. Let (X, d) be a metric space and let $x \in X$ and $\epsilon>0$.
(a) We show that the closed ball $C=\overline{\mathrm{B}_{\epsilon}(x)}$ is closed in X, by showing that $X \backslash C$ is open. Let y be an element in $X \backslash C$ and define $\delta=d(x, y)$. Since y does not belong to C, the number $\nu=\frac{\delta-\epsilon}{2}$ is positive. We claim that $\mathrm{B}_{\nu}(y)$ is contained in $X \backslash C$. Let $z \in \mathrm{~B}_{\nu}(y)$. Then

$$
d(z, x) \geq|d(x, y)-d(y, z)| \geq \delta-\frac{\delta-\epsilon}{2}=\frac{\delta+\epsilon}{2}>\frac{\epsilon+\epsilon}{2}=\epsilon
$$

The element z being arbitrary, we have proven that $\mathrm{B}_{\nu}(y)$ has trivial intersection with C, which gives us the claim. As the same argument applies for each element of $X \backslash C$, we have proven that, for all $y \in X \backslash C$, there exists $\nu>0$ such that $\mathrm{B}_{\nu}(y)$ is contained in $X \backslash C$. As a consequence, $X \backslash C$ is open.
(b) Let $B=\mathrm{B}_{\epsilon}(x)$ denote the open ball with centre x and radius ϵ. We prove that the closure \bar{B} of B is contained in C, as defined in (a). By Theorem 1.3.6 from the notes, \bar{B} is the smallest closed subset of X that contains B. Since C contains B and, by (a), the subset C is closed, it follows that $\bar{B} \subseteq C$.
(c) To prove that in general the closure of an open ball is not equal to the corresponding closed ball, take $X=\mathbb{R}^{2}$ and $d=d_{T}$, the trivial metric. Take x to be any point of X and take $\epsilon=1$. Then $B=\{x\}=\bar{B}$, but $C=X$.

Exercise 2. Let (X, d) be a metric space and, for each $x \in X$ and $\emptyset \neq A \subseteq X$, define $d(x, A)=\inf \{d(x, a): a \in A\}$.
(a) Let $x, y \in X$ and let $\emptyset \neq A \subseteq X$. We show that

$$
|d(x, A)-d(y, A)| \leq d(x, y)
$$

We work by contradiction assuming that $|d(x, A)-d(y, A)|>d(x, y)$. Without loss of generality, $d(x, A)>d(y, A)$ and so $|d(x, A)-d(y, A)|=d(x, A)-d(y, A)$. Since

$$
\inf \{d(x, a): a \in A\}-d(y, A)=d(x, A)-d(y, A)>d(x, y),
$$

we have that, for all $a \in A$, one has $d(x, a)-d(y, A)>d(x, y)$ and there exists therefore $b \in A$ such that, for all $a \in A$, one has $d(x, a)-d(y, b)>d(x, y)$. Fix now such b. Then it follows from the inverse triangle inequality that

$$
d(x, y)<d(x, b)-d(y, b) \leq d(x, y)
$$

which is a contradiction.
(b) Let A be a non-empty subset of X. We show that the map $f: X \rightarrow \mathbb{R}_{>0}$, defined by $x \mapsto f(x)=d(x, A)$, is continuous. We will show that, for each $x \in X$
and for each $\epsilon>0$, there exists $\delta>0$ such that $f\left(\mathrm{~B}_{\delta}(x)\right) \subseteq \mathrm{B}_{\epsilon}(f(x))$. Fix $x \in X$ and $\epsilon>0$. Set $\delta=\epsilon$. Then, for each $y \in \mathrm{~B}_{\delta}(x)$, thanks to (a), one has

$$
|f(x)-f(y)|=|d(x, A)-d(y, A)| \leq d(x, y)<\delta=\epsilon
$$

and therefore $f(y) \in \mathrm{B}_{\epsilon}(f(x))$. Both x and y being arbitrary, we have proven that f is continuous.

Exercise 3. Let (X, d) be a metric space and let A be a closed subset of X. Let $x \in X \backslash A$. We show that $d(x, A)>0$. Assume by contradiction that $d(x, A)=0$. As a consequence, for each $n \in \mathbb{N}$, there exists $a_{n} \in A$ such that $d\left(x, a_{n}\right)<\frac{1}{n}$. Then $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence in A which conerges to x. But x does not belong to A, which is a closed subset of X. Contradiction to Theorem 1.3.8.

Exercise 4. Let (X, d) and (Y, ρ) be metric spaces and assume that $d=d_{T}$ is the discrete metric. We show that any function $X \rightarrow Y$ is continuous. To this end, let $f: X \rightarrow Y$ be a function. By taking balls of radius $1 / 2$, one shows that, for each $x \in X$, the set $\{x\}$ is open in X. Let now U be an open subset of Y. Then $f^{-1}(U)=\bigcup_{x \in f^{-1}(U)}\{x\}$ and therefore, thanks to Theorem 1.3.1, the set $f^{-1}(U)$ is open in X. The choice of U being arbitrary, it follows from Theorem 1.4.6 that f is continuous.

Exercise 5. None. See Exercise 4 from Problem Set 2.

Exercise 6. Let (X, d) be a metric space and let $x_{0} \in X$. We show that the function $f: X \rightarrow \mathbb{R}$, defined by $x \mapsto f(x)=d\left(x, x_{0}\right)$ is uniformly continuous. We have to show that, for each $\epsilon>0$, there exists $\delta>0$ such that, for each $x, y \in X$ with $d(x, y)<\delta$, one has $|f(x)-f(y)|<\epsilon$. Fix $\epsilon>0$. We set $\delta=\epsilon$. Then, for each $x, y \in X$ with $d(x, y)<\delta$, the inverse triangle inequallity yields

$$
|f(x)-f(y)|=\left|d\left(x, x_{0}\right)-d\left(y, x_{0}\right)\right| \leq d(x, y)<\delta=\epsilon
$$

The choice of ϵ being arbitrary, we are done.

Exercise 7. We show that the map $f:(0,1) \rightarrow \mathbb{R}$, defined by $x \mapsto f(x)=\frac{1}{1-x}$, is not uniformly continuous. To this end, take $\epsilon=1$. We will show that, for each $\delta>0$, there exist $x, y \in X$ with $|x-y|<\delta$ such that $|f(x)-f(y)| \geq 1$. Fix $\delta>0$ and define $x=\max \left\{\frac{1-\delta}{3}, \frac{2}{3}\right\}$ and $y=\frac{1-x}{2}$. Then we have

$$
|x-y|=\left|x-\frac{1-x}{2}\right|=\frac{1}{2}|3 x-1|<\delta
$$

but we also have

$$
|f(x)-f(y)|=\left|\frac{1}{1-x}-\frac{1}{1-\frac{1-x}{2}}\right|=\left|\frac{1}{1-x}-\frac{2}{1+x}\right|=\left|\frac{3 x-1}{1-x^{2}}\right|
$$

Since $x \in(0,1)$, the element x^{2} is smaller than 1 and so $\frac{1}{1-x^{2}}>1$. It follows that

$$
|f(x)-f(y)|>|3 x-1|=\left|3 \max \left\{\frac{1-\delta}{3}, \frac{2}{3}\right\}-1\right|=\max \{\delta, 1\} \geq 1
$$

Exercise 8. Respecting the notation from Theorem 1.6.3, we show that, for each $n \in \mathbb{N}$, one has

$$
d\left(x_{n}, x^{*}\right) \leq \frac{\beta^{n}}{1-\beta} d\left(x_{1}, x_{0}\right)
$$

We work by induction on n and we first show that $d\left(x_{1}, x^{*}\right) \leq \frac{\beta}{1-\beta} d\left(x_{1}, x_{0}\right)$. The map T being a contraction and using the triangle inequality, we have

$$
d\left(x_{1}, x^{*}\right)=d\left(T x_{0}, T x^{*}\right) \leq \beta d\left(x_{0}, x^{*}\right) \leq \beta d\left(x_{0}, x_{1}\right)+\beta d\left(x_{1}, x^{*}\right)
$$

and so, as a consequence, we derive

$$
(1-\beta) d\left(x_{1}, x^{*}\right) \leq \beta\left(x_{0}, x_{1}\right)
$$

giving the base case. Assume now that $n>1$ and that

$$
d\left(x_{n-1}, x^{*}\right) \leq \frac{\beta^{n-1}}{1-\beta} d\left(x_{1}, x_{0}\right)
$$

Then we have

$$
d\left(x_{n}, x^{*}\right)=d\left(T x_{n-1}, T x^{*}\right) \leq \beta d\left(x_{n-1}, x^{*}\right) \leq \beta \frac{\beta^{n-1}}{1-\beta} d\left(x_{1}, x_{0}\right)=\frac{\beta^{n}}{1-\beta} d\left(x_{1}, x_{0}\right)
$$

and the proof is complete.
Exercise 9. Let $F:[1,2] \rightarrow \mathbb{R}$ be defined by $x \mapsto F(x)=\frac{x^{2}+2}{2 x}$. We show that F is a contraction of modulus $\frac{1}{2}$. Indeed, for each $x, y \in[1,2]$, one has

$$
|F(x)-F(y)|=\left|\frac{x^{2}+2}{2 x}-\frac{y^{2}+2}{2 y}\right|=\frac{1}{2}\left|\frac{x y-2}{x y}(x-y)\right|=\frac{|x-y|}{2}\left|1-\frac{2}{x y}\right| .
$$

As x, y range between 1 and 2 , we have that $\left|1-\frac{2}{x y}\right| \leq 1$, from which it follows that $|F(x)-F(y)| \leq \frac{|x-y|}{2}$. We have proven that F is a contraction of modulus $\frac{1}{2}$. Thanks to Banach's contraction theorem, we now know that F has a unique fixed point x^{*}, which we compute by solving the equation $x=\frac{x^{2}+2}{2 x}$. In the end, one gets $2 x^{2}=x^{2}+2$ which gives $x^{*}=\sqrt{2}$.

