OQE - PROBLEM SET 3 - SOLUTIONS

Exercise 1. Let (X,d) be a metric space and let x € X and € > 0.
(a) We show that the closed ball C' = B(z) is closed in X, by showing that X \ C

is open. Let y be an element in X \ C and define 6 = d(x,y). Since y does not
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belong to C, the number v =
X\ C. Let z € B,(y). Then

is positive. We claim that B, (y) is contained in

d—e Jd+e o e+e
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The element z being arbitrary, we have proven that B, (y) has trivial intersection

d(Z7$) > ‘d(x’y) - d(y,z)| 2 §—

= €.

with C, which gives us the claim. As the same argument applies for each element
of X'\ C, we have proven that, for all y € X \ C, there exists v > 0 such that B, (y)
is contained in X \ C. As a consequence, X \ C' is open.

(b) Let B = B¢(x) denote the open ball with centre 2 and radius e. We prove that
the closure B of B is contained in C, as defined in (a). By Theorem 1.3.6 from the
notes, B is the smallest closed subset of X that contains B. Since C contains B
and, by (a), the subset C is closed, it follows that B C C.

(¢) To prove that in general the closure of an open ball is not equal to the corre-
sponding closed ball, take X = R? and d = dr, the trivial metric. Take = to be
any point of X and take ¢ = 1. Then B = {z} = B, but C = X.

Exercise 2. Let (X,d) be a metric space and, for each x € X and § # A C X,
define d(z, A) = inf{d(z,a) : a € A}.
(a) Let 2,y € X and let ) # A C X. We show that

|d(x, A) — d(y, A)| < d(z,y).

We work by contradiction assuming that |d(x, A) —d(y, A)| > d(x,y). Without loss
of generality, d(z, A) > d(y, A) and so |d(x, A) —d(y, A)| = d(x, A) —d(y, A). Since

inf{d(z,a) :a € A} —d(y,A) = d(z, A) — d(y, A) > d(z,y),

we have that, for all @ € A, one has d(z,a) — d(y, A) > d(x,y) and there exists
therefore b € A such that, for all a € A, one has d(z,a) —d(y,b) > d(z,y). Fix now

such b. Then it follows from the inverse triangle inequality that

which is a contradiction.
(b) Let A be a non-empty subset of X. We show that the map f : X — Rsg,

defined by z — f(z) = d(x, A), is continuous. We will show that, for each z € X
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and for each € > 0, there exists § > 0 such that f(Bs(x)) C Bc(f(z)). Fix x € X
and € > 0. Set § = e. Then, for each y € Bs(x), thanks to (a), one has

[f(x) = f(y)l = d(z, A) = d(y, A)| < d(z,y) <o =€

and therefore f(y) € Be(f(x)). Both = and y being arbitrary, we have proven that
f is continuous.

Exercise 3. Let (X,d) be a metric space and let A be a closed subset of X. Let
x € X\ A. We show that d(z, A) > 0. Assume by contradiction that d(xz, A) = 0.
As a consequence, for each n € N, there exists a,, € A such that d(z,a,) < %
Then (a,)nen is a sequence in A which conerges to z. But x does not belong to A,

which is a closed subset of X. Contradiction to Theorem 1.3.8.

Exercise 4. Let (X,d) and (Y, p) be metric spaces and assume that d = dr is
the discrete metric. We show that any function X — Y is continuous. To this end,
let f: X — Y be a function. By taking balls of radius 1/2, one shows that, for
each z € X, the set {z} is open in X. Let now U be an open subset of Y. Then
fYu) = Use -1 {z} and therefore, thanks to Theorem 1.3.1, the set fYU) is
open in X. The choice of U being arbitrary, it follows from Theorem 1.4.6 that f

is continuous.
Exercise 5. None. See Exercise 4 from Problem Set 2.

Exercise 6. Let (X,d) be a metric space and let zyp € X. We show that the
function f: X — R, defined by « — f(z) = d(x,x) is uniformly continuous. We
have to show that, for each ¢ > 0, there exists § > 0 such that, for each z,y € X
with d(z,y) < 6, one has |f(z) — f(y)] < e. Fix e > 0. We set 6 = e. Then, for
each x,y € X with d(x,y) < ¢, the inverse triangle inequallity yields

If(z) — f(y)] = |d(z,z0) — d(y, z0)| < d(x,y) < =ce.

The choice of € being arbitrary, we are done.

Exercise 7. We show that the map f : (0,1) — R, defined by = — f(x) = ﬁ,

is not uniformly continuous. To this end, take e = 1. We will show that, for each

d > 0, there exist z,y € X with |x — y| < d such that |f(z) — f(y)| > 1. Fix § > 0

and define z = max{252, 2} and y = 152. Then we have
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but we also have

7@ = 10)| = | - =
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Since x € (0,1), the element 22 is smaller than 1 and so ==z > 1. It follows that
1—-6 2

(@)= £ > 3o — 1] = [3max { ==, 2} 1] = max{5,1} > 1

Exercise 8. Respecting the notation from Theorem 1.6.3, we show that, for each

n € N, one has
n

p
1-p
We work by induction on n and we first show that d(zq,2*) < %d(xl, xo). The

d(zp, ") <

d(z1,x0)-

map T being a contraction and using the triangle inequality, we have
d(x1,2%) = d(Txo, Tx™) < Bd(xg, 2") < fd(x0,x1) + fd(x1, ™)
and so, as a consequence, we derive
(1= PB)d(z1,2") < B(x0,21)

giving the base case. Assume now that n > 1 and that

n—1

1-p

d(xn717$*> < d(.’)ﬁl,xo).

Then we have
n—1 n

d(zl, LEQ) = m

%) = (T2, 7o) < fillan1,5%) < 57—

d(1,70)
and the proof is complete.

Exercise 9. Let F':[1,2] — R be defined by  — F(z) = %12 We show that F

is a contraction of modulus % Indeed, for each z,y € [1, 2], one has

2 4+2 242 lixy—2 |z — v
|F(z) — F(y)| = - =3 (e —y)| =521 -
2z 2y 21 xy 2

o
xyl
As z,y range between 1 and 2, we have that ‘1 — ﬁ—y‘ < 1, from which it follows

that |F(x) — F(y)| < @ We have proven that F is a contraction of modulus 3.
Thanks to Banach’s contraction theorem, we now know that F' has a unique fixed

point x*, which we compute by solving the equation x = 42 Ty the end, one gets

2x
222 = 22 + 2 which gives ¥ = V2.



