
OQE - PROBLEM SET 3 - SOLUTIONS

Exercise 1. Let (X, d) be a metric space and let x ∈ X and ε > 0.

(a) We show that the closed ball C = Bε(x) is closed in X, by showing that X \C
is open. Let y be an element in X \ C and define δ = d(x, y). Since y does not

belong to C, the number ν = δ−ε
2 is positive. We claim that Bν(y) is contained in

X \ C. Let z ∈ Bν(y). Then

d(z, x) ≥ |d(x, y)− d(y, z)| ≥ δ − δ − ε
2

=
δ + ε

2
>
ε+ ε

2
= ε.

The element z being arbitrary, we have proven that Bν(y) has trivial intersection

with C, which gives us the claim. As the same argument applies for each element

of X \C, we have proven that, for all y ∈ X \C, there exists ν > 0 such that Bν(y)

is contained in X \ C. As a consequence, X \ C is open.

(b) Let B = Bε(x) denote the open ball with centre x and radius ε. We prove that

the closure B of B is contained in C, as defined in (a). By Theorem 1.3.6 from the

notes, B is the smallest closed subset of X that contains B. Since C contains B

and, by (a), the subset C is closed, it follows that B ⊆ C.

(c) To prove that in general the closure of an open ball is not equal to the corre-

sponding closed ball, take X = R2 and d = dT , the trivial metric. Take x to be

any point of X and take ε = 1. Then B = {x} = B, but C = X.

Exercise 2. Let (X, d) be a metric space and, for each x ∈ X and ∅ 6= A ⊆ X,

define d(x,A) = inf{d(x, a) : a ∈ A}.
(a) Let x, y ∈ X and let ∅ 6= A ⊆ X. We show that

|d(x,A)− d(y,A)| ≤ d(x, y).

We work by contradiction assuming that |d(x,A)−d(y,A)| > d(x, y). Without loss

of generality, d(x,A) > d(y,A) and so |d(x,A)− d(y,A)| = d(x,A)− d(y,A). Since

inf{d(x, a) : a ∈ A} − d(y,A) = d(x,A)− d(y,A) > d(x, y),

we have that, for all a ∈ A, one has d(x, a) − d(y,A) > d(x, y) and there exists

therefore b ∈ A such that, for all a ∈ A, one has d(x, a)−d(y, b) > d(x, y). Fix now

such b. Then it follows from the inverse triangle inequality that

d(x, y) < d(x, b)− d(y, b) ≤ d(x, y)

which is a contradiction.

(b) Let A be a non-empty subset of X. We show that the map f : X → R>0,

defined by x 7→ f(x) = d(x,A), is continuous. We will show that, for each x ∈ X
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and for each ε > 0, there exists δ > 0 such that f(Bδ(x)) ⊆ Bε(f(x)). Fix x ∈ X
and ε > 0. Set δ = ε. Then, for each y ∈ Bδ(x), thanks to (a), one has

|f(x)− f(y)| = |d(x,A)− d(y,A)| ≤ d(x, y) < δ = ε

and therefore f(y) ∈ Bε(f(x)). Both x and y being arbitrary, we have proven that

f is continuous.

Exercise 3. Let (X, d) be a metric space and let A be a closed subset of X. Let

x ∈ X \ A. We show that d(x,A) > 0. Assume by contradiction that d(x,A) = 0.

As a consequence, for each n ∈ N, there exists an ∈ A such that d(x, an) < 1
n .

Then (an)n∈N is a sequence in A which conerges to x. But x does not belong to A,

which is a closed subset of X. Contradiction to Theorem 1.3.8.

Exercise 4. Let (X, d) and (Y, ρ) be metric spaces and assume that d = dT is

the discrete metric. We show that any function X → Y is continuous. To this end,

let f : X → Y be a function. By taking balls of radius 1/2, one shows that, for

each x ∈ X, the set {x} is open in X. Let now U be an open subset of Y . Then

f−1(U) =
⋃
x∈f−1(U){x} and therefore, thanks to Theorem 1.3.1, the set f−1(U) is

open in X. The choice of U being arbitrary, it follows from Theorem 1.4.6 that f

is continuous.

Exercise 5. None. See Exercise 4 from Problem Set 2.

Exercise 6. Let (X, d) be a metric space and let x0 ∈ X. We show that the

function f : X → R, defined by x 7→ f(x) = d(x, x0) is uniformly continuous. We

have to show that, for each ε > 0, there exists δ > 0 such that, for each x, y ∈ X
with d(x, y) < δ, one has |f(x) − f(y)| < ε. Fix ε > 0. We set δ = ε. Then, for

each x, y ∈ X with d(x, y) < δ, the inverse triangle inequallity yields

|f(x)− f(y)| = |d(x, x0)− d(y, x0)| ≤ d(x, y) < δ = ε.

The choice of ε being arbitrary, we are done.

Exercise 7. We show that the map f : (0, 1) → R, defined by x 7→ f(x) = 1
1−x ,

is not uniformly continuous. To this end, take ε = 1. We will show that, for each

δ > 0, there exist x, y ∈ X with |x− y| < δ such that |f(x)− f(y)| ≥ 1. Fix δ > 0

and define x = max{ 1−δ3 , 23} and y = 1−x
2 . Then we have

|x− y| =
∣∣∣x− 1− x

2

∣∣∣ =
1

2
|3x− 1| < δ

but we also have

|f(x)− f(y)| =
∣∣∣ 1

1− x
− 1

1− 1−x
2

∣∣∣ =
∣∣∣ 1

1− x
− 2

1 + x

∣∣∣ =
∣∣∣3x− 1

1− x2
∣∣∣.
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Since x ∈ (0, 1), the element x2 is smaller than 1 and so 1
1−x2 > 1. It follows that

|f(x)− f(y)| > |3x− 1| = |3 max
{1− δ

3
,

2

3

}
− 1| = max{δ, 1} ≥ 1.

Exercise 8. Respecting the notation from Theorem 1.6.3, we show that, for each

n ∈ N, one has

d(xn, x
∗) ≤ βn

1− β
d(x1, x0).

We work by induction on n and we first show that d(x1, x
∗) ≤ β

1−βd(x1, x0). The

map T being a contraction and using the triangle inequality, we have

d(x1, x
∗) = d(Tx0, Tx

∗) ≤ βd(x0, x
∗) ≤ βd(x0, x1) + βd(x1, x

∗)

and so, as a consequence, we derive

(1− β)d(x1, x
∗) ≤ β(x0, x1)

giving the base case. Assume now that n > 1 and that

d(xn−1, x
∗) ≤ βn−1

1− β
d(x1, x0).

Then we have

d(xn, x
∗) = d(Txn−1, Tx

∗) ≤ βd(xn−1, x
∗) ≤ β β

n−1

1− β
d(x1, x0) =

βn

1− β
d(x1, x0)

and the proof is complete.

Exercise 9. Let F : [1, 2]→ R be defined by x 7→ F (x) = x2+2
2x . We show that F

is a contraction of modulus 1
2 . Indeed, for each x, y ∈ [1, 2], one has

|F (x)− F (y)| =
∣∣∣x2 + 2

2x
− y2 + 2

2y

∣∣∣ =
1

2

∣∣∣xy − 2

xy
(x− y)

∣∣∣ =
|x− y|

2

∣∣∣1− 2

xy

∣∣∣.
As x, y range between 1 and 2, we have that

∣∣∣1 − 2
xy

∣∣∣ ≤ 1, from which it follows

that |F (x)− F (y)| ≤ |x−y|2 . We have proven that F is a contraction of modulus 1
2 .

Thanks to Banach’s contraction theorem, we now know that F has a unique fixed

point x∗, which we compute by solving the equation x = x2+2
2x . In the end, one gets

2x2 = x2 + 2 which gives x∗ =
√

2.


