OQE - PROBLEM SET 4 - SOLUTIONS

Exercise 1. We determine whether the following sequences converge.
(a) Let $X=l_{1}$ and let $y_{n}:=\left(\frac{1}{2}, \frac{1}{2^{2}}, \ldots, \frac{1}{2^{n}}, 0,0, \ldots\right)$. We claim that $\left(y_{n}\right)_{n}$ coverges to $y=\left(\frac{1}{2^{k}}\right)_{k \in \mathbb{N}}$, which is indeed an element of X since

$$
\sum_{k=1}^{\infty} \frac{1}{2^{k}}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1
$$

Moreover, for each $n \in \mathbb{N}$, one has $\left\|y-y_{n}\right\|_{1}=\sum_{k=n+1}^{\infty} \frac{1}{2^{k}}$, which converges to zero, as the geometric series is convergent.
(b) Let $X=l_{1}$ and $y_{n}=\left(\frac{n+1}{n^{2}}, \frac{n+2}{n^{2}}, \ldots, \frac{2 n}{n^{2}}, 0,0, \ldots\right)$. We claim that $\left(y_{n}\right)_{n}$ does not converge in X and we will prove so by contradiction. Let $x=\left(x_{k}\right)_{k \in \mathbb{N}}$ be the limit of $\left(y_{n}\right)_{n}$. Then, by definition of convergence, one has that $\lim _{n \rightarrow \infty}\left\|y_{n}-x\right\|_{1}=0$. However, for each $n \in \mathbb{N}$, one has

$$
\left\|y_{n}-x\right\|_{1}=\sum_{k=1}^{\infty}\left|y_{n, k}-x_{k}\right|
$$

and so, for each $k \in \mathbb{N}$, one has $\lim _{n \rightarrow \infty}\left|y_{n, k}-x_{k}\right|=0$. From the definitions of the y_{n} 's, one derives that, for all k, the element x_{k} is equal to 0 . It follows therefore that $\lim _{n \rightarrow \infty}\left\|y_{n}\right\|_{1}=0$, but

$$
\left\|y_{n}\right\|_{1}=\sum_{k=1}^{n} \frac{n+k}{n^{2}}=\frac{1}{n}+\frac{1}{n^{2}} \sum_{k=1}^{n} k=\frac{1}{n}+\frac{n(n+1)}{2 n^{2}}=\frac{n+3}{2 n}=\frac{1}{2}+\frac{3}{n}
$$

converges to $\frac{1}{2}$. Contradiction.
(c) Let $X=l_{1}$ and let $y_{n}=(\underbrace{\frac{1}{n}, \ldots, \frac{1}{n}}_{n \text { times }}, 0,0, \ldots)$. We claim that $\left(y_{n}\right)_{n}$ is not convergent. As in the previous point, one could show that, if $\left(y_{n}\right)_{n}$ had a limit, then it would have to be the zero sequence. However, for each $n \in \mathbb{N}$, one has $\left\|y_{n}\right\|_{1}=1$ and so $\left\|y_{n}\right\|_{1}$ does not tend to zero as $n \rightarrow \infty$.
(d) Let $X=l_{1}$ and $y_{n}=(\underbrace{0, \ldots, 0}_{n-1 \text { times }}, \frac{1}{n^{\sigma}}, \frac{1}{(n+1)^{\sigma}}, \ldots)$, with $\sigma>1$. We claim that $\left(y_{n}\right)_{n}$ converges to the zero sequence $(0)_{k \in \mathbb{N}}$. Indeed, we compute

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-(0)_{k \in \mathbb{N}}\right\|_{1}=\lim _{n \rightarrow \infty}\left\|y_{n}\right\|_{1}=\lim _{n \rightarrow \infty} \sum_{k=n}^{\infty} \frac{1}{k^{\sigma}}=0
$$

(e) Let $X=l_{2}, y_{n}:=(\underbrace{\frac{1}{n}, 0, \ldots, 0,1}_{n}, 0,0, \ldots)$. We claim that $\left(y_{n}\right)_{n}$ is not Cauchy and therefore not convergent. Let $n \in \mathbb{N}$. Then one computes

$$
\begin{gathered}
\left\|y_{n}-y_{n+1}\right\|_{2}=\|(\underbrace{\frac{1}{n}-\frac{1}{n+1}, 0, \ldots, 0,1}_{n},-1,0,0, \ldots)\|_{2}= \\
=\left(\left(\frac{1}{n(n+1)}\right)^{2}+2\right)^{1 / 2} \longrightarrow \sqrt{2}>0
\end{gathered}
$$

(f) Let $X=l_{2}$ and $y_{n}=(\underbrace{\frac{1}{n}, \ldots, \frac{1}{n}}_{n^{2} \text { times }}, 0,0, \ldots)$. We claim that $\left(y_{n}\right)_{n}$ is not convergent. Assume indeed by contradiction that $\left(y_{n}\right)_{n}$ has a limit point $x=\left(x_{k}\right)_{k \in \mathbb{N}}$. One then has that

$$
0=\lim _{n \rightarrow \infty}\left\|y_{n}-x\right\|_{2}=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n^{2}}\left|\frac{1}{n}-x_{k}\right|^{2}+\sum_{k=n^{2}}^{\infty}\left|x_{k}\right|^{2}\right)^{1 / 2}
$$

and so, as a consequence of Theorem 1.4.4 from the notes, one has

$$
0=\lim _{n \rightarrow \infty} \sum_{k=1}^{n^{2}}\left|\frac{1}{n}-x_{k}\right|^{2}+\lim _{n \rightarrow \infty} \sum_{k=n^{2}}^{\infty}\left|x_{k}\right|^{2}=\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}=\|x\|_{2}
$$

and so x equals the zero sequence $(0)_{k \in \mathbb{N}}$. However,

$$
\lim _{n \rightarrow \infty}\left\|y_{n}\right\|_{2}=\left(\sum_{k=1}^{\infty} \frac{1}{n^{2}}\right)^{1 / 2}=\frac{\pi}{\sqrt{6}}>0
$$

(g) Let $X=l_{3}$ and define $y_{n}=\left(1, \frac{1}{2}, \ldots, \frac{1}{n}, 0,0, \ldots\right)$. We claim that $\left(y_{n}\right)_{n}$ converges to the sequence $x=\left(x_{k}\right)_{k \in \mathbb{N}}$ that is defined by $x_{k}=\frac{1}{k}$. Indeed, one has

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-x\right\|_{3}=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n}\left|\frac{1}{k}-\frac{1}{k}\right|^{3}+\sum_{k=n+1}^{\infty}\left|\frac{1}{k}\right|^{3}\right)^{1 / 3}=\lim _{n \rightarrow \infty}\left(\sum_{k=n+1}^{\infty}\left|\frac{1}{k}\right|^{3}\right)^{1 / 3}
$$

and so, as a consequence of Theorem 1.4.4, we have $\lim _{n \rightarrow \infty}\left\|y_{n}-x\right\|=0$. Moreover, x is indeed an element of X because

$$
\|x\|_{3}=\sum_{k=1}^{\infty} \frac{1}{k^{3}} \sim 1.202
$$

Exercise 2. Let (X, d) be a metric space and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X that is Cauchy. Let $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ be a subsequence of $\left(x_{n}\right)_{n}$ and let $x \in X$. Assume that $\left(x_{n_{k}}\right)_{k}$ converges to x. We will show that $\left(x_{n}\right)_{n}$ converges to x. To this end, we will show that, for each $\epsilon>0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that, for each $n>N_{\epsilon}$,
one has $d\left(x_{n}, x\right)<\epsilon$. Fix $\epsilon>0$. The subsequence $\left(x_{n_{k}}\right)_{k}$ being convergent, there exists $N_{s} \in \mathbb{N}$ such that, for each $n_{k}>N_{s}$, one has $d\left(x_{n_{k}}, x\right)<\frac{\epsilon}{2}$. Moreover, since $\left(x_{n}\right)_{n}$ is Cauchy, there exists $N_{c} \in \mathbb{N}$ such that, for each $n, m>N_{c}$, one has $d\left(x_{n}, x_{m}\right)<\frac{\epsilon}{2}$. Define $N_{\epsilon}=\max \left\{N_{s}, N_{c}\right\}$. Then, thanks to the triangle inequality, for all $n, n_{k}>N_{\epsilon}$, one has

$$
d\left(x_{n}, x\right) \leq d\left(x_{n}, x_{k_{n}}\right)+d\left(x_{k_{n}}, x\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

The choice of ϵ being arbitrary, we are done.
Exercise 3. Respecting the notation from Theorem 1.6.3, we show that, for each $n \in \mathbb{N}$, one has

$$
d\left(x_{n}, x^{*}\right) \leq \frac{\beta^{n}}{1-\beta} d\left(x_{1}, x_{0}\right)
$$

We work by induction on n and we first show that $d\left(x_{1}, x^{*}\right) \leq \frac{\beta}{1-\beta} d\left(x_{1}, x_{0}\right)$. The map T being a contraction and using the triangle inequality, we have

$$
d\left(x_{1}, x^{*}\right)=d\left(T x_{0}, T x^{*}\right) \leq \beta d\left(x_{0}, x^{*}\right) \leq \beta d\left(x_{0}, x_{1}\right)+\beta d\left(x_{1}, x^{*}\right)
$$

and so, as a consequence, we derive

$$
(1-\beta) d\left(x_{1}, x^{*}\right) \leq \beta\left(x_{0}, x_{1}\right)
$$

giving the base case. Assume now that $n>1$ and that

$$
d\left(x_{n-1}, x^{*}\right) \leq \frac{\beta^{n-1}}{1-\beta} d\left(x_{1}, x_{0}\right)
$$

Then we have

$$
d\left(x_{n}, x^{*}\right)=d\left(T x_{n-1}, T x^{*}\right) \leq \beta d\left(x_{n-1}, x^{*}\right) \leq \beta \frac{\beta^{n-1}}{1-\beta} d\left(x_{1}, x_{0}\right)=\frac{\beta^{n}}{1-\beta} d\left(x_{1}, x_{0}\right)
$$

and the proof is complete.
Exercise 4. Let (X, d) be a complete metric space. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X such that there exists $0<\beta<1$ such that, for all $n \in \mathbb{N}$, one has

$$
d\left(x_{n+2}, x_{n+1}\right) \leq \beta d\left(x_{n+1}, x_{n}\right)
$$

We will show that $\left(x_{n}\right)_{n}$ is convergent. To do so, we will prove that $\left(x_{n}\right)_{n}$ is Cauchy: the space (X, d) being complete it will follow that $\left(x_{n}\right)_{n}$ is convergent.

We first claim that, for all $s \in \mathbb{N}$, one has

$$
(*) \quad d\left(x_{s+1}, x_{s}\right) \leq \beta^{s-1} d\left(x_{2}, x_{1}\right)
$$

We work by induction on s. If $s=1$, we get

$$
d\left(x_{s+1}, x_{s}\right)=d\left(x_{2}, x_{1}\right)=\beta^{0} d\left(x_{2}, x_{1}\right)=\beta^{s-1} d\left(x_{2}, x_{1}\right)
$$

and so the base case is checked. Assume now that $s>1$ and that

$$
d\left(x_{s}, x_{s-1}\right) \leq \beta^{s-2} d\left(x_{2}, x_{1}\right) .
$$

Then, by assumption $d\left(x_{s+1}, x_{s}\right) \leq \beta d\left(x_{s}, x_{s-1}\right)$ and therefore it follows from the induction hypothesis that

$$
d\left(x_{s+1}, x_{s}\right) \leq \beta d\left(x_{s}, x_{s-1}\right) \leq \beta \beta^{s-2} d\left(x_{2}, x_{1}\right)=\beta^{s-1} d\left(x_{2}, x_{1}\right)
$$

So the claim is proven. We now show that $\left(x_{n}\right)_{n}$ is Cauchy. To this end, let $\epsilon>0$ and define $c=\frac{d\left(x_{1}, x_{2}\right)}{1-\epsilon}$. Since $0<\beta<1$, the sequence $\left(c \beta^{n}\right)_{n \in \mathbb{N}}$ converges to 0 and therefore there exists $N_{\epsilon} \in \mathbb{N}$ such that, for each $n>N_{\epsilon}$, one has $c \beta^{n}<\epsilon$. Let now $n, m>N_{\epsilon}+1$ and, without loss of generality, assume that $m>n$. We write $m=n+t$. As a consequence of the triangle inequality, we have

$$
d\left(x_{m}, x_{n}\right)=d\left(x_{n+t}, x_{n}\right) \leq \sum_{i=0}^{t-1} d\left(x_{n+i+1}, x_{n+i}\right)
$$

and therefore, thanks to $(*)$, we get
$d\left(x_{m}, x_{n}\right) \leq \sum_{i=0}^{t-1} d\left(x_{n+i+1}, x_{n+i}\right) \leq \sum_{i=0}^{t-1}\left(\beta^{n+i-1} d\left(x_{2}, x_{1}\right)\right)=\beta^{n-1} d\left(x_{2}, x_{1}\right)\left(\sum_{i=0}^{t-1} \beta^{i}\right)$.
Recall now that, β being smaller than 1 , one has that $\left(\sum_{i=0}^{\infty} \beta^{i}\right)=\frac{1}{1-\beta}$ and so, each β^{i} being positive, we have that $\left(\sum_{i=0}^{t-1} \beta^{i}\right) \leq \frac{1}{1-\beta}$. As a result, we get

$$
d\left(x_{m}, x_{n}\right) \leq \beta^{n-1} d\left(x_{2}, x_{1}\right)\left(\sum_{i=0}^{t-1} \beta^{i}\right) \leq \beta^{n-1} \frac{d\left(x_{2}, x_{1}\right)}{1-\beta}=\beta^{n-1} c
$$

Now, since $n>N_{\epsilon}+1$, we get that $d\left(x_{m}, x_{n}\right)<\epsilon$. The choice of ϵ being arbitrary, we have proven that $\left(x_{n}\right)_{n}$ is Cauchy and thus convergent.

Exercise 5. Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a map. Let n be a positive integer and assume that T^{n} is a contraction. We prove that T has a unique fixed point. Since T^{n} is a contraction, Banach's fixed point theorem assures that T^{n} has a fixed point, x^{*} say. Call moreover β the modulus of T^{n}. As a consequence of the definition of a contraction, we get

$$
d\left(x^{*}, T x^{*}\right)=d\left(T^{n} x^{*}, T\left(T^{n} x^{*}\right)\right)=d\left(T^{n} x^{*}, T^{n}\left(T x^{*}\right)\right) \leq \beta d\left(x^{*}, T x^{*}\right)
$$

and so, β being smaller than 1 , we derive $d\left(x^{*}, T x^{*}\right)=0$. It follows from the defining properties of a metric that $T x^{*}=x^{*}$ and so x^{*} is a fixed point of T. We now prove that x^{*} is also the unique fixed point of T. Let y be a fixed point of T. Then, since T^{n} is the composition of n copies of T, the element y is also a fixed point of T^{n}. From the uniqueness of the fixed point in Banach's theorem, it follows that $y=x^{*}$ and thus T has also a unique fixed point.

Exercise 6. We show that the map F defined by

$$
f \mapsto F(f),[F(f)](t)=\frac{1}{2} \int_{0}^{1} t s f(s) d s+\frac{5}{6} t, t \in[0,1]
$$

is a contraction in $C([0,1])$. We will do so by showing that, for each $f, g \in C[0,1]$, one has

$$
\|F(f)-F(g)\| \leq \frac{1}{2}\|f-g\| .
$$

Let $f, g \in C[0,1]$. Then one computes

$$
\begin{gathered}
\|F(f)-F(g)\|=\max _{t \in[0,1]}\left|\frac{1}{2} \int_{0}^{1} t s f(s) d s+\frac{5}{6} t-\left(\frac{1}{2} \int_{0}^{1} t s g(s) d s+\frac{5}{6} t\right)\right|= \\
\frac{1}{2} \max _{t \in[0,1]}\left|\int_{0}^{1} t s(f(s)-g(s)) d s\right|=\frac{1}{2} \max _{t \in[0,1]}|t|\left|\int_{0}^{1} s(f(s)-g(s)) d s\right|
\end{gathered}
$$

Now, the absolute value of t being at most 1 , we have

$$
\|F(f)-F(g)\| \leq \frac{1}{2}\left|\int_{0}^{1} s(f(s)-g(s)) d s\right| \leq \frac{1}{2} \int_{0}^{1}|s(f(s)-g(s))| d s
$$

The integration interval being $[0,1]$, we have that

$$
\|F(f)-F(g)\| \leq \frac{1}{2} \int_{0}^{1}|(f(s)-g(s))| d s \leq \frac{1}{2} \max _{t \in[0,1]}|f(t)-g(t)|=\frac{1}{2}\|f-g\|
$$

and therefore F is a contraction in $C[0,1]$ of modulus $\frac{1}{2}$. Thanks to Banach's contraction theorem, we know that F has exactly one fixed point, f^{*} say, which we now compute using Banach's algorithm. Let $f_{0}=0$ be the constant function $[0,1] \rightarrow\{0\}$. We define $f_{1}(t)=\left[F\left(f_{0}\right)\right](t)$ and, in general, $f_{n+1}(t)=F\left(f_{n}\right)(t)$. We compute

$$
f_{1}(t)=\frac{1}{2} \int_{0}^{1} t s f_{0}(s) d s+\frac{5}{6} t=\frac{5}{6} t .
$$

Setting $c_{1}=\frac{5}{6} t$, one gets that $f_{1}(t)=c_{1} t$. We claim that, for all $n \in \mathbb{N}$, defining

$$
c_{n}=5\left(\sum_{i=1}^{n}\left(\frac{1}{6}\right)^{i}\right)
$$

gives $f_{n}(t)=c_{n} t$. Since we know the claim to be true for $n=1$, we assume that $n>1$ and that $f_{n-1}(t)=c_{n-1} t$. As a consequence, we have

$$
\begin{gathered}
f_{n}(t)=\frac{1}{2} \int_{0}^{1} t s f_{n-1}(s) d s+\frac{5}{6} t=\frac{1}{2} \int_{0}^{1} t s c_{n-1} s d s+\frac{5}{6} t=\frac{c_{n-1}}{2} t \int_{0^{1}} s^{2} d s+\frac{5}{6} t= \\
\frac{c_{n-1}}{2} t\left(\frac{s^{3}}{3}\right)_{0}^{1}+\frac{5}{6} t=\frac{c_{n-1}}{6} t+\frac{5}{6} t=\frac{c_{n-1}+5}{6} t
\end{gathered}
$$

and therefore we can compute

$$
\begin{gathered}
c_{n}=\frac{c_{n-1}+5}{6}=\frac{1}{6} c_{n-1}+\frac{5}{6}=\frac{5}{6}\left(\sum_{i=1}^{n-1}\left(\frac{1}{6}\right)^{i}\right)+\frac{5}{6}= \\
5\left(\sum_{i=2}^{n}\left(\frac{1}{6}\right)^{i}\right)+\frac{5}{6}=5\left(\sum_{i=1}^{n}\left(\frac{1}{6}\right)^{i}\right)
\end{gathered}
$$

giving the claim. Thanks to Banach's theorem, we know that $f^{*}=\lim _{n \rightarrow \infty} f_{n}$ and therefore, for all $t \in[0,1]$, we get

$$
f^{*}(t)=\left(\lim _{n \rightarrow \infty} f_{n}\right)(t)=\left(\lim _{n \rightarrow \infty} c_{n}\right) t=5\left(\sum_{i=1}^{\infty}\left(\frac{1}{6}\right)^{i}\right) t=5 \frac{\frac{1}{6}}{1-\frac{1}{6}} t=t
$$

Exercise 7. Let $F:[1,2] \rightarrow \mathbb{R}$ be defined by $x \mapsto F(x)=\frac{x^{2}+2}{2 x}$. We show that F is a contraction of modulus $\frac{1}{2}$. Indeed, for each $x, y \in[1,2]$, one has

$$
|F(x)-F(y)|=\left|\frac{x^{2}+2}{2 x}-\frac{y^{2}+2}{2 y}\right|=\frac{1}{2}\left|\frac{x y-2}{x y}(x-y)\right|=\frac{|x-y|}{2}\left|1-\frac{2}{x y}\right|
$$

As x, y range between 1 and 2 , we have that $\left|1-\frac{2}{x y}\right| \leq 1$, from which it follows that $|F(x)-F(y)| \leq \frac{|x-y|}{2}$. We have proven that F is a contraction of modulus $\frac{1}{2}$. Thanks to Banach's contraction theorem, we now know that F has a unique fixed point x^{*} and so, in particular, the expression $F(x)-x=0$ has excatly one root in [1, 2], namely x^{*}. To conclude, note that

$$
F(x)-x=\frac{x^{2}+2}{2 x}-x=\frac{x}{2}+\frac{1}{x}-x=\frac{1}{x}-\frac{x}{2} .
$$

Exercise 8. We show that $C([-1,1])$ is not complete with respect to the metric

$$
d(f, g):=\left(\int_{-1}^{1}|f(t)-g(t)|^{2} d t\right)^{1 / 2}
$$

We define the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ by means of

$$
f_{n}(t)= \begin{cases}-1 & \text { if }-1 \leq t \leq-\frac{1}{n} \\ n t & \text { if }-\frac{1}{n} \leq t \leq \frac{1}{n} \\ 1 & \text { if } \frac{1}{n} \leq t \leq 1\end{cases}
$$

and we claim that $\left(f_{n}\right)_{n}$ is Cauchy but not convergent in $C[-1,1]$. We first show it is Caucy. To this end, let $n, m \in \mathbb{N}$, with $n>m$. Then

$$
\begin{gathered}
d\left(f_{n}, f_{m}\right)=\left(\int_{-1}^{1}\left|f_{n}(t)-f_{m}(t)\right|^{2} d t\right)^{1 / 2}= \\
\left(\int_{-1 / m}^{-1 / n}\left|f_{n}(t)-f_{m}(t)\right|^{2} d t+\int_{-1 / n}^{1 / n}\left|f_{n}(t)-f_{m}(t)\right|^{2} d t+\int_{1 / n}^{1 / m}\left|f_{n}(t)-f_{m}(t)\right|^{2} d t\right)^{1 / 2}= \\
\left(\int_{-1 / m}^{-1 / n}|-1-m t|^{2} d t+\int_{-1 / n}^{1 / n}|n t-m t|^{2} d t+\int_{1 / n}^{1 / m}|1-m t|^{2} d t\right)^{1 / 2}= \\
\left(\int_{-1 / m}^{-1 / n}\left(1+2 m t+m^{2} t^{2}\right) d t+(n-m)^{2} \int_{-1 / n}^{1 / n} t^{2} d t+\int_{1 / n}^{1 / m}\left(1-2 m t+m^{2} t^{2}\right) d t\right)^{1 / 2}=
\end{gathered}
$$

$$
\left(\int_{-1 / m}^{-1 / n}\left(1+2 m t+m^{2} t^{2}\right) d t+\int_{1 / n}^{1 / m}\left(1-2 m t+m^{2} t^{2}\right) d t\right)^{1 / 2}=-\frac{2}{n}-\frac{2 m^{2}}{n^{3}}+\frac{2}{3 m}
$$

Now, to show that $\left(f_{n}\right)_{n \geq 1}$ is a Cauchy sequence, let $\epsilon>0$ be given and let N be an integer greater than $\frac{14}{3 \epsilon}$ (this can be found by 'working backwards' by first finding a bound on $d\left(f_{n}, f_{m}\right)$ in terms of N and then defining N in terms of ϵ).

For all $m, n>N$, we have $d\left(f_{n}, f_{m}\right)=-\frac{2}{n}-\frac{2 m^{2}}{n^{3}}+\frac{2}{3 m}<\frac{2}{n}+\frac{2 m^{2}}{n^{3}}+\frac{2}{3 m}$ (because $m, n>0)$. As $m, n>N$, we know that $\frac{1}{n}, \frac{1}{m}<\frac{1}{N}$, and as we have chosen $n \geq m$, we know that $\frac{m^{2}}{n^{3}} \leq \frac{n^{2}}{n^{3}}=\frac{1}{n}<\frac{1}{N}$, so we have $d\left(f_{n}, f_{m}\right)<\frac{2}{N}+\frac{2}{N}+\frac{2}{3 N}=\frac{14}{3 N}<\epsilon$.

To show that the sequence is not convergent in $C[-1,1]$, one observes that, if $\left(f_{n}\right)_{n \geq 1}$ had a limit f in $C[-1,1]$, then $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|$ would have to be zero and so

$$
\int_{-1}^{1 / n}\left|f_{n}(t)-f(t)\right|^{2} d t+\int_{1 / n}^{1}\left|f_{n}(t)-f(t)\right|^{2} d t \rightarrow 0
$$

Using the definition of $\left(f_{n}\right)_{n \geq 1}$, one would then have

$$
\int_{-1}^{1 / n}|-1-f(t)|^{2} d t+\int_{1 / n}^{1}|1-f(t)|^{2} d t \rightarrow 0
$$

which which would only be possible if f would satisfy

$$
f(t)= \begin{cases}-1 & \text { if }-1 \leq t<0 \\ 1 & \text { if } 0<t \leq 1\end{cases}
$$

but then f wouldn't be continuous at $x=0$.

Exercise 9. Let the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, consisting of functions $f_{n}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$, be defined by

$$
f_{n}: t \mapsto \cos \left(\frac{t}{n}\right) e^{-t}
$$

(a) We claim that the sequence $\left(f_{n}\right)_{n}$ converges pointwise to $f:[0, \infty) \rightarrow \mathbb{R}$, defined by $t \mapsto f(t)=e^{-1}$. Indeed, we have that, for each $t \in[0, \infty)$, the limit $\lim _{n \rightarrow \infty} \frac{t}{n}$ is equal to 0 and so, cos being a continuous function, we have, for each $t \in[0, \infty)$, that $\lim _{n \rightarrow \infty} \cos (t / n)=1$. It follows that, for each $t \in[0, \infty)$, we get $\lim _{n \rightarrow \infty} \cos (t / n) e^{-t}=e^{-t}$.
(b) Let now f be as in (a). We show that $\left(f_{n}\right)_{n}$ converges uniformly to f. Let $n \in \mathbb{N}$. One can prove that, for each $t \in[0, \infty)$, one has $0 \leq \frac{t^{2}}{e^{t}} \leq 1$ and so, using that $\cos (x) \geq 1-\frac{x^{2}}{2}$, we compute

$$
\begin{gathered}
\left\|f-f_{n}\right\|=\sup _{t \in[0, \infty)}\left|f(t)-f_{n}(t)\right|=\sup _{t \in[0, \infty)}\left|e^{-t}(1-\cos (t / n))\right| \leq \sup _{t \in[0, \infty)}\left|e^{-t} \frac{t^{2}}{2 n^{2}}\right|= \\
\sup _{t \in[0, \infty)}\left(e^{-t} \frac{t^{2}}{2 n^{2}}\right)=\frac{1}{2 n^{2}} \sup _{t \in[0, \infty)} \frac{t^{2}}{e^{t}} \leq \frac{1}{2 n^{2}} .
\end{gathered}
$$

Since, for each $n \in \mathbb{N}$, one has

$$
0 \leq\left\|f-f_{n}\right\| \leq \frac{1}{2 n^{2}}
$$

and $\lim _{n \rightarrow \infty} \frac{1}{2 n^{2}}=0$, we have that $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|=0$.

