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Exercise 1. We determine whether the following sequences converge.

(a) Let X =1y and let y,, := (%7 2%, .. 2n,O 0,. ) We claim that (yy,), coverges

to y = (5% )ken, Which is indeed an element of X since
o0
1
> 5= =1
k=1
1

Moreover, for each n € N, one has ||y — yall1 = d_;2, 1 5%, Which converges to

D=

l\.’)\»—l

zero, as the geometric series is convergent.
(b) Let X =1y and y, = (%5, 282 ... 22 .0,0,...). We claim that (y,), does not

n2 o n2 o 5 p2o

converge in X and we will prove so by contradiction. Let x = (xg)ren be the limit
of (yn)n. Then, by definition of convergence, one has that lim, . ||y, — |1 = 0.

However, for each n € N, one has

oo
”yn - x”l = Z |yn7k — Tk
k=1

and so, for each k € N, one has lim,, o0 |[yn.x — x| = 0. From the definitions of the
Yn's, one derives that, for all k, the element zj is equal to 0. It follows therefore

that hmn_mo Hyn”l = 07 but

n

n+k 1 1< 1 nn+1) n+3 1 3
— - - N =2 — 2.2
[9nl: Z n? nJrnZZ n+ 2n? 2n 2+n
k=1 k=1
converges to 5. Contradiction.
1 1 . .
(¢c) Let X =1y and let y,, = | —,...,—,0,0,... |. We claim that (y,), is not
n n
n times

convergent. As in the previous point, one could show that, if (y,), had a limit,
then it would have to be the zero sequence. However, for each n € N, one has
lynlli = 1 and so ||y, |j1 does not tend to zero as n — co.

(d) Let X =y and y,, = 0,...,0,#,ﬁ,... , with ¢ > 1. We claim that

n—1 times
(yn)n converges to the zero sequence (0)recn. Indeed, we compute

i [yn = (0)kenll1 = lim_[ly[1 = lim Z

n—oo n—oo

1
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(e) Let X =g, yp := ,0,...,0,1,0,0,... | . We claim that (y,)n is not Cauchy

—_———

S|

n
and therefore not convergent. Let n € N. Then one computes
1 1

f——,0,...,0,1,—1,0,0,...) -
n n-+1 I2

Iy = gmallz = I

n

(G )" = vao.

1 1
) Let X =landy,=| —,..., E’O’O’ ... |. We claim that (y,,), is not conver-

n
—_———
n2 times

gent. Assume indeed by contradiction that (y,), has a limit point © = (2f)gen-
One then has that

) ) n’® 1 2 © 2\ 1/2
0= Jim o ol = Jim (3|7 =l + 3 fauP)
=1 k=n

and so, as a consequence of Theorem 1.4.4 from the notes, one has

le 1 2 o (o]
0= lim |-~ + tim S fel = 3 leel? = e
n—oo n n—oo
k=1 k=1

k=n2

and so x equals the zero sequence (0)ien. However,

1\ /2 T
lim [lyallz = (Y- =) == >0.
n—0o0 b1 n \/6

(g) Let X = I3 and define y,, = (1 L...,L00,.. ) We claim that (y,, ), converges

9 s

to the sequence = = (2 )gen that is defined by xy = % Indeed, one has

n o0 oo
) ) 1 13 113\1/3 ) 113\1/3
ﬁﬂﬂ%—$%=gﬂa(iﬂg—z *‘53\@!) =J£;(§3\ﬂ)
k=1 k=n-+1 k=n-+1

and so, as a consequence of Theorem 1.4.4, we have lim,,_, o ||y, —2|| = 0. Moreover,

z is indeed an element of X because

=1
llls = =~ 1.202
k=1

Exercise 2. Let (X,d) be a metric space and let (z,),en be a sequence in X
that is Cauchy. Let (x,, )ren be a subsequence of (z,), and let € X. Assume
that (zn,)r converges to z. We will show that (x,,), converges to z. To this end,
we will show that , for each € > 0, there exists N, € N such that, for each n > N,
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one has d(z,,z) < e. Fix € > 0. The subsequence (z,, )i being convergent, there
exists Ny € N such that, for each nj > N, one has d(z,,,r) < 5. Moreover,
since (x,,)n is Cauchy, there exists N, € N such that, for each n,m > N,, one has
d(Zn, Tm) < §. Define Ne = max{N;, N.}. Then, thanks to the triangle inequality,
for all n,ng > N, one has

€

d(zy,x) < d(xn, Tk, ) + d(xg,, ) < = + % =e.

[\

The choice of € being arbitrary, we are done.

Exercise 3. Respecting the notation from Theorem 1.6.3, we show that, for each

n € N, one has

B
1-p
We work by induction on n and we first show that d(z1,2*) < %d(zl, xo). The

d(zp, ") < d(z1,x0).

map T being a contraction and using the triangle inequality, we have
d(z1,2") = d(Txo, Tx™) < Bd(zg, 2*) < Bd(x0,x1) + Bd(x1,2")
and so, as a consequence, we derive
(1= P)d(z1,2") < B(xo,21)

giving the base case. Assume now that n > 1 and that

n—1
d(xnflvx*) < 1 _5d($17$0).
Then we have
n—1 n
d(zp, ") =d(Txp-1,Te") < Bd(zp-1,2%) < Blﬂ ﬂd(xl,xo) = 715 6d(x1,xo)

and the proof is complete.

Exercise 4. Let (X,d) be a complete metric space. Let (x,),en be a sequence
in X such that there exists 0 < 5 < 1 such that, for all n € N, one has

d(zn-&-Za xn+1) S 6d(1‘n+1a xn)

We will show that (), is convergent. To do so, we will prove that (zy,), is Cauchy:

the space (X, d) being complete it will follow that (), is convergent.
We first claim that, for all s € N, one has
(%) d(xey1,2s) < B d(wa, 21).
We work by induction on s. If s =1, we get
d(zsy1,25) = d(xa,21) = (20, 21) = B* 1d(29, 1)
and so the base case is checked. Assume now that s > 1 and that

d(xsv xs—l) § 6572d(x27 5L'1)~
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Then, by assumption d(zsy1,zs) < Bd(xs,xs—1) and therefore it follows from the
induction hypothesis that

d(z541,75) < Bd(xs,15-1) < BB 2d(w2, 1) = 85 d(z2,21).

So the claim is proven. We now show that (z,,), is Cauchy. To this end, let ¢ > 0
d(z1,22)
1—e¢
and therefore there exists N, € N such that, for each n > N, one has ¢8" < e. Let

and define ¢ = . Since 0 < 8 < 1, the sequence (¢f"),en converges to 0

now n,m > N, + 1 and, without loss of generality, assume that m > n. We write
m =n+t. As a consequence of the triangle inequality, we have

t

d(l'm; xn) = d(anrtv sEn) < d(xn+i+1; anri)

7

|
—

I
o

and therefore, thanks to (x), we get

_ t—1 t—1
d(xm, zn) Z (@ntitts Tati) € Y (B Nd(22,31)) = 5”7161(9527351)(251-)-
=0

i=0 i=0
Recall now that, 8 being smaller than 1, one has that (Z;’io Bi) = ﬁ and so,
each ' being positive, we have that (Zf;é ﬁl) < ﬁ As a result, we get

t—1
d(l‘m,xn) < /Bn_ld(xg,xl)<2ﬂi> /Bn 1 (mZa-Zl) ﬁn 1,
=0

Now, since n > N, + 1, we get that d(z,,x,) < e. The choice of € being arbitrary,
we have proven that (z,), is Cauchy and thus convergent.

Exercise 5. Let (X,d) be a complete metric space and let T: X — X be a map.
Let n be a positive integer and assume that 7" is a contraction. We prove that T
has a unique fixed point. Since T™ is a contraction, Banach’s fixed point theorem
assures that 7" has a fixed point, * say. Call moreover  the modulus of 7. As

a consequence of the definition of a contraction, we get
d(z*, Tz*) =d(T"z*, T(T"x")) = d(T"x*, T™(Tx")) < Bd(z*, Tx™)

and so, § being smaller than 1, we derive d(z*,Tz*) = 0. It follows from the
defining properties of a metric that Tx* = x* and so x* is a fixed point of T. We
now prove that z* is also the unique fixed point of T'. Let y be a fixed point of T
Then, since T™ is the composition of n copies of T, the element y is also a fixed
point of 7. From the uniqueness of the fixed point in Banach’s theorem, it follows

that y = ™ and thus T has also a unique fixed point.

Exercise 6. We show that the map F' defined by

£ FU) W0 = 5 [ ts(s)ds+ 2t e 0.1),

0
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is a contraction in C([0, 1]). We will do so by showing that, for each f,g € C[0, 1],
one has

1
1) = Flll < SIf = gl
Let f,g € C[0,1]. Then one computes

IF(f) — F(g)|| = max]‘;/oltsf(s)ds—th— (;/Oltsg(s)ds+2t)‘ -

tef0,1

fmax‘/ts g(s))d ‘:fmax|t|’/ (s))ds|.
2 tefo,1] 2 tefo0,1]

Now, the absolute value of ¢ being at most 1, we have

1 1
1Pt =PI < 5] [ sr6)=gtas| < 5 [ 15t - ats)l as.

The integration interval being [0, 1], we have that

1 1
<= = Z||f =
IF() - Flg)ll < 2/ (F(s) = gl))] ds < 5 maxe [£(8) = 9(8)] = 5117 =]
and therefore F' is a contraction in C[0,1] of modulus . Thanks to Banach’s

2
contraction theorem, we know that F' has exactly one fixed point, f* say, which

we now compute using Banach’s algorithm. Let fy = 0 be the constant function
[0,1] — {0}. We define f1(t) = [F(fo)](t) and, in general, f,11(t) = F(f,)(t). We

compute

2 6 6
Setting ¢; = %t, one gets that fi(t) = c1t. We claim that, for all n € N, defining

()

1=

1
A =1 / bsfo(s)ds + 2t = 2.
0

gives f,(t) = cpt. Since we know the claim to be true for n = 1, we assume that

n > 1 and that f,_1(t) = ¢,—1t. As a consequence, we have

1 [t 5 1 (! 5  Cno1 5
@) == [ tsfo_1(s)ds+ =t== [ tsch,_1sds+ —t =2t 2ds+ =t =
fn(t) 2/0 Sfn-1(s) s—|—6 2/0 SCp—18 s—|—6 5 ./018 s—|—6

31
C"*,g(‘i) —&—515—6”71 5 cn71+5t

2 \3 6 6 6 6
and therefore we can compute
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giving the claim. Thanks to Banach’s theorem, we know that f* = lim,,_,, f, and
therefore, for all ¢ € [0, 1], we get

0= (i i) = (i )e=3(5 (3) o=k

Exercise 7. Let F':[1,2] — R be defined by  — F(z) = w;‘f We show that F

is a contraction of modulus % Indeed, for each z,y € [1,2], one has
22+2 y2+2

Fl@) - Pl = | 5= - 5] = 5]

Ty — 2
zy

T —y 2
@*yﬂzliflﬁf‘ﬁ'
ry

As z,y range between 1 and 2, we have that ‘1 — f—y‘ < 1, from which it follows

that |F(x) — F(y)| < @ We have proven that F is a contraction of modulus 3.
Thanks to Banach’s contraction theorem, we now know that F' has a unique fixed
point z* and so, in particular, the expression F'(z) —x = 0 has excatly one root in

[1,2], namely z*. To conclude, note that

Exercise 8. We show that C([—1,1]) is not complete with respect to the metric
1 1/2
asg)= ([ 150 -gra)
-1
We define the sequence (fy,)nen by means of
-1 if —1<t< -1,
falt) = qnt i — L <t< g,

1 ifi<e<i

and we claim that (f,), is Cauchy but not convergent in C[—1,1]. We first show
it is Caucy. To this end, let n,m € N, with n > m. Then
1/2

d(frs frm) = (/11 | fn(t) — fm(t)|2dt> —

1/m —-1/n 1/n

—1/n 1/n 1/m 1/2
/ |717mt\2dt+/ |nt—mt|2dt+/ |1 —mt|? dt =
—1/m —1/n 1/n

—1/n 1/n 1/m 1/2
/ (1+2mt+m2t2)dt+(n—m)2/ tzdt—&—/ (1 —2mt +m?t?) dt =
—1/m -1/n 1/n

—1/n 1/n 1/m 1/2
([ Ihw—ﬁNWﬁ+/ |h®—hﬁﬁﬁ+/ nm—nwﬁw) =



OQE - PROBLEM SET 4 - SOLUTIONS 7

i 1/m Ry a2 o
/ (1+2m¢+nfﬁ)ﬁ+i/ (1—2mt+m?)dt| =---""r4 2.
—1/m 1/n n

Now, to show that (fy,),>1 is a Cauchy sequence, let € > 0 be given and let N be an
integer greater than é—‘: (this can be found by ‘working backwards’ by first finding
a bound on d(f,, fm) in terms of N and then defining N in terms of €).

For all m,n > N, we have d(f, fn) = —2 — 2;”32 +&= <24 2232 + 32 (because

m,n > 0). As m,n > N, we know that %, % < %, and as we have chosen n > m,
2 2

we know that %S%:%<%,sowehaved(fn,fm)<%—i—%—k%:%<e.

To show that the sequence is not convergent in C[—1,1], one observes that, if

(fn)n>1 had alimit f in C[—1, 1], then lim,,_, || f — fr|| would have to be zero and

/ P - R+ /

1
|[falt) = F($)]*dt — 0
-1 1/n

Using the definition of (f,,)n>1, one would then have

1/n 1
/ |—1—f(t)|2dt+/ 11— f(®)2dt -0
-1 1/n
which which would only be possible if f would satisfy

-1 if —1<t<0,

ft) = .
1 if0<t<1.

but then f wouldn’t be continuous at x = 0.

Exercise 9. Let the sequence (f,,)nen, consisting of functions f,, : R>o — R, be

defined by
t
fn it — cos () et
n

(a) We claim that the sequence (f,), converges pointwise to f : [0,00) — R,
defined by t — f(t) = e~!. Indeed, we have that, for each t € [0,00), the limit
lim,, o0 % is equal to 0 and so, cos being a continuous function, we have, for each
t € [0,00), that lim,_, cos(t/n) = 1. It follows that, for each ¢t € [0,00), we get
lim,, o cos(t/n)e”t = et

(b) Let now f be as in (a). We show that (f,), converges uniformly to f. Let
n € N. One can prove that, for each ¢ € [0,00), one has 0 < Z—? < 1 and so, using
that cos(z) > 1 — 7”2—2, we compute

2

_ ., t
If = fall = sup |f(t) = fa(8)] = sup |e™"(1—cos(t/n))| < sup e~ o] =
t€[0,00) t€[0,00) t€[0,00) n

( L, 12 ) 1 t2 oL
sup (€ "= ) == sup — < —5.
te[0,00) 2n2 2’112 t
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Since, for each n € N, one has

1
og\lf—fnllsﬁ

and lim,, o ﬁ = 0, we have that lim, . ||f — full = 0.



