
OQE - PROBLEM SET 5 - SOLUTIONS

Exercise 1. Let (X, d) be a metric space, where d is the discrete metric. We

claim that (X, d) is

(a) complete;

(b) separable if and only if X is countable.

(a) Similarly to Exercise 4 from Problem Set 2, one shows that Cauchy sequences

in (X, d) are stationary and therefore convergent.

(b) We saw multiple times in class that each subset of X is open, since the metric is

discrete, and therefore each subset of X is closed. It follows from Theorem 1.3.6(iv)

that X is separable if and only if it is countable.

Exercise 2. Let (X, d) and (Y, ρ) be metric spaces and let f : X → Y be a

continuous function. Let A be a dense subset of X. We show that f(A) is dense

in f(X). Define Z = f(X). We will show that, for each z ∈ Z and for each ε > 0,

the intersection Bε(z) ∩ f(A) is non-empty. To this end, let z ∈ Z and ε > 0.

Let moreover x ∈ X be such that f(x) = z. By the continuity of f , there exists

δ > 0 such that f(Bδ(x)) ⊆ Bε(z). Moreover, since A is dense in X, there exists

a ∈ A ∩ Bδ(x). Fix such element a. Then

f(a) ∈ f(A) ∩ f(Bδ(x)) ⊆ f(A) ∩ Bε(z)

and therefore f(A) ∩ Bε(z) 6= ∅.

Exercise 3. Let 1 ≤ p < ∞ and let r ∈ R. We claim that the sequence (rn)n∈N

belongs to lp if and only if |r| < 1, in which case ‖(rn)n‖p =
(
|r|p

(1−|r|p)

)1/p
. We

recall that (rn)n∈N belongs to lp if and only if
∑
n≥1 |rn|p is convergent. One can

rewrite ∑
n≥1

|rn|p =
∑
n≥1

|rp|n

which is a geometric series with ’base’ |rp| and therefore convergent if and only if

|rp| < 1. However, |r|p = |rp| is smaller than 1 if and only if |r| itself is smaller

than 1 and therefore our first claim is proven. For |r| < 1, we now compute

‖(rn)n‖p = (
∑
n≥1

|rp|n)1/p =
( |r|p

1− |r|p
)1/p

and therefore the second claim is proven too.
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Exercise 4. We claim that

(i)
(

1
n

)
n∈N

does not belong to l1;

(ii)
(

sin(πn)
n2

)
n∈N

belongs to l1.

(i) One has ∑
n≥1

∣∣∣ 1
n

∣∣∣ =
∑
n≥1

1

n
=∞

and so
(

1
n

)
n

does not belong to l1.

(ii) One computes ∑
n≥1

∣∣∣ sin(πn)

n2

∣∣∣ ≤∑
n≥1

1

n2
=
π2

6

and therefore
(

sin(πn)
n2

)
n

belong to l1.

Exercise 5. We show that the map

f 7→ F (f) =
1

2

∫ t

0

f(s)ds+ 1

is a contraction in C[0, 1] of modulus 1
2 and we find the fixed point of F using

Banach’s algorithm. For each f, g ∈ C[0, 1], we have

‖F (f)− F (g)‖ = max
t∈[0,1]

∣∣∣1
2

∫ t

0

(f(s)− g(s))ds
∣∣∣ =

1

2
max
t∈[0,1]

∣∣∣ ∫ t

0

(f(s)− g(s))ds
∣∣∣

≤ 1

2
max
t∈[0,1]

(
t max
s∈[0,t]

|f(s)− g(s)|
)
≤ 1

2
max
t∈[0,1]

(
t max
s∈[0,1]

|f(s)− g(s)|
)
≤ 1

2
‖f − g‖

and so F is a contraction of modulus 1
2 . We now compute f∗, the unique fixed

point of F , using Banach’s algorithm. We set f0(t) = 0 and fn+1(t) = F (fn)(t).

We claim that, for each n ∈ N, one has

fn+1(t) =

n∑
k=0

(t/2)k

k!
.

We prove the claim by induction on n. One easily computes that, for all t ∈ [0, 1],

one has f1(t) = 1 and f2(t) = 1
2 t + 1. We now assume that n ≥ 2 and that

fn(t) =
∑n−1
k=0

(t/2)k

k! . For each t ∈ [0, 1], we then have

fn+1(t) = F (fn)(t) =
1

2

∫ t

0

( n−1∑
k=0

(s/2)k

k!

)
ds+ 1 =

1

2

n−1∑
k=0

1

k!2k

( tk+1

k + 1

)
+ 1 =

n−1∑
k=0

tk+1

(k + 1)!2k+1
+ 1 =

n∑
k=1

tk

(k)!2k
+ 1 =

n∑
k=0

tk

(k)!2k
=

n∑
k=0

(t/2)k

(k)!

and so the claim is proven. To conclude, we compute the point-wise limit of the

sequence (fn)n. For each t ∈ C[0, 1], we get(
lim
n→∞

fn

)
(t) =

∞∑
k=0

(t/2)k

(k)!
= et/2.
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Exercise 6. (i) We claim that the sequence (fn)n∈N, where fn ∈ C[0, 1] is defined

by t 7→ fn(t) = t2n, is not convergent in C[0, 1]. Indeed, for each t ∈ [0, 1), the

limit limn→∞ t2n is equal to 0, while 12n = 1 for any choice of n.

(ii) We claim that the sequence (fn)n∈N, defined by t 7→ fn(t) = te−nt is convergent

in C[0, 1] to the function t 7→ 0. Indeed, one has

‖fn‖ = max
t∈[0,1]

|te−nt| = max
t∈[0,1]

|t(et)−n|

where t ∈ [0, 1] and therefore et ≥ 1. It follows that, for each t ∈ [0, 1], one has

0 ≤ te−nt ≤ e−nt

and so, since limn→∞(et)−n = 0, we get limn→∞ te−nt = 0.

(iii) We claim that the sequence (fn)n∈N, defined by t 7→ fn(t) = te−t/n is conver-

gent in C[0, 1] to the function t 7→ t. Indeed, for each n ∈ N, we can compute

‖fn − id[0,1] ‖ = max
t∈[0,1]

|te−t/n − t| = max
t∈[0,1]

|t(e−t/n − 1)| ≤ max
t∈[0,1]

|e−t/n − 1|

and, since, for each t ∈ [0, 1], one has limn→∞ e−t/n = 1, the limit limn→∞ ‖fn−id ‖
is equal to 0. As a consequence, fn → id in C[0, 1].

(iv) We claim that the sequence (fn)n∈N, defined by t 7→ fn(t) = n−1 sin(πnt) is

convergent in C[0, 1] to the function t 7→ 0. For each natural number n, one has

indeed

‖fn‖ = max
t∈[0,1]

∣∣∣ sin(πnt)

n

∣∣∣ ≤ 1

n

which converges to 0 as n→∞.

(v) We claim that the sequence (fn)n∈N, where t 7→ fn(t) = sin(πt)n, is not con-

vergent in C[0, 1]. Indeed, if t 6= 1/2, then | sin(πt)| < 1 and therefore, for each

t 6= 1/2, one has limn→∞ fn(t) = 0. However, for each n ∈ N, we have fn(1/2) = 1

and therefore (fn)n cannot converge to a continuous function.

(vi) The sequence (fn)n∈N, defined by t 7→ fn(t) = 1
1+nt2 , is not convergent in

C[0, 1]. As in the previous example, consider the case t = 0 and t ∈ (0, 1] sepa-

rately.

Exercise 7. We claim that C0(R), together with the sup-norm, is a Banach

space. We first claim that C0(R) is a subset of Cb(R), i.e. the collection of bounded

continuous functions R → R. To this end, let ε > 0 and let f ∈ C0(R). Since

lim|t|→∞ f(t) = 0, there exists r ∈ R>0 such that, for each x ∈ (−∞,−r)∪(r,+∞),

one has |f(x)| < ε. Moreover, we know by real analysis that, being continuous, f

is bounded on the closed interval [−r, r] and therefore f ∈ Cb(R). The choices of

f and ε being arbitrary, we have proved the claim. Our next claim is that C0(R)

is closed in Cb(R). To show that, let (fn)n∈N be a sequence in C0(R) converging

to an element f ∈ Cb(R). Then, for each ε > 0, there exists N ∈ N such that,
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for all n > N , one has ‖fn − f‖ < ε. In particular, for each x ∈ R, one has

|fn(x)− f(x)| < ε and therefore, for each x ∈ R

−ε+ fn(x) < f(x) < fn(x) + ε.

If we now let |x| → ∞, we get that −ε < lim|x|→∞ f(x) < ε and so, the choice of ε

being arbitrary, it follows that lim|x|→∞ f(x) = 0. We have proven that f ∈ C0(R)

and so, as a consequence of Theorem 1.3.8 from the notes, the subset C0(R) is

closed in Cb(R). Corollary 1.9.4 together with Exercise 1.5.5 from the notes yields

the completeness of C0(R).

Exercise 8. We check continuity and compute the norms of the following opera-

tors:

(i) l : l1 → R, defined by x = (xi)i∈N 7→ l(x) =
∑∞
i=1

(
1− 1

i

)
xi;

(ii) l : l2 → R, defined by x = (xi)i∈N 7→ l(x) =
∑∞
i=1

1
i xi;

(iii) l : l2 → R, defined by x = (xi)i∈N 7→ l(x) =
∑∞
i=1

(
(1−(−1)i)(i−1)

i

)
xi;

(iv) l : C[0, 1]→ R, defined by f 7→ l(f) =
∫ 1

0
f(t) sign

(
t− 1

2

)
dt.

Throughout the whole exercise we will make constant use of Theorem 1.10.1 from

the notes.

(i) We prove continuity at 0. To this end, let ε > 0 and let x = (xi)i∈N ∈ l1 be such

that ‖x‖1 < ε. Then one has

|l(x)| =
∣∣∣ ∞∑
i=1

(
1− 1

i

)
xi

∣∣∣ ≤ ∞∑
i=1

(
1− 1

i

)
|xi| ≤

∞∑
i=1

|xi| = ‖x‖1 < ε

and so, the choice of ε being arbitrary, l is continuous. We now claim that

‖l‖ = sup
‖x‖1≤1

|l(x)| = 1.

We prove that, for each x ∈ l1, one has |l(x)| ≤ ‖x‖1 and therefore ‖l‖ ≤ 1. Define

now, for each k ∈ N, the element xk = (xk,i)i∈N of l1 by

xk,i =

1 if i = k,

0 otherwise .

Then, for each k ∈ N, the norm of ek is equal to 1 and the value of |l(ek)| is 1− 1
k .

We conclude by observing that

1 = lim
k→∞

|l(ek)| ≤ sup
‖x‖1≤1

|l(x)| = ‖l‖ ≤ 1

and therefore ‖l‖ = 1.

(ii) We prove continuity at 0. To this end, let ε > 0 and define δ =
√
6ε
π . Then,

using Hölder’s inequality, one has, for all x ∈ l2 with ‖x‖2 < δ, that∣∣∣ ∞∑
i=1

1

i
xi

∣∣∣ ≤ ∞∑
i=1

∣∣∣1
i
xi

∣∣∣ ≤ ( ∞∑
i=1

1

i2

)1/2( ∞∑
i=1

|xi|2
)1/2

=
π√
6
‖x‖2 <

π√
6
δ = ε.
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It follows that l is continuous and that, for each x ∈ l2, one has |l(x)| ≤ π√
6
‖x‖2. In

particular, ‖l‖ ≤ π√
6
. Define now the element x = (xi)i∈N of l2 by xi = 1/i. Then

one has
|l(x)|
‖x‖2

=
∣∣∣ ∞∑
i=1

1

i2

∣∣∣/( ∞∑
i=1

1

i2

)1/2
=
( ∞∑
i=1

1

i2

)1/2
=

π√
6
.

It follows that ‖l‖ = π/
√

6.

(iii) We claim that the operator l is not continuous. We will exhibit x ∈ l2 such

that l(x) is not finite. Let x = (xi)i≥1 be defined by xi = 1/i. Then x is an element

of l2 of norm π/
√

6. We now claim that l(x) is not a convergent series. Indeed,

playing with the parities of the indices, one computes

l(x) =

∞∑
i=1

(1− (−1)i)(i− 1)

i2
=

∞∑
i=1

2(2i+ 1− 1)

(2i+ 1)2
=

∞∑
i=1

4i

(2i+ 1)2
.

We now will ‘fill in the slots of the even indices’ to show that
∑∞
i=1

4i
(2i+1)2 is

divergent. Indeed, for each i ≥ 1, one has that

3i

(2i+ 1)2
≥ i

(2i)2

and therefore
∞∑
i=1

4i

(2i+ 1)2
≥
∞∑
i=1

( i

(2i)2
+

i

(2i+ 1)2

)
=

1

2

∞∑
i=1

1

i
+

∞∑
i=1

i

(2i+ 1)2
=∞.

(iv) We prove continuity at 0. To this end, let ε > 0 and take f ∈ C[0, 1] with

‖f‖ < ε. Since the image of sign belongs to [−1, 1], we have∣∣∣ ∫ 1

0

f(t) sign
(
t− 1

2

)
dt
∣∣∣ ≤ ∫ 1

0

∣∣∣f(t) sign
(
t− 1

2

)∣∣∣dt ≤ ∫ 1

0

|f(t)|dt ≤ ‖f‖ < ε.

The choice of ε being arbitrary, we have proven that f is continuous. Moreover, we

have proven that, for each f ∈ C[0, 1], one has |l(f)| ≤ ‖f‖ and therefore ‖l‖ ≤ 1.

Define now f : [0, 1]→ R to be t 7→ f(t) = 4t+ 2, which is a continuous map. Then

one can compute

|l(f)| =
∣∣∣ ∫ 1

0

(4t− 2) sign
(
t− 1

2

)
dt
∣∣∣ =

∣∣∣ ∫ 1/2

0

(−4t+ 2)dt+

∫ 1

1/2

(4t− 2)dt
∣∣∣ = 1

and therefore ‖l‖ = 1.


