OQE - PROBLEM SET 5 - SOLUTIONS

Exercise 1. Let (X, d) be a metric space, where d is the discrete metric. We claim that (X, d) is
(a) complete;
(b) separable if and only if X is countable.
(a) Similarly to Exercise 4 from Problem Set 2, one shows that Cauchy sequences in (X, d) are stationary and therefore convergent.
(b) We saw multiple times in class that each subset of X is open, since the metric is discrete, and therefore each subset of X is closed. It follows from Theorem 1.3.6(iv) that X is separable if and only if it is countable.

Exercise 2. Let (X, d) and (Y, ρ) be metric spaces and let $f: X \rightarrow Y$ be a continuous function. Let A be a dense subset of X. We show that $f(A)$ is dense in $f(X)$. Define $Z=f(X)$. We will show that, for each $z \in Z$ and for each $\epsilon>0$, the intersection $\mathrm{B}_{\epsilon}(z) \cap f(A)$ is non-empty. To this end, let $z \in Z$ and $\epsilon>0$. Let moreover $x \in X$ be such that $f(x)=z$. By the continuity of f, there exists $\delta>0$ such that $f\left(\mathrm{~B}_{\delta}(x)\right) \subseteq \mathrm{B}_{\epsilon}(z)$. Moreover, since A is dense in X, there exists $a \in A \cap \mathrm{~B}_{\delta}(x)$. Fix such element a. Then

$$
f(a) \in f(A) \cap f\left(\mathrm{~B}_{\delta}(x)\right) \subseteq f(A) \cap \mathrm{B}_{\epsilon}(z)
$$

and therefore $f(A) \cap \mathrm{B}_{\epsilon}(z) \neq \emptyset$.
Exercise 3. Let $1 \leq p<\infty$ and let $r \in \mathbb{R}$. We claim that the sequence $\left(r^{n}\right)_{n \in \mathbb{N}}$ belongs to l_{p} if and only if $|r|<1$, in which case $\left\|\left(r^{n}\right)_{n}\right\|_{p}=\left(\frac{|r|^{p}}{\left(1-|r|^{p}\right)}\right)^{1 / p}$. We recall that $\left(r^{n}\right)_{n \in \mathbb{N}}$ belongs to l_{p} if and only if $\sum_{n \geq 1}\left|r^{n}\right|^{p}$ is convergent. One can rewrite

$$
\sum_{n \geq 1}\left|r^{n}\right|^{p}=\sum_{n \geq 1}\left|r^{p}\right|^{n}
$$

which is a geometric series with 'base' $\left|r^{p}\right|$ and therefore convergent if and only if $\left|r^{p}\right|<1$. However, $|r|^{p}=\left|r^{p}\right|$ is smaller than 1 if and only if $|r|$ itself is smaller than 1 and therefore our first claim is proven. For $|r|<1$, we now compute

$$
\left\|\left(r^{n}\right)_{n}\right\|_{p}=\left(\sum_{n \geq 1}\left|r^{p}\right|^{n}\right)^{1 / p}=\left(\frac{|r|^{p}}{1-|r|^{p}}\right)^{1 / p}
$$

and therefore the second claim is proven too.

Exercise 4. We claim that
(i) $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$ does not belong to l_{1};
(ii) $\left(\frac{\sin (\pi n)}{n^{2}}\right)_{n \in \mathbb{N}}$ belongs to l_{1}.
(i) One has

$$
\sum_{n \geq 1}\left|\frac{1}{n}\right|=\sum_{n \geq 1} \frac{1}{n}=\infty
$$

and so $\left(\frac{1}{n}\right)_{n}$ does not belong to l_{1}.
(ii) One computes

$$
\sum_{n \geq 1}\left|\frac{\sin (\pi n)}{n^{2}}\right| \leq \sum_{n \geq 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

and therefore $\left(\frac{\sin (\pi n)}{n^{2}}\right)_{n}$ belong to l_{1}.
Exercise 5. We show that the map

$$
f \mapsto F(f)=\frac{1}{2} \int_{0}^{t} f(s) d s+1
$$

is a contraction in $C[0,1]$ of modulus $\frac{1}{2}$ and we find the fixed point of F using Banach's algorithm. For each $f, g \in C[0,1]$, we have

$$
\begin{aligned}
& \|F(f)-F(g)\|=\max _{t \in[0,1]}\left|\frac{1}{2} \int_{0}^{t}(f(s)-g(s)) d s\right|=\frac{1}{2} \max _{t \in[0,1]}\left|\int_{0}^{t}(f(s)-g(s)) d s\right| \\
& \leq \frac{1}{2} \max _{t \in[0,1]}\left(t \max _{s \in[0, t]}|f(s)-g(s)|\right) \leq \frac{1}{2} \max _{t \in[0,1]}\left(t \max _{s \in[0,1]}|f(s)-g(s)|\right) \leq \frac{1}{2}\|f-g\|
\end{aligned}
$$

and so F is a contraction of modulus $\frac{1}{2}$. We now compute f^{*}, the unique fixed point of F, using Banach's algorithm. We set $f_{0}(t)=0$ and $f_{n+1}(t)=F\left(f_{n}\right)(t)$. We claim that, for each $n \in \mathbb{N}$, one has

$$
f_{n+1}(t)=\sum_{k=0}^{n} \frac{(t / 2)^{k}}{k!}
$$

We prove the claim by induction on n. One easily computes that, for all $t \in[0,1]$, one has $f_{1}(t)=1$ and $f_{2}(t)=\frac{1}{2} t+1$. We now assume that $n \geq 2$ and that $f_{n}(t)=\sum_{k=0}^{n-1} \frac{(t / 2)^{k}}{k!}$. For each $t \in[0,1]$, we then have

$$
\begin{gathered}
f_{n+1}(t)=F\left(f_{n}\right)(t)=\frac{1}{2} \int_{0}^{t}\left(\sum_{k=0}^{n-1} \frac{(s / 2)^{k}}{k!}\right) d s+1=\frac{1}{2} \sum_{k=0}^{n-1} \frac{1}{k!2^{k}}\left(\frac{t^{k+1}}{k+1}\right)+1= \\
\sum_{k=0}^{n-1} \frac{t^{k+1}}{(k+1)!2^{k+1}}+1=\sum_{k=1}^{n} \frac{t^{k}}{(k)!2^{k}}+1=\sum_{k=0}^{n} \frac{t^{k}}{(k)!2^{k}}=\sum_{k=0}^{n} \frac{(t / 2)^{k}}{(k)!}
\end{gathered}
$$

and so the claim is proven. To conclude, we compute the point-wise limit of the sequence $\left(f_{n}\right)_{n}$. For each $t \in C[0,1]$, we get

$$
\left(\lim _{n \rightarrow \infty} f_{n}\right)(t)=\sum_{k=0}^{\infty} \frac{(t / 2)^{k}}{(k)!}=e^{t / 2}
$$

Exercise 6. (i) We claim that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, where $f_{n} \in C[0,1]$ is defined by $t \mapsto f_{n}(t)=t^{2 n}$, is not convergent in $C[0,1]$. Indeed, for each $t \in[0,1)$, the limit $\lim _{n \rightarrow \infty} t^{2 n}$ is equal to 0 , while $1^{2 n}=1$ for any choice of n.
(ii) We claim that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, defined by $t \mapsto f_{n}(t)=t e^{-n t}$ is convergent in $C[0,1]$ to the function $t \mapsto 0$. Indeed, one has

$$
\left\|f_{n}\right\|=\max _{t \in[0,1]}\left|t e^{-n t}\right|=\max _{t \in[0,1]}\left|t\left(e^{t}\right)^{-n}\right|
$$

where $t \in[0,1]$ and therefore $e^{t} \geq 1$. It follows that, for each $t \in[0,1]$, one has

$$
0 \leq t e^{-n t} \leq e^{-n t}
$$

and so, since $\lim _{n \rightarrow \infty}\left(e^{t}\right)^{-n}=0$, we get $\lim _{n \rightarrow \infty} t e^{-n t}=0$.
(iii) We claim that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, defined by $t \mapsto f_{n}(t)=t e^{-t / n}$ is convergent in $C[0,1]$ to the function $t \mapsto t$. Indeed, for each $n \in \mathbb{N}$, we can compute

$$
\left\|f_{n}-\operatorname{id}_{[0,1]}\right\|=\max _{t \in[0,1]}\left|t e^{-t / n}-t\right|=\max _{t \in[0,1]}\left|t\left(e^{-t / n}-1\right)\right| \leq \max _{t \in[0,1]}\left|e^{-t / n}-1\right|
$$

and, since, for each $t \in[0,1]$, one has $\lim _{n \rightarrow \infty} e^{-t / n}=1$, the $\operatorname{limit}^{\lim _{n \rightarrow \infty}\left\|f_{n}-\mathrm{id}\right\|}$ is equal to 0 . As a consequence, $f_{n} \rightarrow$ id in $C[0,1]$.
(iv) We claim that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, defined by $t \mapsto f_{n}(t)=n^{-1} \sin (\pi n t)$ is convergent in $C[0,1]$ to the function $t \mapsto 0$. For each natural number n, one has indeed

$$
\left\|f_{n}\right\|=\max _{t \in[0,1]}\left|\frac{\sin (\pi n t)}{n}\right| \leq \frac{1}{n}
$$

which converges to 0 as $n \rightarrow \infty$.
(v) We claim that the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, where $t \mapsto f_{n}(t)=\sin (\pi t)^{n}$, is not convergent in $C[0,1]$. Indeed, if $t \neq 1 / 2$, then $|\sin (\pi t)|<1$ and therefore, for each $t \neq 1 / 2$, one has $\lim _{n \rightarrow \infty} f_{n}(t)=0$. However, for each $n \in \mathbb{N}$, we have $f_{n}(1 / 2)=1$ and therefore $\left(f_{n}\right)_{n}$ cannot converge to a continuous function.
(vi) The sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, defined by $t \mapsto f_{n}(t)=\frac{1}{1+n t^{2}}$, is not convergent in $C[0,1]$. As in the previous example, consider the case $t=0$ and $t \in(0,1]$ separately.

Exercise 7. We claim that $C_{0}(\mathbb{R})$, together with the sup-norm, is a Banach space. We first claim that $C_{0}(\mathbb{R})$ is a subset of $C_{b}(\mathbb{R})$, i.e. the collection of bounded continuous functions $\mathbb{R} \rightarrow \mathbb{R}$. To this end, let $\epsilon>0$ and let $f \in C_{0}(\mathbb{R})$. Since $\lim _{|t| \rightarrow \infty} f(t)=0$, there exists $r \in \mathbb{R}_{>0}$ such that, for each $x \in(-\infty,-r) \cup(r,+\infty)$, one has $|f(x)|<\epsilon$. Moreover, we know by real analysis that, being continuous, f is bounded on the closed interval $[-r, r]$ and therefore $f \in C_{b}(\mathbb{R})$. The choices of f and ϵ being arbitrary, we have proved the claim. Our next claim is that $C_{0}(\mathbb{R})$ is closed in $C_{b}(\mathbb{R})$. To show that, let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $C_{0}(\mathbb{R})$ converging to an element $f \in C_{b}(\mathbb{R})$. Then, for each $\epsilon>0$, there exists $N \in \mathbb{N}$ such that,
for all $n>N$, one has $\left\|f_{n}-f\right\|<\epsilon$. In particular, for each $x \in \mathbb{R}$, one has $\left|f_{n}(x)-f(x)\right|<\epsilon$ and therefore, for each $x \in \mathbb{R}$

$$
-\epsilon+f_{n}(x)<f(x)<f_{n}(x)+\epsilon
$$

If we now let $|x| \rightarrow \infty$, we get that $-\epsilon<\lim _{|x| \rightarrow \infty} f(x)<\epsilon$ and so, the choice of ϵ being arbitrary, it follows that $\lim _{|x| \rightarrow \infty} f(x)=0$. We have proven that $f \in C_{0}(\mathbb{R})$ and so, as a consequence of Theorem 1.3 .8 from the notes, the subset $C_{0}(\mathbb{R})$ is closed in $C_{b}(\mathbb{R})$. Corollary 1.9.4 together with Exercise 1.5.5 from the notes yields the completeness of $C_{0}(\mathbb{R})$.

Exercise 8. We check continuity and compute the norms of the following operators:
(i) $l: l_{1} \rightarrow \mathbb{R}$, defined by $x=\left(x_{i}\right)_{i \in \mathbb{N}} \mapsto l(x)=\sum_{i=1}^{\infty}\left(1-\frac{1}{i}\right) x_{i}$;
(ii) $l: l_{2} \rightarrow \mathbb{R}$, defined by $x=\left(x_{i}\right)_{i \in \mathbb{N}} \mapsto l(x)=\sum_{i=1}^{\infty} \frac{1}{i} x_{i}$;
(iii) $l: l_{2} \rightarrow \mathbb{R}$, defined by $x=\left(x_{i}\right)_{i \in \mathbb{N}} \mapsto l(x)=\sum_{i=1}^{\infty}\left(\frac{\left(1-(-1)^{i}\right)(i-1)}{i}\right) x_{i}$;
(iv) $l: C[0,1] \rightarrow \mathbb{R}$, defined by $f \mapsto l(f)=\int_{0}^{1} f(t) \operatorname{sign}\left(t-\frac{1}{2}\right) d t$.

Throughout the whole exercise we will make constant use of Theorem 1.10.1 from the notes.
(i) We prove continuity at 0 . To this end, let $\epsilon>0$ and let $x=\left(x_{i}\right)_{i \in \mathbb{N}} \in l_{1}$ be such that $\|x\|_{1}<\epsilon$. Then one has

$$
|l(x)|=\left|\sum_{i=1}^{\infty}\left(1-\frac{1}{i}\right) x_{i}\right| \leq \sum_{i=1}^{\infty}\left(1-\frac{1}{i}\right)\left|x_{i}\right| \leq \sum_{i=1}^{\infty}\left|x_{i}\right|=\|x\|_{1}<\epsilon
$$

and so, the choice of ϵ being arbitrary, l is continuous. We now claim that

$$
\|l\|=\sup _{\|x\|_{1} \leq 1}|l(x)|=1
$$

We prove that, for each $x \in l_{1}$, one has $|l(x)| \leq\|x\|_{1}$ and therefore $\|l\| \leq 1$. Define now, for each $k \in \mathbb{N}$, the element $x_{k}=\left(x_{k, i}\right)_{i \in \mathbb{N}}$ of l_{1} by

$$
x_{k, i}= \begin{cases}1 & \text { if } i=k \\ 0 & \text { otherwise }\end{cases}
$$

Then, for each $k \in \mathbb{N}$, the norm of e_{k} is equal to 1 and the value of $\left|l\left(e_{k}\right)\right|$ is $1-\frac{1}{k}$. We conclude by observing that

$$
1=\lim _{k \rightarrow \infty}\left|l\left(e_{k}\right)\right| \leq \sup _{\|x\|_{1} \leq 1}|l(x)|=\|l\| \leq 1
$$

and therefore $\|l\|=1$.
(ii) We prove continuity at 0 . To this end, let $\epsilon>0$ and define $\delta=\frac{\sqrt{6} \epsilon}{\pi}$. Then, using Hölder's inequality, one has, for all $x \in l_{2}$ with $\|x\|_{2}<\delta$, that

$$
\left|\sum_{i=1}^{\infty} \frac{1}{i} x_{i}\right| \leq \sum_{i=1}^{\infty}\left|\frac{1}{i} x_{i}\right| \leq\left(\sum_{i=1}^{\infty} \frac{1}{i^{2}}\right)^{1 / 2}\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}\right)^{1 / 2}=\frac{\pi}{\sqrt{6}}\|x\|_{2}<\frac{\pi}{\sqrt{6}} \delta=\epsilon
$$

It follows that l is continuous and that, for each $x \in l_{2}$, one has $|l(x)| \leq \frac{\pi}{\sqrt{6}}\|x\|_{2}$. In particular, $\|l\| \leq \frac{\pi}{\sqrt{6}}$. Define now the element $x=\left(x_{i}\right)_{i \in \mathbb{N}}$ of l_{2} by $x_{i}=1 / i$. Then one has

$$
\frac{|l(x)|}{\|x\|_{2}}=\left|\sum_{i=1}^{\infty} \frac{1}{i^{2}}\right| /\left(\sum_{i=1}^{\infty} \frac{1}{i^{2}}\right)^{1 / 2}=\left(\sum_{i=1}^{\infty} \frac{1}{i^{2}}\right)^{1 / 2}=\frac{\pi}{\sqrt{6}}
$$

It follows that $\|l\|=\pi / \sqrt{6}$.
(iii) We claim that the operator l is not continuous. We will exhibit $x \in l_{2}$ such that $l(x)$ is not finite. Let $x=\left(x_{i}\right)_{i \geq 1}$ be defined by $x_{i}=1 / i$. Then x is an element of l_{2} of norm $\pi / \sqrt{6}$. We now claim that $l(x)$ is not a convergent series. Indeed, playing with the parities of the indices, one computes

$$
l(x)=\sum_{i=1}^{\infty} \frac{\left(1-(-1)^{i}\right)(i-1)}{i^{2}}=\sum_{i=1}^{\infty} \frac{2(2 i+1-1)}{(2 i+1)^{2}}=\sum_{i=1}^{\infty} \frac{4 i}{(2 i+1)^{2}}
$$

We now will 'fill in the slots of the even indices' to show that $\sum_{i=1}^{\infty} \frac{4 i}{(2 i+1)^{2}}$ is divergent. Indeed, for each $i \geq 1$, one has that

$$
\frac{3 i}{(2 i+1)^{2}} \geq \frac{i}{(2 i)^{2}}
$$

and therefore

$$
\sum_{i=1}^{\infty} \frac{4 i}{(2 i+1)^{2}} \geq \sum_{i=1}^{\infty}\left(\frac{i}{(2 i)^{2}}+\frac{i}{(2 i+1)^{2}}\right)=\frac{1}{2} \sum_{i=1}^{\infty} \frac{1}{i}+\sum_{i=1}^{\infty} \frac{i}{(2 i+1)^{2}}=\infty
$$

(iv) We prove continuity at 0 . To this end, let $\epsilon>0$ and take $f \in C[0,1]$ with $\|f\|<\epsilon$. Since the image of sign belongs to $[-1,1]$, we have

$$
\left|\int_{0}^{1} f(t) \operatorname{sign}\left(t-\frac{1}{2}\right) d t\right| \leq \int_{0}^{1}\left|f(t) \operatorname{sign}\left(t-\frac{1}{2}\right)\right| d t \leq \int_{0}^{1}|f(t)| d t \leq\|f\|<\epsilon
$$

The choice of ϵ being arbitrary, we have proven that f is continuous. Moreover, we have proven that, for each $f \in C[0,1]$, one has $|l(f)| \leq\|f\|$ and therefore $\|l\| \leq 1$. Define now $f:[0,1] \rightarrow \mathbb{R}$ to be $t \mapsto f(t)=4 t+2$, which is a continuous map. Then one can compute

$$
|l(f)|=\left|\int_{0}^{1}(4 t-2) \operatorname{sign}\left(t-\frac{1}{2}\right) d t\right|=\left|\int_{0}^{1 / 2}(-4 t+2) d t+\int_{1 / 2}^{1}(4 t-2) d t\right|=1
$$

and therefore $\|l\|=1$.

