OQE - PROBLEM SET 6 - SOLUTIONS

Exercise 1. Let A and B be compact subsets of a metric space (X, d). We show that $A \cap B$ and $A \cup B$ are also compact. We start from $A \cup B$. Let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be an open cover of $A \cup B$. Then \mathcal{U} is also an open cover of A and B. Because of their compactness, there exist finite subsets I_{A} and I_{B} of I such that $\left\{U_{i}\right\}_{i \in I_{A}}$ is an open cover of A and $\left\{U_{i}\right\}_{i \in I_{B}}$ is an open cover of B. It follows then that $\left\{U_{i}\right\}_{i \in I_{A} \cup I_{B}}$ is an open cover of $A \cup B$. Since $I_{A} \cup I_{B}$ is finite and \mathcal{U} is arbitrary, the set $A \cup B$ is compact. We now move to $A \cap B$. By Theorem 1.11.4, both A and B are closed in X and so $A \cap B$ is closed. It follows from Theorem 1.11.5 that $A \cap B$ is compact.

Exercise 2. Let (X, d) be a discrete metric space. We claim that X is compact if and only if it is finite. The implication from right to left is clear, so we prove the other one. Assume that X is compact. Then each open cover \mathcal{U} of X admits a finite subcover. Define

$$
\mathcal{U}=\left\{\mathrm{B}_{1}(x): x \in X\right\}
$$

Since, for each $x \in X$, one has $\mathrm{B}_{1}(x)=\{x\}$, the only subcover of \mathcal{U} is \mathcal{U} itself. The set X being compact, it follows that \mathcal{U} is finite and therefore so is X.

Exercise 3. Let $f: X \rightarrow Y$ be a continuous map of metric spaces. Assume that X is compact. We show that $f(X)$ is compact. To this end, let \mathcal{V} be an open cover of $f(X)$. The map f being continuous, it follows from Theorem 1.4.6 that

$$
\mathcal{U}=\left\{f^{-1}(V): V \in \mathcal{V}\right\}
$$

is an open cover of X. Thanks to the compactness of X, there exists a finite open subcover \mathcal{U}_{f} of X. We get a finite subcover of \mathcal{V} by taking the collection $\left\{f(U): U \in \mathcal{U}_{f}\right\}$.

Exercise 4. In this exercise, we will determine whether the following subsets of \mathbb{R}^{2} are compact
(a) $A=(\mathbb{Q} \cap[0,1]) \times[0,1]$;
(b) $B=\left\{(x, y) \in \mathbb{R}^{2}: x=0\right\}$;
(c) $C=\left(\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}\right) \times[0,1]$;
(d) $D=\left\{\left(\frac{1}{n}, \frac{n-1}{n}\right): n \in \mathbb{N}\right\}$.

We will be using Theorem 1.11.6.
(a) We claim that A is not compact. To show so, we will prove, by contradiction,
that A is not closed. Assume it is. Since the y-axis $A_{y}=\mathbb{R} \times\{0\}$ is closed in \mathbb{R}^{2}, the intersection $A \cap A_{y}$ is also closed. However, we have that

$$
A \cap A_{y}=\left\{(x, 0) \in \mathbb{R}^{2}: x \in \mathbb{Q} \cap[0,1]\right\}
$$

and it is not difficult to produce a sequence in $A \cap A_{y}$ with limit outside $A \cap A_{y}$. Contradiction to Theorem 1.3.8.
(b) We claim that B is not compact. For each $n \in \mathbb{Z}$, define U_{n} to be the open ball $\mathrm{B}_{1}((0, n))$. Then $\mathcal{U}=\left\{U_{n}\right\}_{n \in \mathbb{Z}}$ is an open covering of B, which however does not admit a subcover. Indeed, for each $n \in \mathbb{Z}$, the only element of \mathcal{U} to which $(0, n)$ belongs is U_{n} and therefore each element of U_{n} is necessary to cover B.
(c) We claim that C is compact and we will prove it by showing that C is closed and bounded in \mathbb{R}^{2}. The set C is contained in the closed square $S=[0,1] \times[0,1]$ and it is therefore bounded. To show that C is closed, we prove that its complement is open. To this end, let $x \in \mathbb{R}^{2} \backslash C$. If x is not in S, then, as a consequence of exercise 3 from Problem Set 3, the distance $d(x, S)$ is positive. Because of its definition, $\mathrm{B}_{d(x, S)}(x)$ is then contained in $\mathbb{R}^{2} \backslash C$. Assume now that $x \in S$. Then x has coordinates $\left(x_{1}, x_{2}\right)$, where $0 \leq x_{1}, x_{2} \leq 1$ and, since x does not belong to C, there exists $n \in \mathbb{N}$ such that $\frac{1}{n+1}<x_{1}<\frac{1}{n}$. We define $\epsilon=\min \left\{x_{1}-\frac{1}{n+1}, \frac{1}{n}-x_{1}\right\}$ and we note that, by construction, the ball $\mathrm{B}_{\epsilon}(x)$ is entirely contained in S. We have proven that, for each $x \in \mathbb{R}^{2} \backslash C$, there exists $\epsilon>0$ such that $\mathrm{B}_{\epsilon}(x) \subseteq \mathbb{R}^{2} \backslash C$ and therefore $\mathbb{R}^{2} \backslash C$ is open.
(d) We show that D is not compact by showing that it is not closed. Indeed, define the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in D by $x_{n}=\left(\frac{1}{n}, \frac{n-1}{n}\right)$. Then $\left(x_{n}\right)_{n}$ is a sequence in D, whose limit point $(0,1)$ does not lie in D.

Exercise 5. We show that the closed ball $\overline{\mathrm{B}_{1}(0)}$ is not a sequentially compact subspace of l_{∞}. We will do so by constructing a sequence in $\overline{\mathrm{B}_{1}(0)}$ which does not admit a converging subsequence. We define, for each $n \in \mathbb{N}$, the element $x_{n}=\left(x_{n, k}\right)_{k \in \mathbb{N}}$ of l_{∞} by means of

$$
x_{n, k}= \begin{cases}1 & \text { if } n=k \\ 0 & \text { otherwise }\end{cases}
$$

Then, for each $n \in \mathbb{N}$, one has $\left\|x_{n}\right\|_{\infty}=1$ and so the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is in $\overline{\mathrm{B}_{1}(0)}$. Assume now by contradiction that $\left(x_{n_{r}}\right)_{r \in \mathbb{N}}$ is a subsequence of $\left(x_{n}\right)_{n}$ that is convergent. In particular $\left(x_{n_{r}}\right)_{r}$ is Cauchy and so, for each $1>\epsilon>0$, there exists $N \in \mathbb{N}$ such that, for all $r, s>N$, one has $\left\|x_{n_{r}}-x_{n_{s}}\right\|<\epsilon$. However, if $r \neq s$, the element $x_{n_{r}}-x_{n_{s}}=\left(y_{i}\right)_{i \geq 1}$ of l_{∞} is given by

$$
y_{i}= \begin{cases}1 & \text { if } i=r \\ -1 & \text { if } i=s \\ 0 & \text { otherwise }\end{cases}
$$

and therefore $\left\|x_{n_{r}}-x_{n_{s}}\right\|=1$. Contradiction.
Exercise 6. Let K be a non-empty compact subset of \mathbb{R}^{2}. We will show that there exists $x^{*} \in K$ such that

$$
d\left(x^{*}, 0\right)=\sup _{x \in K} d(x, 0) .
$$

We know from Exercise 5 from Problem Set 3 that the function $f: K \rightarrow \mathbb{R}$ that is defined by $x \mapsto f(x)=d(x, 0)$ is uniformly continuous and, in particular, continuous. Applying Theorem 1.12.3, we get that there exists an element $x^{*}=x_{\max } \in K$ such that $f\left(x^{*}\right)=\sup _{x \in K} f(x)$.

Exercise 7. We will show that $A=\{f \in C[0,1]: f(0)=1\}$ is a closed subset of $C[0,1]$. To do so, we will show that each sequence of elements of A that converges in $C[0,1]$ actually converges in A. To this end, let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence in A with limit $f \in C[0,1]$. Then, as n goes to infinity, we have that $\left\|f_{n}-f\right\| \rightarrow 0$. As a consequence, for each $t \in[0,1]$, one has $\lim _{n \rightarrow \infty}\left|f_{n}(t)-f(t)\right|=0$ and so in particular,

$$
\lim _{n \rightarrow \infty}|1-f(0)|=\lim _{n \rightarrow \infty}\left|f_{n}(0)-f(0)\right|=0
$$

It follows that $\lim _{n \rightarrow \infty} f(0)=1$ and therefore $f \in A$. The choice of $\left(f_{n}\right)_{n \in \mathbb{N}}$ being arbitrary, the subset A is closed.

