OQE - PROBLEM SET 6 - SOLUTIONS

Exercise 1. Let A and B be compact subsets of a metric space (X, d). We show
that AN B and AU B are also compact. We start from AU B. Let U = {U, }ics be
an open cover of AU B. Then U is also an open cover of A and B. Because of their
compactness, there exist finite subsets I4 and I of I such that {U; };¢5, is an open
cover of A and {U,}ier,, is an open cover of B. It follows then that {U;}icr,ur, is
an open cover of AU B. Since I4 U Ig is finite and U is arbitrary, the set AU B is
compact. We now move to AN B. By Theorem 1.11.4, both A and B are closed in
X and so AN B is closed. It follows from Theorem 1.11.5 that AN B is compact.

Exercise 2. Let (X,d) be a discrete metric space. We claim that X is compact
if and only if it is finite. The implication from right to left is clear, so we prove
the other one. Assume that X is compact. Then each open cover U of X admits a
finite subcover. Define

U={Bi(x):ze X}

Since, for each x € X, one has B;(z) = {x}, the only subcover of U is U itself. The
set X being compact, it follows that ¢/ is finite and therefore so is X.

Exercise 3. Let f: X — Y be a continuous map of metric spaces. Assume that
X is compact. We show that f(X) is compact. To this end, let V be an open cover
of f(X). The map f being continuous, it follows from Theorem 1.4.6 that

U={f(V):VeV}

is an open cover of X. Thanks to the compactness of X, there exists a finite

open subcover Uy of X. We get a finite subcover of V by taking the collection
{f(U) :U € Uy}.

Exercise 4. In this exercise, we will determine whether the following subsets of
R? are compact

(a) A=(QN[0,1]) x [0, 1];

(b) B ={(x,y) € R?: 2 =0};

(¢) C=({0}U{L:neN}) x [0, 1];

(@) D={(%,%2) in e N},
We will be using Theorem 1.11.6.

(a) We claim that A is not compact. To show so, we will prove, by contradiction,
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that A is not closed. Assume it is. Since the y-axis 4, = R x {0} is closed in R?,

the intersection A N A, is also closed. However, we have that
ANA, ={(x0€eR*:2€Qn[0,1]}

and it is not difficult to produce a sequence in A N A, with limit outside AN A,.
Contradiction to Theorem 1.3.8.

(b) We claim that B is not compact. For each n € Z, define U,, to be the open ball
B1((0,n)). Then U = {Up,}nez is an open covering of B, which however does not
admit a subcover. Indeed, for each n € Z, the only element of & to which (0,n)
belongs is U,, and therefore each element of U,, is necessary to cover B.

(¢) We claim that C' is compact and we will prove it by showing that C'is closed and
bounded in R?. The set C is contained in the closed square S = [0,1] x [0,1] and
it is therefore bounded. To show that C' is closed, we prove that its complement
is open. To this end, let * € R? \ C. If x is not in S, then, as a consequence
of exercise 3 from Problem Set 3, the distance d(zx,S) is positive. Because of its
definition, By(,,5)() is then contained in R?\ C. Assume now that € S. Then
x has coordinates (1, z2), where 0 < z1, 22 < 1 and, since x does not belong to C,
there exists n € N such that n%rl <z < % We define € = min{z; — n%rl,% -1}
and we note that, by construction, the ball B.(z) is entirely contained in S. We
have proven that, for each z € R?\ C, there exists € > 0 such that B.(z) C R?\ C
and therefore R? \ C is open.

(d) We show that D is not compact by showing that it is not closed. Indeed, define
the sequence (2, )nen in D by z,, = (£, 2=1). Then (z,), is a sequence in D, whose

limit point (0,1) does not lie in D.

Exercise 5. We show that the closed ball B1(0) is not a sequentially compact
subspace of Io,. We will do so by constructing a sequence in B;(0) which does
not admit a converging subsequence. We define, for each n € N, the element

T = (Tnk)keN Of loo by means of

1 ifn==k,
Tn,k = .
0 otherwise .
Then, for each n € N, one has ||z,]lcc = 1 and so the sequence (z,)nen is in

B;1(0). Assume now by contradiction that (z,, )ren is a subsequence of (zy,), that
is convergent. In particular (z,, ), is Cauchy and so, for each 1 > e > 0, there
exists N € N such that, for all r,s > N, one has ||z, — z,_|| < e. However, if
r # s, the element x,,, — @, = (y;)i>1 of I is given by
1 if i=m,
yi =4 —1 if i =s,

0 otherwise
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and therefore ||z, — x, || = 1. Contradiction.

Exercise 6. Let K be a non-empty compact subset of R?. We will show that
there exists * € K such that
d(z*,0) = sup d(z,0).
€K
We know from Exercise 5 from Problem Set 3 that the function f: K — R that is
defined by = — f(z) = d(x,0) is uniformly continuous and, in particular, continu-
ous. Applying Theorem 1.12.3, we get that there exists an element z* = x . € K

such that f(z*) = sup,cx f(2).

Exercise 7. We will show that A = {f € C[0,1] : f(0) = 1} is a closed subset of
C[0,1]. To do so, we will show that each sequence of elements of A that converges
in C[0,1] actually converges in A. To this end, let (f,)nen be a sequence in A
with limit f € C[0,1]. Then, as n goes to infinity, we have that || f, — f|| — 0.
As a consequence, for each t € [0, 1], one has lim, o |frn(t) — f(t)] = 0 and so in
particular,
lim 1 £(0)] = lim [£,(0) ~ £(0)] =0.

It follows that lim,_,~ f(0) = 1 and therefore f € A. The choice of (f)nen being
arbitrary, the subset A is closed.



