OQE - PROBLEM SET 7 - SOLUTIONS

Exercise 1. We show that the following functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$
(a) $f(x, y)=2 x+y$.
(b) $g(x, y)=x^{2}+y^{2}$.
are partially differentiable with respect to both x and y everywhere in \mathbb{R}^{2}.
(a) We compute

$$
\begin{aligned}
D_{1} f(x, y) & =\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)+y-(2 x+y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h}{h} \\
& =2
\end{aligned}
$$

and

$$
\begin{aligned}
D_{2} f(x, y) & =\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x+y+h-(2 x+y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =1
\end{aligned}
$$

The choice of (x, y) being arbitrary in \mathbb{R}^{2}, the function f is partially differentiable. (b) We compute

$$
\begin{aligned}
D_{1} g(x, y) & =\lim _{h \rightarrow 0} \frac{g(x+h, y)-g(x, y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+y^{2}-\left(x^{2}+y^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h=2 x
\end{aligned}
$$

and

$$
\begin{aligned}
D_{1} g(x, y) & =\lim _{h \rightarrow 0} \frac{g(x, y+h)-g(x, y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+(y+h)^{2}-\left(x^{2}+y^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h y+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 y+h=2 y .
\end{aligned}
$$

The choice of (x, y) being arbitrary, g is everywhere partially differentiable in \mathbb{R}^{2}.
Exercise 2. We compute the gradient of the following functions $\mathbb{R}^{3} \rightarrow \mathbb{R}$
(a) $f(x, y, z)=x^{2}+z e^{2 y}$.
(b) $g(x, y)=e^{x y z}$.

According to Definition 2.1.4, the gradient of a function is the vector of all partial derivatives. We get
(a) $\nabla f(x, y, z)=\left(2 x, 2 z e^{2 y}, e^{2 y}\right)$.
(b) $\nabla g(x, y, z)=\left(y z e^{x y z}, x z e^{x y z}, x y e^{x y z}\right)$.

Exercise 3. We calculate the directional derivative of the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, defined by $(x, y) \mapsto f(x, y)=\sin (x y)$, along $v=(1 / 2, \sqrt{3} / 2)$ and at $(1,0)$. We get

$$
\begin{aligned}
\partial_{v} f(1,0) & =\lim _{h \rightarrow 0} \frac{f(1+h / 2,0+(\sqrt{3} h) / 2)-f(1,0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\sin \left(\frac{(2+h)(\sqrt{3} h)}{4}\right)-\sin (0)\right) \\
& =\lim _{h \rightarrow 0} \frac{(2+h)(\sqrt{3} h)}{4 h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{3}(2+h)}{4}=\frac{\sqrt{3}}{2} .
\end{aligned}
$$

Alternatively, one can use the relationship between ∇f and $D_{v} f$.
Exercise 4. We calculate the derivative of $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$, defined by $(x, y, z) \mapsto$ $g(x, y, z)=e^{x y z}$ along $v=(1 / \sqrt{6}, \sqrt{2 / 3},-1 / \sqrt{6})$ and at $(1,1,1)$. We know from Exercise $2 b$ that $\nabla g(x, y, x)=\left(y z e^{x y z}, x z e^{x y z}, x y e^{x y z}\right)$ and so we compute

$$
\begin{aligned}
D_{v} g(1,1,1) & =\langle\nabla g(1,1,1),(1 / \sqrt{6}, \sqrt{2 / 3},-1 / \sqrt{6})\rangle \\
& =\langle(e, e, e),(1 / \sqrt{6}, \sqrt{2 / 3},-1 / \sqrt{6})\rangle \\
& =\frac{e}{\sqrt{6}}+\frac{\sqrt{2} e}{\sqrt{3}}-\frac{e}{\sqrt{6}} \\
& =\sqrt{\frac{2}{3}} e .
\end{aligned}
$$

Exercise 5. We compute the directional derivative of $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, defined by $(x, y, z) \mapsto f(x, y, z)=x^{3}+2 z e^{3 y}$ along $v=(1 / 2,-1 / 2,1 / \sqrt{2})$ and at $(-1,0,1)$. We first compute, for each $(x, y, z) \in \mathbb{R}^{3}$, the gradient

$$
\nabla f(x, y, z)=\left(3 x^{2}, 6 z e^{3 y}, 2 e^{3 y}\right)
$$

and so, as a consequence, we get

$$
\begin{aligned}
D_{v} f(-1,0,1) & =\langle\nabla f(-1,0,1),(1 / 2,-1 / 2,1 / \sqrt{2})\rangle \\
& =\langle(3,6,2),(1 / 2,-1 / 2,1 / \sqrt{2})\rangle \\
& =\frac{3}{2}-3+\sqrt{2} \\
& =\frac{-3+2 \sqrt{2}}{2} .
\end{aligned}
$$

Exercise 6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{y^{3}}{\left(x^{2}+y^{2}\right)^{1 / 2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

We claim that f is totally differentiable at $(0,0)$. To prove so, we will rely on Theorem 2.4.5 and prove that all partial derivatives are continuous at $(0,0)$. For $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$, the gradient of f is equal to

$$
\nabla f(x, y)=\left(\frac{\partial f}{\partial x}(x, y), \frac{\partial f}{\partial y}(x, y)\right)=\left(\frac{-y^{3} x}{\left(x^{2}+y^{2}\right)^{3 / 2}}, \frac{3 x^{2} y^{2}+2 y^{4}}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right)
$$

while $\nabla f(0,0)=(0,0)$. To prove continuity of the partial derivatives, we will show that $\lim _{(x, y) \rightarrow(0,0)} \nabla f(x, y)=(0,0)$. We first show that $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)=0$ and, to do so, we will show that $\lim _{(x, y) \rightarrow(0,0)}\left|\frac{-y^{3} x}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right|=0$. We remark that, for each $(x, y) \in \mathbb{R}^{2}$, we have $(x-y)^{2} \geq 0$ and also $(x+y)^{2} \geq 0$: it follows from those that $|x y| \leq \frac{x^{2}+y^{2}}{2} \leq x^{2}+y^{2}$. We then have

$$
\left|\frac{-y^{3} x}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right|=\frac{y^{2}|y x|}{\left(x^{2}+y^{2}\right)^{3 / 2}} \leq \frac{y^{2}\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3 / 2}} \leq \frac{\left(x^{2}+y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\left(x^{2}+y^{2}\right)^{1 / 2}
$$

and, since $\lim _{(x, y) \rightarrow(0,0)} x^{2}+y^{2}=0$, we have that $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial x}(x, y)=0$. We now move to $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial y}(x, y)$, for which we adopt the same technique. We have indeed that

$$
\begin{aligned}
\frac{3 x^{2} y^{2}+2 y^{4}}{\left(x^{2}+y^{2}\right)^{3 / 2}} & =\frac{3 y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}\left(x^{2}+\frac{2}{3} y^{2}\right) \leq \frac{3 y^{2}\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3 / 2}} \\
& \leq \frac{3\left(x^{2}+y^{2}\right)^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=3\left(x^{2}+y^{2}\right)^{1 / 2}
\end{aligned}
$$

from which it follows that $\lim _{(x, y) \rightarrow(0,0)} \frac{\partial f}{\partial y}(x, y)=0$. As claimed, we have proven that $\lim _{(x, y) \rightarrow(0,0)} \nabla f(x, y)=(0,0)$ and so the function f is differentiable at $(0,0)$.

