OQE - PROBLEM SET 7 - SOLUTIONS

Exercise 1. We show that the following functions R? — R

(a> f(:c,y) =2z +y.
(b) gz, y) = 2* +y°.

are partially differentiable with respect to both x and y everywhere in R2.

(a) We compute

f(:v—l—h,y)—f(x,y)

Dif(z,y) = }llim

—0 h

— lim 2@ +h)+y— 2z +y)
h—0 h

i 2

=

and

im f(x,y+h)—f(x,y)

Dgf(l‘,y) = }L

-0 h
. 2z4+y+h—(2z+y)
= lim
h—0 h
i
=)
=1.

The choice of (x,y) being arbitrary in R?, the function f is partially differentiable.
(b) We compute

. glx+hy)—glxy
Dlg(x,y)z}{;nlo( })L (@9)

2 2 (.2 2
hm(:c+h) +y? — (2% +9?)
h—0 h

. 2hx + h2
:llmi
h—0 h

lim 2z + h = 2z
h—0
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and
g(z,y+h)—g(,y)
h
2 2 (.2 2
i © + (y+h)? = (2% + y?)
h—0 h
2hy + h?

Dyg(z,y) = Lim

= lim

h—0

= lim 2y + h = 2y.
a2y + Y
The choice of (z,y) being arbitrary, g is everywhere partially differentiable in R2.

Exercise 2. We compute the gradient of the following functions R® — R

(a) f(z,y,2) = 2% + 2€?Y.

(b) g(z,y) = e™=.
According to Definition 2.1.4, the gradient of a function is the vector of all partial
derivatives. We get

(a) Vf(x,y,2) = (2x,22e%Y,e?Y).

(b) Vg(z,y,z) = (yze™%, xze™* zye™V?).

Exercise 3. We calculate the directional derivative of the function f : R? — R,
defined by (x,y) — f(z,y) = sin(xy), along v = (1/2,+/3/2) and at (1,0). We get

f+h/2,0+ (v3h)/2) — f(1,0)

0, f(1,0) = lim

h—0 h
1 2+h h
=t (sn () )
L (24 h) (V3R
h—0 4h
= lim 7\/3(2 +h) = @
h—0 4 2

Alternatively, one can use the relationship between V f and D, f.

Exercise 4. We calculate the derivative of g : R® — R, defined by (x,y,2)
g(x,y,2) = e¥* along v = (1/v/6,1/2/3,—~1/4/6) and at (1,1,1). We know from
Exercise 2b that Vg(z,y, z) = (yze™¥*, xze®¥* xye™?) and so we compute
Dyg(1,1,1) = (Vg(1,1,1), (1/V6,v/2/3,-1/V6))
= <(67 €, 6), (1/\/67 V 2/37 _1/\/6»
V2e
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Exercise 5. We compute the directional derivative of f : R® — R, defined by
(z,y,2) = f(z,y,2) = 23 + 22€3¥ along v = (1/2,—1/2,1/4/2) and at (—1,0,1).
We first compute, for each (z,y,2) € R3, the gradient

Vf(x,y,z2) = (322 623, 2e%)
and so, as a consequence, we get
D, f(—1,0,1) = (Vf(~1,0,1),(1/2,-1/2,1/v/2))
=((3,6,2),(1/2,-1/2,1/v2))

3
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Exercise 6. Let f:R? — R be defined by

3

e 1 (2,y) £ (0,0),

flx,y) =
(®3) 0 if (x,y) = (0,0).

We claim that f is totally differentiable at (0,0). To prove so, we will rely on
Theorem 2.4.5 and prove that all partial derivatives are continuous at (0,0). For
(z,y) € R?\ {(0,0)}, the gradient of f is equal to
of of —y3z 3z2y? + 2y*
\Y ’ = (7 yY)y 7Ly ) = ( y )

f(l' :l/) ox ({E y) ay (fE y) (:EQ +y2)3/2 (IQ +y2)3/2
while V f(0,0) = (0,0). To prove continuity of the partial derivatives, we will show
that lim, ) 0,0y V.f(z,y) = (0,0). We first show that lim, ) (0,0 %(Jc,y) =0
W = 0. We remark that, for
each (z,9) € R?, we have (x —y)? > 0 and also (x + y)? > 0: it follows from those
that |zy| < # < 22 + 2. We then have

and, to do so, we will show that lim, ,)_.(0,0)

—v'r | _ Pyl PP+ @4y (2 4?2
(x2_|_y2)3/2 ($2+y2)3/2 - ($2+y2)3/2 - (x2+y2)3/2 Y

and, since limz ) (0,0) 2 4+ y2 = 0, we have that lim 5 4y (0,0) %(m,y) =0. We

now move to lim, ) (0,0) g—z’;(x,y), for which we adopt the same technique. We
have indeed that
2,2 4 2 20,2 4 2
3z%y® +2y° 3y (x2+2y2>§3y (=® +y°)
3 (22 + y2)3/2

(zQ —|—y2)3/2 - (1,2 +y2)3/2

3(22 + y2)?2

= (22 4 y2)3/2
from which it follows that lim, ) (0,0) %(m, y) = 0. As claimed, we have proven
that lim, 4y (0,00 Vf(2,%) = (0,0) and so the function f is differentiable at (0,0).

— 3(1:2 + y2)1/2-



