OQE - PROBLEM SET 8 - SOLUTIONS

Exercise 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
(x, y) \mapsto f(x, y)=\left\{\begin{array}{l}
\left(\frac{3 x y^{2}}{4 x^{2}+4 y^{4}}\right)^{2} \text { if } x \neq 0 \\
0 \text { otherwise }
\end{array}\right.
$$

We claim that:
(a) if ℓ is a line through $(0,0)$, then f is continuous on ℓ; and
(b) the function f is not continuous at $(0,0)$.
(a) If ℓ is a line through $(0,0)$, then there exists $m \in \mathbb{R}$ such that

$$
\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x\right\}
$$

Fix $m \in \mathbb{R}$ and call ℓ the subset of \mathbb{R}^{2} consisting of those elements (x, y) such that $y=m x$. Then, restricting f to ℓ gives

$$
f(x, y)=\left\{\begin{array}{l}
\left(\frac{3 m^{2} x^{3}}{4 x^{2}\left(1+m^{4} x^{2}\right)}\right)^{2} \text { if }(x, y) \in \ell \backslash\{(0,0)\} \\
0 \text { if }(x, y)=(0,0)
\end{array}\right.
$$

We now have that

$$
\lim _{\substack{(x, y) \in \ell \\(x, y) \rightarrow(0,0)}} f(x, y)=\lim _{x \rightarrow 0}\left(\frac{3 m^{2} x^{3}}{4 x^{2}\left(1+m^{4} x^{2}\right)}\right)^{2}=\lim _{x \rightarrow 0}\left(\frac{3 m^{2} x^{3}}{4 x^{2}}\right)^{2}=0
$$

and therefore the function f is continuous on ℓ.
(b) To show that f is not continuous at $(0,0)$, we construct a convergent sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R}^{2} such that $\lim _{n \rightarrow \infty} z_{n}=(0,0)$, but $\lim _{n \rightarrow \infty} f\left(z_{n}\right) \neq 0$. To this end, let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} such that, for each $n \in \mathbb{N}$, the element $y_{n} \neq 0$ but such that $\lim _{n \rightarrow \infty} y_{n}=0$. We define $\left(z_{n}\right)_{n \in \mathbb{N}}$ by setting, for each $n \in \mathbb{N}$, the element z_{n} equal to $\left(y_{n}^{2}, y_{n}\right)$. As a consequence of the definition of $\left(y_{n}\right)_{n}$, the first component of each z_{n} is different from 0 , but $\lim _{n \rightarrow \infty} z_{n}=(0,0)$. However, when we compute the images of z_{n} under f, we get

$$
\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\lim _{n \rightarrow \infty} f\left(y_{n}^{2}, y_{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{3 y_{n}^{4}}{8 y_{n}^{4}}\right)^{2}=\frac{9}{64}
$$

We have proven that $\lim _{n \rightarrow \infty} f\left(z_{n}\right) \neq 0$ and so, in view of Theorem 1.4.4, the function f is not continuous at $(0,0)$.

Exercise 2. Let $g, h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be respectively defined by $(x, y) \mapsto x+y^{2}$ and $(x, y) \mapsto x^{2} y$. Define moreover $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by means of $(a, b) \mapsto a b^{2}$. We want
to compute, using the chain rule, the gradient of the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ that is defined by

$$
(x, y) \mapsto F(x, y)=f(g(x, y), h(x, y))
$$

To do so, we define an additional function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by means of $(x, y) \mapsto$ $(g(x, y), h(x, y))$ and we note that $F=f \circ \phi$. By the chain rule, we then have that

$$
D F(x, y)=D f(\phi(x, y)) D \phi(x, y)=D f(g(x, y), h(x, y)) D \phi(x, y)
$$

so we compute the gradient of f :

$$
D f(a, b)=\nabla f(a, b)=\left(b^{2}, 2 a b\right)
$$

and also the Hessian of ϕ :

$$
D \phi(x, y)=\left[\begin{array}{cc}
1 & 2 y \\
2 x y & x^{2}
\end{array}\right]
$$

As a consequence we have

$$
\begin{aligned}
D F(x, y) & =D f(g(x, y), h(x, y)) D \phi(x, y) \\
& =\left[\begin{array}{ll}
h(x, y)^{2} & 2 g(x, y) h(x, y)
\end{array}\right] D \phi(x, y) \\
& =\left[\begin{array}{ll}
x^{4} y^{2} & 2 x^{3} y+2 x^{2} y^{3}
\end{array}\right]\left[\begin{array}{cc}
1 & 2 y \\
2 x y & x^{2}
\end{array}\right] \\
& =\left(5 x^{4} y^{2}+4 x^{3} y^{4}, 4 x^{4} y^{3}+2 x^{5} y\right) .
\end{aligned}
$$

Exercise 3. Let x, a, p, w, t be real variables, each of which identifies:
$x=$ demand of some good;
$p=$ price of the good;
$a=$ amount the producer spends on advertising the good;
$w=$ weather (measured in some way);
$t=$ tax rate .
The interaction between the variables is governed by the functions $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ in the following way:
(a) $x=f(p, a)$ and, for all $a, p \in \mathbb{R}$, one has $\partial_{p} f(p, a)<0$ and $\partial_{a} f(p, a)>0$;
(b) $p=g(w, t)$ and, for all $w, t \in \mathbb{R}$, one has $\partial_{w} g(w, t)>0$ and $\partial_{t} g(w, t)<0$;
(c) $a=h(t)$ and, for all $t \in \mathbb{R}$, one has $h^{\prime}(t)>0$.

We claim that, if the tax rate (t) increases, then the demand for the good (x) necessarily increases. To prove so, we will write x as a function F of w and t and show that, for any choice of w and t, one has $\partial_{t} F(w, t)>0$. We define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$
by means of $(w, t) \mapsto F(w, t)=f(g(w, t), h(t))$ and we note that F expresses x in terms of w and t. To compute $\nabla F(w, t)$, we use the chain rule and get

$$
\begin{aligned}
\nabla F(w, t) & =\nabla f(g(w, t), h(t)) D(g, h)(w, t) \\
& =\left[\begin{array}{ll}
\partial_{p} f(g(w, t), h(t)) & \partial_{a} f(g(w, t), h(t))
\end{array}\right]\left[\begin{array}{cc}
\partial_{w} g(w, t) & \partial_{t} g(w, t) \\
0 & h^{\prime}(t)
\end{array}\right] .
\end{aligned}
$$

It follows then that

$$
\partial_{t} F(w, t)=\partial_{p} f(g(w, t)) \partial_{t} g(w, t)+\partial_{a} f(g(w, t), h(t)) h^{\prime}(t)
$$

which is, thanks to $(a-c)$, positive for any choice of w, t.

Exercise 4. Let U be the open subset of \mathbb{R}^{2} that is defined by

$$
U=\left\{(x, y) \in \mathbb{R}^{2}: x, y>0\right\} .
$$

Let moreover $a \in(0,1)$ and define $f: U \rightarrow \mathbb{R}$ by $(x, y) \mapsto f(x, y)=x^{a} y^{1-a}$. We compute the second order Taylor polynomial of f at $(1,1)$. The gradient and Hessian of f are $\nabla f(x, y)=\left(a x^{a-1} y^{1-a},(1-a) x^{a} y^{-a}\right)$ and

$$
D^{2} f(x, y)=\left[\begin{array}{cc}
a(a-1) x^{a-2} y^{1-a} & a(1-a) x^{a-1} y^{-a} \\
a(1-a) x^{a-1} y^{-a} & a(a-1) x^{a} y^{-1-a}
\end{array}\right]
$$

Let now $h=\left(h_{1}, h_{2}\right)$ be an element of \mathbb{R}^{2}. We compute

$$
\begin{aligned}
f((1,1)+h)= & f(1,1)+\partial_{x} f(1,1) h_{1}+\partial_{y} f(1,1) h_{2}+\frac{1}{2} \partial_{x}^{2} f(1,1) h_{1}^{2}+ \\
& \partial_{x} \partial_{y} f(1,1) h_{1} h_{2}+\frac{1}{2} \partial_{y}^{2} f(1,1) h_{2}^{2}+o\left(\|h\|^{2}\right)= \\
& 1+a h_{1}+(1-a) h_{2}+\frac{a(a-1)}{2}\left(h_{1}^{2}-2 h_{1} h_{2}+h_{2}^{2}\right)+o\left(\|h\|^{2}\right) .
\end{aligned}
$$

Exercise 5. We calculate the second order Taylor polynomial of the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ that is defined by

$$
(x, y, z) \mapsto f(x, y, z)=x e^{-y}+y+z+1
$$

at the point $(1,0,0)$. To do so, we determine both gradient and Hessian of f, getting $\nabla f(x, y, z)=\left(e^{-y},-x e^{-y}+1,1\right)$ and

$$
D^{2} f(x, y, z)=\left[\begin{array}{ccc}
0 & -e^{-y} & 0 \\
-e^{-y} & x e^{-y} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

OQE - PROBLEM SET 8-SOLUTIONS

Pick now $h=\left(h_{1}, h_{2}, h_{3}\right) \in \mathbb{R}^{3}$. Then we get

$$
\begin{aligned}
f((1,0,0)+h)= & f(1,0,0)+\partial_{x} f(1,0,0) h_{1}+\partial_{y} f(1,0,0) h_{2}+\partial_{z} f(1,0,0) h_{3}+ \\
& \partial_{x} \partial_{y} f(1,0,0) h_{1} h_{2}+\frac{1}{2} \partial_{y}^{2} f(1,0,0) h_{2}^{2}+o\left(\|h\|^{2}\right)= \\
& 2+h_{1}+h_{3}-h_{1} h_{2}+\frac{1}{2} h_{2}^{2}+o\left(\|h\|^{2}\right)
\end{aligned}
$$

