OQE - PROBLEM SET 9 - SOLUTIONS

Exercise 1. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $(x, y, z) \mapsto F(x, y, z)=x^{2}-y^{2}+z^{3}$. (a) We want to determine the triples $(6,3, z)$ for which $F(6,3, z)=0$. We impose

$$
0=F(6,3, z)=36-9+z^{3}=27+z^{3}
$$

and therefore $F(6,3, z)=0$ if and only if $z^{3}=-27$. It follows that the only element $(6,3, z)$ of \mathbb{R}^{3} satisfying $F(6,3, z)=0$ is $(6,3,-3)$.
(b) We claim that F induces an implicit function in the indeterminate z. Indeed, the function $g: \mathbb{R} \rightarrow \mathbb{R}$, defined by $z \mapsto z^{3}$, is a bijection and thus, for any choice of $(x, y) \in \mathbb{R}^{2}$, there exists a unique $z \in \mathbb{R}$ such that $z=g^{-1}\left(-x^{2}+y^{2}\right)$. In other words, for each $(x, y) \in \mathbb{R}$, there exists a unique z such that $F(x, y, z)=0$, namely $z=g^{-1}\left(-x^{2}+y^{2}\right)$.
(c) We compute partial derivatives of $z=z(x, y)$ at the point $(6,3)$. We recall that

$$
z=z(x, y)=\left(-x^{2}+y^{2}\right)^{1 / 3}
$$

and thus we have

$$
\begin{aligned}
\frac{\partial z}{\partial x}(6,3) & =\left(\frac{1}{3}\left(-x^{2}+y^{2}\right)^{-2 / 3}(-2 x)\right)(6,3) \\
& =\left(-\frac{2 x}{3\left(-x^{2}+y^{2}\right)^{2 / 3}}\right)(6,3) \\
& =-\frac{12}{3(-36+9)^{2 / 3}} \\
& =-\frac{4}{(-27)^{2 / 3}} \\
& =-\frac{4}{9}
\end{aligned}
$$

and also

$$
\begin{aligned}
\frac{\partial z}{\partial y}(6,3) & =\left(\frac{1}{3}\left(-x^{2}+y^{2}\right)^{-2 / 3}(2 y)\right)(6,3) \\
& =\left(\frac{2 y}{3\left(-x^{2}+y^{2}\right)^{2 / 3}}\right)(6,3) \\
& =\frac{6}{3(-36+9)^{2 / 3}} \\
& =\frac{2}{(-27)^{2 / 3}} \\
& =\frac{2}{9}
\end{aligned}
$$

Exercise 2. Let $F: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be defined, for each $(x, y, z) \in \mathbb{R}^{3}$, by

$$
F(x, y, z)=x^{4}+2 x \cos y+\sin z
$$

We claim that $F(x, y, z)=0$ defines z as an implicit function of x, y in a neighbourhood of $x=y=z=0$. Indeed, the gradient of F is equal to

$$
\nabla F=\left(4 x^{3}+2 \cos y,-2 x \sin y, \cos z\right)
$$

and, since $\frac{\partial F}{\partial z}(0,0,0)=1 \neq 0$, Theorem 2.7.4 yields the existence of open neighbourhoods U in \mathbb{R}^{2} and V in \mathbb{R}, respectively of $(0,0)$ and 0 , and of a function $g: U \rightarrow V$ of x and y such that, for all $(x, y, z) \in U \times V$, if $F(x, y, z)=0$, then $z=g(x, y)$. From Theorem 2.7.4 we know in addition that

$$
\nabla g(0,0)=-\frac{\partial F}{\partial z}(0,0,0)^{-1}\left(\frac{\partial F}{\partial x}(0,0,0), \frac{\partial F}{\partial y}(0,0,0)\right)=(-2,0)
$$

Exercise 3. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by

$$
(x, y, z) \mapsto F(x, y, z)=x^{3}+3 y^{2}+4 x z^{2}-3 z^{2} y-1
$$

We want to determine, for given $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, if the equation $F(x, y, x)=0$ defines z as an implicit function of x, y in a neighbourhood of $\left(x_{0}, y_{0}\right)$. We look at the equation $0=F\left(x_{0}, y_{0}, z\right)=x_{0}^{3}+3 y_{0}^{2}+4 x_{0} z^{2}-3 z^{2} y_{0}-1$, which can be rewritten as

$$
\left(4 x_{0}-3 y_{0}\right) z^{2}=1-x_{0}^{3}-3 y_{0}^{2}
$$

As a consequence, a necessary condition for $\left(x_{0}, y_{0}, z_{0}\right)$ to be a zero of F is that

$$
\left(4 x_{0}-3 y_{0}\right)\left(1-x_{0}^{3}-3 y_{0}^{2}\right) \geq 0
$$

We look at the following cases:
(a) $\left(x_{0}, y_{0}\right)=(1,1)$;
(b) $\left(x_{0}, y_{0}\right)=(1,0)$;
(c) $\left(x_{0}, y_{0}\right)=(1 / 2,0)$.
(a) In this case $\left(4 x_{0}-3 y_{0}\right)\left(1-x_{0}^{3}-3 y_{0}^{2}\right)=-3<0$, so there is no $z_{0} \in \mathbb{R}$ such that $F\left(x_{0}, y_{0}, z_{0}\right)=0$. In particular, z is not an implicit function of x and y.
(b) In this case, the unique element $z_{0} \in \mathbb{R}$ such that $F\left(x_{0}, y_{0}, z_{0}\right)=0$ is $z_{0}=0$. We claim that there is however no triple (U, V, g), with U an open neighbourhood of $\left(x_{0}, y_{0}\right)$ in \mathbb{R}^{2}, with V an open neighbourhood of z_{0} in \mathbb{R}, and $g: U \rightarrow V$ a function satisfying

$$
(x, y, z) \in U \times V \text { with } F(x, y, z)=0 \Longrightarrow z=g(x, y)
$$

Assume by contradiction that such a triple (U, V, g) exists. Then, for each $(x, y) \in U$ and $z \in V$ satisfying $F(x, y, z)=0$, one has

$$
z^{2}=g(x, y)^{2}=\frac{1-x^{3}-3 y^{2}}{4 x-3 y}
$$

However, if $(x, y) \in U$ is such that $\frac{1-x^{3}-3 y^{2}}{4 x-3 y} \neq 0$, the last equation gives rise to $z_{1}, z_{2} \in \mathbb{R} \backslash\{0\}$, with $z_{1}=-z_{2}$, such that $0=F\left(x, y, z_{1}\right)=F\left(x, y, z_{2}\right)$. Contradiction.
(c) Set $z_{0}=\sqrt{7} / 4$. Then we have

$$
F\left(x_{0}, y_{0}, z_{0}\right)=\frac{1}{8}+\frac{7}{8}-1=0
$$

In view of Theorem 2.7.4, we compute

$$
\nabla F(x, y, z)=\left(3 x^{2}+4 z^{2}, 6 y-3 z^{2}, 8 x z-6 z y\right)
$$

and therefore, since $\frac{\partial F}{\partial z}(1 / 2,0, \sqrt{7} / 4)=\sqrt{7} \neq 0$, there exist open neighbourhoods U and V, respectively of $\left(x_{0}, y_{0}\right)$ and z_{0}, in \mathbb{R}^{2} and \mathbb{R} and a continuously differentiable function $g: U \rightarrow V$ such that, if $(x, y, z) \in U \times V$ is such that $F(x, y, z)=0$, then $z=g(x, y)$. To compute $\nabla g(1 / 2,0)$ we rely on Theorem 2.7.4 and compute

$$
\begin{aligned}
\nabla g(1 / 2,0) & =-\frac{\partial F}{\partial z}(1 / 2,0, \sqrt{7} / 4)^{-1}\left(\frac{\partial F}{\partial x}(1 / 2,0, \sqrt{7} / 4), \frac{\partial F}{\partial y}(1 / 2,0, \sqrt{7} / 4)\right. \\
& =-\sqrt{7}\left(\frac{10}{4},-\frac{21}{16}\right) \\
& =\left(-\frac{10 \sqrt{7}}{4}, \frac{21 \sqrt{7}}{16}\right)
\end{aligned}
$$

Exercise 4. Let $x, y, u, v \in \mathbb{R}$ and consider the system

$$
\left\{\begin{array}{l}
u+x e^{y}+v=e-1 \\
x+e^{u+v^{2}}-y=e^{-1}
\end{array} .\right.
$$

We prove that the given system defines u and v in terms of x, y around the point $(1,1,-1,0)$. To do so, we define additional functions $F_{1}, F_{2}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ by means of

$$
(x, y, u, v) \mapsto F_{1}(x, y, u, v)=u+x e^{y}+v-e+1
$$

and also

$$
(x, y, u, v) \mapsto F_{2}(x, y, u, v)=x+e^{u+v^{2}}-y-e^{-1}
$$

We then write $F=\left(F_{1}, F_{2}\right)$. As we want to apply Theorem 2.7.4, we compute

$$
D F(x, y, u, v)=\left[\begin{array}{cccc}
e^{y} & x e^{y} & 1 & 1 \\
1 & -1 & e^{u+v^{2}} & 2 v e^{u+v^{2}}
\end{array}\right]
$$

and so, if we restrict to partial derivatives with respect to u and v, we get

$$
\operatorname{det} \frac{\partial F}{\partial(u, v)}(1,1,-1,0)=\operatorname{det}\left[\begin{array}{cc}
1 & 1 \\
e^{-1} & 0
\end{array}\right]=-e^{-1} \neq 0
$$

Thanks to Theorem 2.7.4 there exist U and V open neighbourhoods in \mathbb{R}^{2}, respectively of $(1,1)$ and $(-1,0)$, and a function $g: U \rightarrow V$ with the property that

$$
(x, y, u, v) \in U \times V \text { with } F(x, y, u, v)=0 \Longrightarrow(u, v)=g(x, y)
$$

Moreover, thanks to Theorem 2.7.4, we can also compute

$$
\begin{aligned}
\frac{\partial g}{\partial(x, y)}(1,1) & =-\frac{\partial F}{\partial(u, v)}(1,1,-1,0)^{-1} \frac{\partial F}{\partial(x, y)}(1,1,-1,0) \\
& =-\left[\begin{array}{cc}
1 & 1 \\
e^{-1} & 0
\end{array}\right]^{-1}\left[\begin{array}{cc}
e & e \\
1 & -1
\end{array}\right] \\
& =e\left[\begin{array}{cc}
0 & -1 \\
-e^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
e & e \\
1 & -1
\end{array}\right] \\
& =e\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right]
\end{aligned}
$$

Exercise 5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $(x, y) \mapsto f(x, y)=\left(x+e^{y}, y+e^{-x}\right)$. We claim that f is everywhere locally invertible. In view of Theorem 2.8.1, it suffices to show that, for any choice of $(x, y) \in \mathbb{R}^{2}$ the determinant of the matrix

$$
D f(x, y)=\left[\begin{array}{cc}
1 & e^{y} \\
-e^{-x} & 1
\end{array}\right]
$$

is different from 0 . For each $x, y \in \mathbb{R}$, we compute $\operatorname{det} D f(x, y)=1+e^{-x} e^{y}$ and so, since the image of the exponential is contained in $\mathbb{R}_{>0}$, we have $\operatorname{det} \operatorname{Df}(x, y)>0$. This proves the claim. Let now U and V be open neighbourhoods in \mathbb{R}^{2}, respectively of $(1,-1)$ and $f(1,-1)=\left(1+e^{-1},-1+e^{-1}\right)$, and let $g: V \rightarrow U$ be such that $g \circ f_{\mid U}=\operatorname{id}_{U}$. Thanks to Theorem 2.8.1, we can compute

$$
\begin{aligned}
D g\left(1+e^{-1},-1+e^{-1}\right) & =D f(1,-1)^{-1} \\
& =\left[\begin{array}{cc}
1 & e^{-1} \\
-e^{-1} & 1
\end{array}\right]^{-1} \\
& =\frac{1}{1+e^{-2}}\left[\begin{array}{cc}
1 & -e^{-1} \\
e^{-1} & 1
\end{array}\right] .
\end{aligned}
$$

Exercise 6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $(x, y) \mapsto f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$. We claim that f is locally invertible everywhere, but it is not globally invertible. We start by showing that f is not globally invertible. A necessary requirement for f to be invertible is that f is injective: this is not the case as, for example $f(1,0)=f(1,2 \pi)$. We now show that f is locally invertible everywhere. To do so, for each $(x, y) \in \mathbb{R}^{2}$, we compute

$$
\operatorname{det} D f(x, y)=\operatorname{det}\left[\begin{array}{cc}
e^{x} \cos y & -e^{x} \sin y \\
e^{x} \sin y & e^{x} \cos y
\end{array}\right]=e^{2 x}\left(\cos ^{2} y+\sin ^{2} y\right)=e^{2 x}>0
$$

and so, thanks to Theorem 2.8.1, the function f is locally invertible everywhere. In particular, there exist open neighbourhoods U and V in \mathbb{R}^{2}, respectively of $(0,0)$
and $f(0,0)=(1,0)$, and $g: V \rightarrow U$ be such that $g \circ f_{\mid U}=\mathrm{id}_{U}$. Fix such a triple (U, V, g). Theorem 2.8.1 yields

$$
D g(1,0)=D f(0,0)^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

