Quasicrystals, hierarchies and entropy

Dan Rust
Open University \& Bielefeld University

Main research interests

Mathematical Quasicrystals

Point sets/tilings in \mathbb{R}^{n} without translational symmetry. Aspects I study:

- Methods for constructing quasicrystals substitution method, cut-and-project method, random tilings, local matching rules, ...
- Notions of order and disorder dynamics, entropy, diffraction spectrum, limit periodicity, symmetry groups, topological features, ...
- Computational methods for calculating characteristic properties of quasicrystals.

Main research interests

Mathematical Quasicrystals

Point sets/tilings in \mathbb{R}^{n} without translational symmetry. Aspects I study:

- Methods for constructing quasicrystals substitution method, cut-and-project method, random tilings, local matching rules, ...
- Notions of order and disorder dynamics, entropy, diffraction spectrum, limit periodicity, symmetry groups, topological features, ...
- Computational methods for calculating characteristic properties of quasicrystals.

Substitution tilings

A Substitution is a rule for expanding a set of tiles by a common expansion factor and then subdividing into tiles.

Substitution tilings

A Substitution is a rule for expanding a set of tiles by a common expansion factor and then subdividing into tiles.

(Chair substitution)

Substitution tilings

By repeating the substitution, (in the limit) we get a substitution tiling.

Substitution tilings

By repeating the substitution, (in the limit) we get a substitution tiling.

Substitution tilings

(Penrose substitution)

Substitution tilings

(Penrose substitution)

Substitution tilings

(Godrèche-Lançon-Billard substitution)

Substitution tilings

(Tribonacci substitution)

(Tribonacci substitution)

(Tribonacci substitution)

Symbolic dynamics

- $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{d}\right\}$ - Finite alphabet on d letters
- $\mathcal{A}^{\mathbb{Z}}=\left\{\cdots x_{-2} x_{-1} \cdot x_{0} x_{1} x_{2} \cdots \mid x_{i} \in \mathcal{A}\right\}$ - Full shift on \mathcal{A}, two sequences x, y are 'close' if they agree on a large central subword

$$
x_{[-n, n]}=y_{[-n, n]}
$$

- $\sigma: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}}: x_{i} \mapsto x_{i+1}$ - Left shift map, homeomorphism
- $X \subseteq \mathcal{A}^{\mathbb{Z}}$, closed, σ-invariant - Subshift
- We want to study the discrete dynamical system (X, σ)

$$
\tau:\left\{\begin{array}{lll}
a & \mapsto & a b \\
b & \mapsto & a c \\
c & \mapsto & a
\end{array}\right.
$$

$w=\cdots$ abacabaabacababacabaabac.abacabaabacababacabaabacabaca \cdots

$$
X_{\tau}:=\overline{\left\{\sigma^{n}(w) \mid n \in \mathbb{Z}\right\}}
$$

$$
\tau:\left\{\begin{array}{rll}
a & \mapsto & a b \\
b & \mapsto a c \\
c & \mapsto & a
\end{array}\right.
$$

$w=\cdots a b a c a b a a b a c a b a b a c a b a a b a c . a b a c a b a a b a c a b a b a c a b a a b a c a b a c a \cdots$

$$
X_{\tau}:=\overline{\left\{\sigma^{n}(w) \mid n \in \mathbb{Z}\right\}}
$$

Properties of X_{τ} : • Cantor set • aperiodic • uniquely ergodic - minimal - zero topological entropy • discrete dynamical spectrum

- discrete diffraction spectrum - C-balanced

Last three properties are specific to tribonacci and depend on statistical properties of τ.

In practice, we go the other way.
Symbolic substitution \longrightarrow Geometric substitutions
Question: How do we find the correct tile lengths?

In practice, we go the other way.

Symbolic substitution \longrightarrow Geometric substitutions

Question: How do we find the correct tile lengths?
Answer: Abelianise the substitution.

$$
\tau:\left\{\begin{array}{lll}
a & \mapsto & a b \\
b & \mapsto & a c \\
c & \mapsto & a
\end{array}\right.
$$

Define M by $m_{i j}=$ [number of j s in $\tau(i)$]

$$
M_{\tau}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Use square brackets $[u]$ to represent abelianisation of the word u.
Ex. $[a b a a c a b]=(4,2,1)^{T}$.
Then

$$
\left[\tau^{n}(u)\right]=M^{n}[u] .
$$

Let $l_{i}>0$ to be the geometric length of the i th tile and $\mathbf{L}=\left(l_{1}, l_{2}, l_{3}\right)$. The geometric length of u is therefore $\mathbf{L}[u]=\langle\mathbf{L},[u]\rangle$.

The lengths are consistent with a geometric substitution if and only if there is an expansion factor $\lambda>1$ such that $\mathbf{L}[\tau(u)]=\lambda \mathbf{L}[u]$ for any word u.
Hence, $\mathbf{L} M[u]=\mathbf{L} \lambda[u]$ for every u, and so λ is an eigenvalue with eigenvector L.

Thankfully, if M (or $M^{k}, k \geq 1$) has positive entries, then we can use the Perron-Frobenius theorem. We call τ primitive if $M^{k}>0$ for some $k \geq 1$.

Proposition

If τ is a primitive substitution, then

- M has a real eigenvalue $\lambda_{P F}>1$ such that $|\lambda|<\lambda_{P F}$ for all other eigenvalues λ,
- There is a unique left eigenvector $\mathbf{L}>0$ for $\lambda_{P F}$ and \mathbf{L} encodes the geometric lengths of the tiles.
- There is a unique right eigenvector $\mathbf{R}>0$ for $\lambda_{P F}$ and \mathbf{R} encodes the relative frequencies of letters.

Rauzy fractals

Let w be an infinite word with well-defined letter frequencies \mathbf{R}_{i}. Then w is C-balanced if there is a $C>0$ such that for all subwords u,

$$
\left\|\left.u\right|_{a_{i}}-\mathbf{R}_{i} \mid u\right\| \leq C .
$$

That is, the number of $a_{i} s$ in u never deviates more than C from the expected number.

If w is C-balanced, then the lattice vectors

$$
\left[w_{1}\right],\left[w_{1} w_{2}\right],\left[w_{1} w_{2} w_{3}\right], \ldots
$$

all remain within a small neighbourhood of the ray spanned by the frequency vector \mathbf{R}.

[Shameless stolen from wikipedia]

Define $\mathcal{R}(\tau)=\mathcal{R}(w):=\overline{\left\{\operatorname{proj}_{\mathbf{R}}\left(w_{[0, n]}\right) \mid n \geq 0\right\}}$, the Rauzy fractal of w.

$$
\tau:\left\{\begin{array}{lll}
a & \mapsto a b \\
b & \mapsto & a c \\
c & \mapsto & a
\end{array} \quad \tilde{\tau}:\left\{\begin{array}{lll}
a & \mapsto & b a \\
b & \mapsto & a c \\
c & \mapsto & a
\end{array}\right.\right.
$$

Tribonacci

Twisted Tribonaci

Rauzy fractals for substitutions

- $\mathcal{R}(\tau)$ is a compact subset of \mathbb{R}^{d-1} equal to closure of its interior. Not always connected.
- For $w, w^{\prime} \in X_{\tau}, \mathcal{R}(w)=\mathcal{R}\left(w^{\prime}\right)+\mathbf{x}$ so $\mathcal{R}(\tau)$ makes sense.
- $\mathcal{R}(\tau)$ is the unique attractor of an associated GIFS.
- Properties of $\mathcal{R}(\tau)$ correspond to properties of τ and X_{τ}.

$\mathcal{R}(\tau)$	X_{τ}
Tiles the plane, or equiv.	Discrete spectrum, equiv.
Markov partition of dual \mathbb{T} auto.	Measure iso. with \mathbb{T} translation

- Useful tools for studying Pisot substitutions ($\lambda_{P F}$ is a Pisot number).
- Pisot conjecture: τ (irreducible) Pisot $\Longrightarrow \mathcal{R}(\tau)$ tiles the plane.
- If true, then $\mathcal{R}(\tau)$ is a window for a cut-and-project scheme whose model sets are exactly the geometric realisations of elements in X_{τ}.

Random substitutions

Now, letters have choices for how they are substituted.

Random substitutions

Now, letters have choices for how they are substituted.
Locally mix tribonacci with twisted tribonacci (Random tribonacci)

$$
\tau:\left\{\begin{array}{rll}
a & \mapsto\{a b, b a\} \quad \text { with probabilities }(p, 1-p) \\
b & \mapsto\{a c\} \\
c & \mapsto\{a\}
\end{array}\right.
$$

Choices are independent for each letter:

Random substitutions

Now, letters have choices for how they are substituted.

Locally mix tribonacci with twisted tribonacci (Random tribonacci)

$$
\tau:\left\{\begin{array}{rll}
a & \mapsto\{a b, b a\} \quad \text { with probabilities }(p, 1-p) \\
b & \mapsto\{a c\} \\
c & \mapsto\{a\}
\end{array}\right.
$$

Choices are independent for each letter:

$$
a \mapsto a b \mapsto \overbrace{b a}^{\tau(a)} a c \mapsto a c \overbrace{a b}^{\tau(a)} \overbrace{b a}^{\tau(a)} a \mapsto \text { baabaacacabba} \mapsto \cdots
$$

$$
w=\cdots \text { baabaacacabba.acababacbaababaaabacacab } \cdots
$$

$$
X_{\tau}:=\overline{\left\{\sigma^{n}(w) \mid n \in \mathbb{Z}, w \text { generic }\right\}}
$$

Results

Theorem (R., Spindeler '18)

Properties of X_{τ} for primitive τ :

- Cantor set
- Either no periodic points or periodic points are dense
- Uncountably many minimal components
- Uncountably many invariant prob. measure
- Canonical measure μ_{p} induced by probabilities
- Almost all orbits are dense (in particular topologically transitive)
- Positive topological entropy (with bounds given by [Gohlke, '19])

Even though X_{τ} has positive topological entropy, we can still get long-range correlations. Allows us to form entropic quasicrystals.

Theorem (Baake, Spindeler, Strungaru, '18. Godrèche, Luck, '89)

For random Fibonacci $\vartheta_{\text {Fib }}: a \mapsto\{a b, b a\}, b \mapsto\{a\}$,

- The diffraction spectrum has a non-trivial pp component (long-range correlations) and non-trivial ac component (pos. entropy).
- Eigenfunctions are continuous on a set of full measure (very close to having discrete dynamical spectrum).
[For the experts] BSS used the fact that the geometric realisation of $w \in X_{\vartheta_{\text {Fib }}}$ is a relatively dense subset of a regular cut-and-project set. The window is the union of the windows for deterministic Fibonacci and its reverse with the same $C+P$ scheme. Seems to hold for general Pisot random substitutions. Potentially very powerful method.

Open questions

Just a few of the questions still to be fully tackled

- What kinds of subshifts can appear as RS-subshifts? - already know that we can get all mixing SFTs [Gohlke, R., Spindeler, '19])
- Can we classify when $\operatorname{Per}\left(X_{\tau}\right)=\varnothing$? - Some criteria [R., 19']
- When $\operatorname{Per}\left(X_{\tau}\right) \neq \varnothing$, how many periodic points of period p are there?
- Are 'suitably nice' RS-subshifts intrinsically ergodic? (unique mme)
- Essentially nothing has been done in \mathbb{R}^{2} or higher.

Let τ be a primitive random substitution (+ mild technical conditions). Write $\lambda_{P F}>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{d}\right|$.

Theorem (Miro, R., Sadun, Tadeo '20)

(1) If $\left|\lambda_{2}\right|<1$, then X_{τ} is not top. mixing.
(2) X_{τ} top. mixing $\Longrightarrow \operatorname{gcd}\left\{\left|\tau^{k}(a)\right|: a \in \mathcal{A}\right\}=1, \forall k \geq 1$.
(3) If $\left|\lambda_{2}\right|>1$ and $\# \mathcal{A}=2$, then ' \Longleftarrow ' holds also.
(4) If $\left|\lambda_{2}\right|=1$, then both can happen. [Dekking-Keane '78]

Let τ be a primitive random substitution (+ mild technical conditions). Write $\lambda_{P F}>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{d}\right|$.

Theorem (Miro, R., Sadun, Tadeo '20)

(1) If $\left|\lambda_{2}\right|<1$, then X_{τ} is not top. mixing.
(2) X_{τ} top. mixing $\Longrightarrow \operatorname{gcd}\left\{\left|\tau^{k}(a)\right|: a \in \mathcal{A}\right\}=1, \forall k \geq 1$.
(3) If $\left|\lambda_{2}\right|>1$ and $\# \mathcal{A}=2$, then ' \Longleftarrow ' holds also.
(4) If $\left|\lambda_{2}\right|=1$, then both can happen. [Dekking-Keane '78]

- In the deterministic case, (1) is much simpler because
$\left|\lambda_{2}\right|<1 \Longrightarrow$ not top. weak mixing $\quad \stackrel{*}{\Longrightarrow}$ not top. mixing but $*$ requires X_{τ} to be minimal.
- The proof of (3) required developing a new classification of periodic 2-letter substitutions.

Open: Classify mixing when
(i) $\left|\lambda_{2}\right|>1, \# \mathcal{A}>2$
(ii) $\left|\lambda_{2}\right|=1$.

Why λ_{2} ?

Why λ_{2} ?

The length of the word $\tau^{n}\left(a_{j}\right)$ is given by

$$
\left|\tau^{n}\left(a_{j}\right)\right|=\sum_{i=1}^{d}\left\langle e_{i}, M^{n} e_{j}\right\rangle
$$

and the number of times a_{i} appears in $\tau^{n}\left(a_{j}\right)$ is $\left|\tau^{n}\left(a_{j}\right)\right|_{a_{i}}=\left\langle e_{i}, M^{n} e_{j}\right\rangle$. To make things simple, suppose M is diagonalisable. Then,

$$
\begin{gathered}
e_{j}=C_{j} \mathbf{R}+\sum_{k=2}^{d} c_{k j} v_{k} \Longrightarrow M^{n} e_{j}=\lambda_{P F} C_{j} \mathbf{R}+O\left(\lambda_{2}^{n}\right) \\
\Longrightarrow\left|\tau^{n}\left(a_{j}\right)\right|=\lambda_{P F}^{n} C_{j} \mathbf{R}_{i}+O\left(\lambda_{2}^{n}\right) \\
\Longrightarrow\left|\left|\tau^{n}\left(a_{j}\right)\right| a_{i}-\left|\tau^{n}\left(a_{j}\right)\right| \mathbf{R}_{i}\right|=\left|\lambda_{P F}^{n} C_{j} \mathbf{R}_{i}-\lambda_{P F}^{n} C_{j} \mathbf{R}_{i}\right|+O\left(\lambda_{2}^{n}\right) .
\end{gathered}
$$

So, λ_{2} regulates how far letter-counts can deviate from expected counts.

Theorem (Miro, R., Sadun, Tadeo '20)

- If $\left|\lambda_{2}\right|<1$, then X_{τ} is C-balanced.
- If $\left|\lambda_{2}\right|>1$, then X_{τ} is not C-balanced.
- If $\left|\lambda_{2}\right|=1$, then both can happen (i.e., " M is not enough").

Open: Classify C-balancedness when $\left|\lambda_{2}\right|=1$.
(With T. Samuel in Birmingham)
We can therefore generate approximate Rauzy fractals $\mathcal{R}(\tau, p)$.

Dan Rust

Dan Rust

Dan Rust
Quasicrystals, hierarchies and entropy
$16 / 6 / 2020$

- Topologically, $\mathcal{R}(\tau, p)$ does not depend on p.
- Difference in images is therefore indicating the differences of the induced measures on $\mathcal{R}(\tau, p)$ as p changes.
- No longer the attractor of a GIFS, but rather a 'Galton-Watson' GIFS.
- Topologically, $\mathcal{R}(\tau, p)$ does not depend on p.
- Difference in images is therefore indicating the differences of the induced measures on $\mathcal{R}(\tau, p)$ as p changes.
- No longer the attractor of a GIFS, but rather a 'Galton-Watson' GIFS.
- Potentially offers a new approach to the Pisot conjecture:
- Construct $\tilde{\tau}$ which is of 'Barge type' and $M_{\tau}=M_{\tau^{\prime}}$ (always exists).
- Construct random substitution τ which is a local mixture of τ and $\tilde{\tau}$.
- We know that $\mathcal{R}(\tilde{\tau})$ tiles the plane [Barge, '16].
- Show that tilability of $\mathcal{R}(\tau)$ (or an analogous property) is invariant as p ranges smoothly from 1 to 0 .
- Conclude that $\mathcal{R}(\tau)$ tiles the plane.

We'll see!

