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COHOMOLOGY OF THE PINWHEEL TILING

DIRK FRETTLÖH, BENJAMIN WHITEHEAD, AND MICHAEL F. WHITTAKER

ABSTRACT. We provide a computation of the cohomology of the Pinwheel tiling using the
Anderson-Putnam complex. A border forcing version of the Pinwheel tiling is constructed
that allows an explicit construction of the complex for the quotient of the continuous hull by
the circle. The final result is given using a spectral sequence argument of Barge, Diamond,
Hunton, and Sadun.

1. INTRODUCTION

A tiling of the plane is a collection of subsets of R2, called tiles, for which any intersection
of the interiors of two distinct tiles is empty and whose union is all of R2. A tiling said to
be aperiodic if it lacks translational periodicity. The most common method of producing
aperiodic tilings is to use a substitution rule; a method for breaking each tile into smaller
pieces, each of which is a scaled down copy of one of the original tiles, and then expanding
so that each tile is congruent to one of the original tiles.

One of the most enigmatic substitution tilings is the Conway-Radin Pinwheel tiling, de-
scribed in the seminal paper [15]. The Pinwheel tiling is composed of two tile types, a

1-2-
√
5 right triangle and its reflection. The substitution rule ω inflates each tile by a factor

of
√
5 and decomposes the inflated triangle into 5 isometric copies of the original triangles

as follows:

ω ω

The reason the Pinwheel tiling has been so difficult to analyse is twofold; tiles in the Pin-
wheel appear in an infinite number of distinct orientations and the Pinwheel tiling does not
force its border. A substitution tiling is said to force its border if, for every proto-tile, there
is a finite number of substitutions after which the tiles meeting the border of the collection
of substituted tiles are known. The notion of border forcing was invented by Kellendonk in
[10, p.24]. Forcing the border has turned out to be essential for computing the cohomology
of tilings [1, 5, 17]. To see that tiles in the Pinwheel tiling appear in an infinite number of
distinct orientations we observe that after two iterations of the Pinwheel substitution there
are two tiles that are rotated against each other by the angle arctan( 1

2
), which is an irra-

tional fraction of 2π so an induction argument shows that orientations of tiles are dense in
the circle.

There is a compact topological space associated with the Pinwheel tiling called the con-
tinuous hull and denoted Ω. The continuous hull is locally homeomorphic to the product
of a Cantor set, a circle, and a disc [13, 6, 16, 17, 19]. The substitution rule ω is a homeo-
morphism on the continuous hull providing a method to reconstruct the continuous hull
using techniques invented by Anderson and Putnam in [1]. Computing the cohomology
groups of the continuous hull has been the focus of a significant amount of research since
its introduction in [1].

In [5], Barge, Diamond, Hunton, and Sadun give the first computation of the cohomol-
ogy of the Pinwheel tiling. Their computation uses Barge-Diamond collaring and a higher
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dimensional analogue of the Barge-Diamond complex [4] to compute the cohomology of
the quotient of the continuous hull by the circle. In order to obtain the cohomology of the
continuous hull the obvious approach is to use the Gysin sequence to realise the continu-
ous hull as a fibre bundle over the quotient. Unfortunately the map from the continuous
hull to the quotient of the continuous hull by the circle is not an honest fibration, there are
six smooth singular fibres. In the quotient space these singular fibres correspond to cone
singularities, specifically at the points with 180◦ rotational symmetry. To overcome this
problem the authors go back to the spectral sequence used to derive the Gysin sequence
and adjust for the singular fibres. Torsion in the quotient of the continuous hull by the
circle make the spectral sequence argument extremely subtle.

In this note we compute the cohomology of the continuous hull of the Pinwheel tiling
using Anderson and Putnam’s original approach. The first step is to produce a border forc-
ing version of the Pinwheel tiling, which we call the BFPinwheel. The Anderson-Putnam
complex of the BFPinwheel leads to the cohomology of an approximant. A direct limit com-
putation gives the cohomology of the quotient of the continuous hull of the BFPinwheel by
the circle. We are able to explicitly present the generators of the cohomology groups and
attempt to provide all the details of the computation. To complete the calculation we iden-
tify the cone singularities in the BFPinwheel and apply the spectral sequence arguments in
[5].

1.1. Acknowledgements. We would like to thank Michael Baake, Lorenzo Sadun, and
Aidan Sims for several helpful suggestions. We are especially grateful to Lorenzo for ex-
panding on the constructions in [5] and providing insightful feedback on an early version
of the paper.

2. A BORDER FORCING VERSION OF THE PINWHEEL TILING

In this section we produce a version of the Pinwheel tiling that forces it border. The
first step is to pass to a kite-rectangle version of the Pinwheel tiling and use this version to
produce the BFPinwheel.

In [2], Baake, Frettlöh, and Grimm observed that given a Pinwheel tiling one can remove
every hypotenuse to get a kite-rectangle version of the Pinwheel tiling, which we will call
the KRPinwheel. They showed that the KRPinwheel tiling is mutually locally derivable
to the original Pinwheel tiling, meaning that there is a homeomorphism between the two
continuous hulls and the homeomorphism can be determined locally in every tiling. The
following figure shows the local bijection from the Pinwheel to the KRPinwheel. The dots
emphasise the decomposition although the dots can be completely determined by local
patches.

The cost of going to the KRPinwheel tiling is that we now need two of the original Pinwheel
substitutions in order to achieve the KRPinwheel substitution, which we also denote by ω.

ω ωω
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Using the KRPinwheel we construct a border forcing version of the Pinwheel tiling which
we achieve by producing a set of collared tiles. We will call this new version the BFPin-
wheel tiling. A collared tile is a tile labelled by the pattern of its nearest neighbours; that
is, two tiles have distinct labels if they are different tiles or if there are two different tiles
sharing any edge or vertex with the tile. The BFPinwheel is constructed by considering all
possible collared tiles in the KRPinwheel. Labelling the collared tiles gives 83 distinct tiles,
31 kites and 26 of each oriented rectangle. The collared tiles appear in Appendix A. It is
important to note that each tile is still an isometric copy of one the KRPinwheel tiles and
the labelling merely specifies the collar.

3. THE ANDERSON-PUTNAM COMPLEX OF THE PINWHEEL TILING

In this section we compute the cohomology of the quotient space Ω0 = Ω/S1 for the BF-
Pinwheel. Computing cohomology for tilings with infinite rotational symmetry is the topic
of [17, Chapter 4] and we direct the reader there for further information. For the Pinwheel
tiling, the quotient Ω0 has been studied by several authors [5, 17, 19] and is equivalent to
considering the subset of tilings in the continuous hull with the tile containing the origin of
R

2 in a fixed standard orientation. The same holds true for the BFPinwheel and we declare
the orientations of the 83 tiles in Appendix B to be the standard orientation.

Starting with the 83 tiles, a CW complex Γ/S1 is defined by identifying edges and vertices
in two tiles whenever they are common to both tiles in any patch of tiles appearing in a
KRPinwheel tiling, and then arranging the tiles in standard orientation. It will be useful to
label the 83 tiles in terms of their tile type: the 31 kite tiles are labelled K1, . . . , K31, 26 left
rectangle tiles by L1, . . . , L26, and 26 right rectangle tiles by R1, . . . , R26. After identification
of vertices and edges we obtain 138 edges, labelled e1, . . . , e138, and 73 vertices, labelled
v1, . . . , v73. The CW complex Γ/S1 appears in Appendix B.

To use Anderson and Putnam’s machinery we have from [17, §4.4] that

Ω0 = Ω/S1 = lim
←

(Γ/S1 ← Γ/S1 ← Γ/S1 · · · )

with the map induced by the substitution on Γ/S1. Since cohomology is contravariant,
inverse limits of space turns into direct limits of groups. Thus, we will compute the coho-
mology of Ω0 via

(3.1) Ȟi(Ω0) = lim
→

(Hi(Γ/S1), A∗

i )

where A∗

i denotes the map induced by the substitution on Hi(Γ).
To compute the integer cohomology of Γ/S1 we begin by defining the cochain complex.

Let C0, C1 and C2 denote the functions from the vertices, edges, and tiles into the group
of integers, respectively. The boundary maps δ0 : C0 → C1 and δ1 : C1 → C2 are defined
using the dual of the homology boundary maps. More precisely, we define a matrix for the
homology boundary maps that gives rise to the boundary maps in cohomology by taking
the transpose of the matrix1. The cochain complex is given in the diagram below which is
used to compute the cohomology groups of Γ/S1.

C0 δ0−→ C1 δ1−→ C2 δ2−→ 0

Z
73 δ0−→ Z

138 δ1−→ Z
83 δ2−→ 0.

From general theory we have that H0(Γ/S1) = ker(δ0). The kernel is generated by the
function that assigns the value one to every vertex and we obtain H0(Γ/S1) ∼= Z.

The computation of the remainder of the cohomology groups is more complicated. We
have H1(Γ/S1) = ker(δ1)/Im(δ0). For 1 ≤ i ≤ 138, by abuse of notation let ei denote the

1The substitution and boundary matrices are available upon request as Maple worksheets and in PDF
form.
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function in C1 which assigns 1 to the edge ei and 0 to all other edges; that is, the pointmass
function in C1 associated to the edge ei. Our computations show that the group H1(Γ/S1) is
generated by the class represented by the function

f1 := − e1 + e3 − e7 + e8 − e10 + e14 + e17 − e18 + e19 − e26 + e30 + e32 + e35

+ e36 − e38 + e42 − e45 − e49 + e51 + e58 + e61 + e63 + e65 + e70 − e74 − e78(3.2)

+ e79 − e80 − e81 + e83 − e84 − e85 − e90 + e95 − e99 + e101 + e106 − e109 + e125.

Thus, we have H1(Γ/S1) ∼= Z.
The computation of H2(Γ/S1) = ker(δ2)/ Im(δ1) is even more involved. Let t1, . . . , t83

denote the pointmass functions in C2 associated to the corresponding tile in K1, . . . , K31,
L1, . . . , L26, R1, . . . , R26 in order. For example, t12 assigns the value 1 to tile K12 and 0
to all other tiles. Similarly, t56 is the pointmass function associated with tile L25. Our
computations show that the group H2(Γ/S1) is generated by the classes containing the 19
functions gj ∈ C2 described below in (3.3). For j = 1, . . . , 19, denote the entries of the
vectors in Appendix C by yij for i = 1, . . . , 83 and let

(3.3) gj =

83∑

i=1

yijti j ∈ {1, . . . , 19}.

The classes of H2(Γ/S1) are represented by gj + Im(δ1).
We obtain H2(Γ/S1) ∼= Z

18 ⊕ Z2 where the generator of Z2 is represented by the function
g19. More specifically, the generator of Z2 is t59 − 2t64 + Im(δ1) where t59 and t64 are the
pointmass functions associated with tiles R2 and R7 respectively.

We have proven:

Proposition 3.1. Let Γ/S1 be the Anderson-Putnam complex of the KRPinwheel tiling described in
Appendix B. The integer cohomology groups are given by

H0(Γ/S1) ∼= Z

H1(Γ/S1) ∼= Z

H2(Γ/S1) ∼= Z
18 ⊕ Z2.

The next step is to compute the Ĉech cohomology of Ω0 using the inverse limit construc-
tion in Equation (3.1). We state the main result of the section.

Theorem 3.2. Let Ω0 be the quotient of the continuous hull Ω/S1 for the KRPinwheel tiling. The

Ĉech cohomology groups of Ω0 are given by

Ȟ0(Ω0) ∼= Z

Ȟ1(Ω0) ∼= Z

Ȟ2(Ω0) ∼= Z[
1

25
]⊕ Z[

1

3
]2 ⊕ Z

5 ⊕ Z2.

We will prove Theorem 3.2 using a sequence of lemmas.

Lemma 3.3. Let Ω0 be the quotient of the continuous hull Ω/S1 for the KRPinwheel tiling, then

Ȟ0(Ω0) ∼= Z.

Proof. The induced matrix A∗

0 is the identity on the generator of H0(Γ/S1). Therefore,

Ȟ0(Ω0) = lim
→

(H0(Γ/S1), A∗

0)
∼= lim
→

(Z, id) ∼= Z. �

Lemma 3.4. Let Ω0 be the quotient of the continuous hull Ω/S1 for the KRPinwheel tiling, then

Ȟ1(Ω0) ∼= Z.
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Proof. The induced matrix A∗

1 is the identity map on the generator f1 + Im δ0 of H1(Γ/S1),
where f1 is described in (3.2). Therefore,

Ȟ1(Ω0) = lim
→

(H1(Γ/S1), A∗

1)
∼= lim
→

(Z, id) ∼= Z. �

The group Ȟ2(Ω0) is the most difficult to compute.

Lemma 3.5. Let Ω0 be the quotient of the continuous hull Ω/S1 for the KRPinwheel tiling, then

Ȟ2(Ω0) ∼= Z[ 1
25
]⊕ Z[ 1

3
]2 ⊕ Z

5 ⊕ Z2.

Proof. We have H2(Γ/S1) ∼= Z
18 ⊕ Z2. We write A∗

2 : H2(Γ/S1) → H2(Γ/S1) as a matrix with
respect to the 19 generators gi of H2(Γ/S1) introduced in Equation (3.3):

A∗

2 =























































25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

612 25 −150 0 0 0 110 0 −110 0 0 −110 0 1 0 0 0 0 0

102 50 250 0 0 0 110 0 −110 0 0 −110 0 1 0 0 0 0 0

567 100 1050 275 −275 825 110 0 −110 0 0 −110 0 1 0 0 0 0 0

382 −50 300 0 550 −2200 110 0 −110 0 0 −110 0 1 0 0 0 0 0

216 25 −150 0 0 0 −220 0 220 0 0 220 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1























































where the last coordinate is the generator of Z2. We compute the direct limit

Ȟ2(Ω0) = lim
−→

(

H2(Γ), A∗

2

)

.

The following vectors generate the image A∗

2H
2(Γ/S1):
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0
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0

0

0

0

0

0
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6 DIRK FRETTLÖH, BENJAMIN WHITEHEAD, AND MICHAEL F. WHITTAKER

We can rewrite the matrix for A∗

2 in terms of these vectors:

B :=





















25 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

15300 75 −450 0 0 0 1 0 0

5400 75 −450 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





















where the matrix B is the unique homomorphism from H2(Γ/S1)/ ker(A∗

2) to H2(Γ/S1)/ ker(A∗

2)

given by B(g+ ker(A∗

2)) = A∗

2g+ ker(A∗

2). Thus

lim
−→

(

H2(Γ/S1), A∗

2

)

∼= lim
−→

(

H2(Γ/S1)/ ker(A∗

2), B
)

.

Using the generating set for A∗

2H
2(Γ/S1) above, we have H2(Γ/S1)/ ker(A∗

2)
∼= A∗

2H
2(Γ/S1) ∼=

Z
8 ⊕ Z2. Observe that the homomorphism B is the identity on the 4th, 5th and 6th coordi-

nates of Z8 and on Z2. Thus, Ȟ2(Ω0) is the direct sum of Z3 ⊕ Z2 and lim
−→

(Z5,M) where

M :=







25 0 0 0 0

0 3 0 0 0

0 0 3 0 0

15300 75 −450 1 0

5400 75 −450 0 1






.

The eigenvectors of M are (2, 0, 0, 1275, 450), (0, 6, 1, 0, 0), and (0, 2, 0, 75, 75) with eigen-
values 25, 3, and 3 respectively. The quotient of Z5 by the corresponding eigenspaces is iso-
morphic to Z

2 and the quotient is generated by the classes of (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1).
We have the following short exact sequence

(3.4) 0→ Z
3 → Z

5 → Z
2 → 0,

where Z3 is the direct sum of the eigenspaces with eigenvalues 25, 3 and 3. Since (0, 0, 0, 1, 0)
and (0, 0, 0, 0, 1) are eigenvectors of M both with eigenvalue 1, M is the identity map on the
quotient Z2. Taking direct limits of (3.4) gives the short exact sequence

0→ Z[
1

25
]⊕ Z[

1

3
]2 → lim

−→
(Z5,M)→ Z

2 → 0.

Since the quotient is free the sequence splits, and we have lim
−→

(Z5,M) = Z[
1

25
]⊕Z[

1

3
]2⊕Z

2.

Hence

Ȟ2(Ω0) = lim
−→

(Z5,M)⊕ Z
3 ⊕ Z2

∼= Z[
1

25
]⊕ Z[

1

3
]2 ⊕ Z

5 ⊕ Z2. �

4. COHOMOLOGY OF Ω

Beginning with the integer cohomology of Ω0, the integer cohomology of Ω was com-
puted in [5, §7]. There are two steps in the computation, the first is to identify cone singu-
larities and the second is to use a spectral sequence argument coming from the definition of
the Gysin sequence. The second part of their computation was extremely difficult and we
briefly outline the steps in the calculation. Using the results of [5, §7] we give the integer
cohomology of the Pinwheel tiling.

We begin by identifying the cone singularities. In the Pinwheel tiling, cone singularities
correspond to Pinwheel tilings with 180◦ symmetry. Rotational symmetry is preserved
under substitution so we can identify cone singularities by finding periodic points under
the substitution of 180◦ symmetric patches of collared tiles. From Appendix A we find
the following patches with 180◦ symmetry and vertices at the centre of rotation that are
periodic under the substitution.
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L23

L23
v70

A0 v71v70

R23

R23
v71

A0 v70v71

L7

vL7

A0 vR7vL7

R7

vR7

A0 vL7vR7

R22

L22

L22

R22
v65

A0 v65v65

K14

K14

K31

K31

v23

A0 v23v23

Placing the vertex of rotation at the origin of R
2 and substituting an infinite number of

times leads to a tiling of the plane with 180◦ symmetry [17, Theorem 1.4]. Therefore, there
are 6 cone singularities. We note that there are four additional patches with 180◦ symmetry
(using tiles L3, L26, R3, and R26), however the vertex at the centre of rotation is not periodic
under the substitution so they do not contribute to the number of cone singularities.

We now briefly outline the spectral sequence argument in [5, §7] used to compute Ȟ∗(Ω).
The Gysin sequence [7, p.177] is used to compute the cohomology of an S1-fibre bundle
over the base space from the cohomology of the base space. Unfortunately, due to the
presence of cone singularities, the map Ω → Ω0 is not quite a fibration. However, the
spectral sequence used to prove the Gysin sequence can be adjusted to account for these
cone singularities. In [5], the authors show that the generators of the cone singularities

account for 5 linearly independent torsion elements contributing a Z
5
2 term to Ȟ2(Ω). The

relevant results of [5] are summarised in the following theorem.

Theorem 4.1 (Barge, Diamond, Hunton, and Sadun [5, §7 and Theorem 12]). Suppose Ω is

the continuous hull of the Pinwheel tiling and Ω0 = Ω/S1. Given Ȟ∗(Ω0) and the cone singular-
ities corresponding to tilings with 180◦-rotational symmetry. The integer cohomology groups are
given by

Ȟ0(Ω) = Ȟ0(Ω0) = Z

Ȟ1(Ω) = Ȟ0(Ω0)⊕ Ȟ1(Ω0) = Z⊕ Z

Ȟ2(Ω) = E∞1,1 ⊕ E∞2,0 = Z[
1

25
]⊕ Z[

1

3
]2 ⊕ Z

6 ⊕ Z
5
2

Ȟ3(Ω) = Ȟ2(Ω0) = Z[
1

25
]⊕ Z[

1

3
]2 ⊕ Z

5 ⊕ Z2

where the terms E∞1,1 = Z ⊕ Z
5
2 and E∞2,0 = Z[ 1

25
] ⊕ Z[ 1

3
]2 ⊕ Z

5 come from the spectral sequence E∞

which adjusts for the cone singularities and the torsion in Ȟ2(Ω0).
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APPENDIX A. THE COLLARED TILES

K1 K2 K3 K4 K5

K6 K7 K8 K9 K10

K11 K12 K13 K14 K15

K16 K17 K18 K19 K20

K21 K22 K23 K24 K25

K26 K27 K28 K29 K30

K31
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L1 L2 L3 L4

L5 L6 L7 L8

L9 L10 L11 L12

L13 L14 L15 L16

L17 L18 L19 L20

L21 L22 L23 L24

L25 L26
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R1 R2 R3 R4

R5 R6 R7 R8

R9 R10 R11 R12

R13 R14 R15 R16

R17 R18 R19 R20

R21 R22 R23 R24

R25 R26
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APPENDIX B. THE LABELLED TILES

K1

v1

v2

v3

v1

v4v5

e1

e2
e3

e4

e5e6

K2

v1

v3

v6

v7

v8v9

e3

e7
e8

e9

e10e11

K3

v10

v11

v2

v1

v4v12

e12

e13 e1

e4

e14e15

K4

v13

v3

v6

v10

v14v15

e16

e7
e17

e18

e19e20

K5

v7

v16

v3

v13

v17v8

e21

e22
e16

e23

e24e9

K6

v32

v34

v33

v32

v20v8

ef6

ef5
ef4

ef3

ef2ef1

K7

v10

v36

v33

v32

v8v35

ef15

ef14
ef4

ef1

ef13ef12

K8

v32

v38

v2

v37

v31v20

ef11

ef10
ef9

ef8

ef7ef3

K9

v37

v2

v18

v19

v20v39

ef9

e25
e26

e27

ef22ef21

K10

v19

v21

v22

v10

v31v20

e28

e29
e30

ef17

ef7
e27

K11

v23

v2

v3

v13

v17v8

e31

e2
e16

e23

e24ef31

K12

v32

v38

v2

v23

v20v8

ef11

ef10
e31

e32

ef2ef1

K13

v1

v2

v3

v23

v8v9

e1

e2
ef32

ef31

e10e11

K14

v23

v3

v6

v10

v31v20

ef32

e7
e17

ef17

ef7
e32
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APPENDIX C. THE VECTORS GENERATING H2(Γ/S1)
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