PERFECT COLOURINGS OF REGULAR GRAPHS

JOSEPH RAY CLARENCE DAMASCO AND DIRK FRETTLOH

ABSTRACT. A vertex colouring of some graph is called perfect if each vertex of colour ¢ has
exactly a;; neighbours of colour j. Being perfect imposes several restrictions on the colour
incidence matrix (a;;). We list several (old and new) necessary conditions for a matrix to be the
colour incidence matrix of a perfect colouring. Moreover we show that a certain combination of
these conditions is also sufficient. Using this we determine a list of all colour incidence matrices
corresponding to perfect colourings of 3-regular, 4-regular and 5-regular graphs with two, three
and four colours, respectively. As an application we determine all perfect colourings of the edge
graphs of the Platonic solids with two, three and four colours, respectively.

1. INTRODUCTION

In this paper an m-colouring of some graph G = (V, E) is a partition of V into disjoint nonempty
sets V1,..., Vi,. Note that we do not require adjacent vertices to have different colours. A colouring
of the vertex set V of some graph G = (V, E) with m colours is called perfect if (1) all colours
are used, and (2) for all 4,j the number of neighbours of colours j of any vertex v of colour i is a
constant a;;. See [10, Sec. 9.3], where perfect colourings are called equitable partitions. It seems
that the term “equitable partition” is used for two different concepts in graph theory: one is what
we call perfect colouring above, the second is a colouring where every pair of adjacent vertices has
different colours, and where the number of any two colour classes differs by at most one. Hence
we will refer to the first concept by the term perfect colouring here. See Figures below for
some examples of perfect colourings.

The matrix A = (a,;) is called the colour incidence matriz of the perfect colouring. Any subgroup
of the automorphism group of a graph G induces a perfect colouring of G by considering the orbits
of the group [10, Sec. 9.3], but not every perfect colouring arises from a graph automorphism.

Perfect colourings have been studied in different contexts, see for instance [4, Bl 8, @, 12} [13]. This
paper is organized as follows: In Section [2] several combinatorial arguments and a little algebraic
graph theory yield a list of (old and new) necessary conditions for a matrix being a colour incidence
matrix. We show that a combination of these conditions is also sufficient in Section[3} Using these
results we computed the list of all colour incidence matrices of perfect colourings with two, three
and four colours for k-regular connected graphs for k € {3,4, 5}, respectively (Section . To our
best knowledge this list has not been published before.

As an application we determine all perfect colourings of the edge graphs of the Platonic solids
using two, three and four colours, respectively (Section . All perfect 2-colourings of the edge
graphs of the Platonic solids have been determined in [3] already. The perfect three-colourings of
the edge graphs of the Platonic solids were studied in [I], but some cases were missed. To our
knowledge the perfect 4-colourings of the edge graphs of the Platonic solids given in this paper
are new.
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2. NECESSARY CONDITIONS FOR COLOUR INCIDENCE MATRICES

Let G be a k-regular connected graph and A € N™*™ be a colour incidence matrix for a perfect
colouring of G with m colours. Clearly each row sum of A equals k. Thus for each row there are

(k;’f{l) different possibilities to distribute the entries such that the row sum equals k. Hence
there are (k:ﬁ;l)m matrices to consider altogether. We use the following lemmas to reduce the

number of matrices to consider.

Let A = (aij)mxm be a colour incidence matrix for a graph G = (V, E). This first observation
says A must possess a weak form of symmetry, following from the symmetry of vertex adjacency
relations.

Lemma 1. Suppose A = (aij)mxm 1S a colour incidence matriz for a graph G = (V, E). Then,
a;; =0 if and only if a;; =0 for 1 <i,57 <m.

Since we are interested in connected regular graphs, we also sought conditions for colour incidence
matrices of connected graphs. The following lemma is essentially a rephrasing of the fact that
the induced graph G’ = ({V1,...,Vin}, E') ( where the colour classes V; of G are the vertices of
G’, and there is an edge between V; and V; in G’ if there is an edge between V; and V; in G) is
connected, hence has a spanning tree. The pairs (ni,n2), (n3,n4),... are an enumeration of the
edges of a spanning tree of G’. In the lemma, the expressions in curly braces are multisets.

Lemma 2. Suppose A = (a;;)mxm 15 a colour incidence matriz for a connected graph G = (V, E).
Then there exists an (m — 1)-tuple (any .y Gngngs -« - > Onom_gnam_o) Of nONZETO components such
that nq # na, and if m > 3, ngi—1 & {n1,...,n9i—2} and ng; € {n1,..., oo} for2 <i<m-—1.

Proof. By connectedness, there exist distinct n1, ny such that a,, », # 0. If m = 2, this means
a12 # 0. For m > 3, there must also exist ng such that a,, ,, # 0 or ap, n, 7 0, otherwise G is
the disjoint union of the graph induced by V,,, UV, and the graph induced by the other vertices.
Choose ny4 € {n1,n2} such that a,, n, # 0. The result then follows inductively. O

Remark 1. The condition of Lemma [2| together with the weak symmetry condition of Lemma
is equivalent to A not being conjugate via a permutation matrix to a block diagonal matrix.

For 1 <14, j < m, let v; and v; denote the number of vertices in V; and V; respectively. The central
fact that provides the next result is the following:

(1) Ai;V; = Aj5;V; holds for all 1 S ) %] S m.

Hence there are several ways to relate v; and v; by a;; and aj;.

Lemma 3. Suppose A = (a;j)mxm 15 @ colour incidence matriz for a graph G = (V,E). Then
for any nontrivial cycle (ny,na,...,ng) in the symmetric group Sy, on {1,2,...,m},

Ani,na@nang * " Ang_1,neOnyny = Ay g Gng,ng * " Aoy ng 1 Ong ng -

Proof. When t = 2, this is trivial: apn, ny@ny,ni = @nyniGny,n,- If one of the a;; is zero then also
aj; = 0 and the statement is trivial, too.

When 2 < t < m, this identity arises from equation . Indeed, an, noVn, = Anymn,Vn,, and

therefore Gpn, n,GnynsVni = Qngny@nongUng = Ong.niOngnaUng. 1t follows by induction that
UnymaOnams ' Qg1 ,meVUng = Gngony Gngony ** Gngny_y Un,- Combining this with an, n,vn, = an,n, Vn,
gives the expression above. U

For m = 2, 3,4, the next lemmas count the number of vertices of each colour. Depending on the
different ways how the induced graph G’ = ({V1,...,Vi,}, E’) (see above) might be connected
there are several cases how to express v; in terms of a;; and v;. By Cayley’s formula the number
of possible spanning trees of G’ equals m™ 2. Hence there is only one case to consider for m = 2,
there are three cases for m = 3 and 16 cases for m = 4. The case m = 2 (Lemma [4]) occurs in [3].
The case m = 3 (Lemma [5]) occurs in [I]. Moreover, for the case m = 3, Proposition 2.1 in [2] is
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equivalent to Lemmas and [5| combined. Hence we sketch a proof for the case when m = 3
only.

Lemma 4. Let A = (Z;} 3;;) be a colour incidence matriz of some connected graph G = (V, E).

Then a2 and as1 are both nonzero and

v = \4 vy = \4
1+ g2 |

ail ai2 ai3 . . .
Lemma 5. Let A = (321 a2 Zm) be a colour incidence matrix of some connected graph G =
31 32 33

(V, E). Let v; denote the number of vertices of colour i.

(1) If a1 # 0 and a13 # 0, then

e 1+“£2/|+%’U - “A-H“:-'M’%: @+&+1'
az1 asi a12 ai2a31 ais a13a21
(2) If a12 # 0 and ags # 0, then
1= 1+&J?m’v2 - mJYLM’W - ﬁ
a1 a21a32 ai2 asz2 a23a12 az3
(8) If a13 # 0 and asz # 0, then
1= 1+$ a1 V2 T Mf|1+m’03: MJ‘;+1'
a31a23 asi asz2ai13 as2 a13 az23
The proof goes along the lines of counting the total number of vertices as |V| = v; + vy + vs,
considering that in Case 1 we have aq;01 = a;1v;, hence |V| = v1 + %vl + %vl. Here, as3 and

asz may equal zero. Hence they cannot necessarily be used to relate v, and vs. But, as in the
counting procedure in the proof of Lemma E[, one obtains as1a13v2 = ai2a31v3, and consequently
the expressions for v and vz above.

We have the following analogue for four colours:

ail a1z ai13 ai4q
— a21 a22 a23 a24 - . .
Lemma 6. Let A = | 421 022 02 423 | be a colour incidence matriz of some connected graph
a41 42 43 Q44

G = (V,E). Letv; denote the number of vertices of colour i.

(1) If a12 # 0, a13 # 0, and a4 # 0 then

Ul:1+m_|:/<‘1g+m’ Uz:m_kl_&_&_km
a2 as1 as1 a1z ai2as1 a12a41
U3:@+%17111|2V4|_1+M’ U4:@+@VJ_M+1'
a3 a13azi a13a41 aia ai4a21 aisazi
(2) If a12 # 0, a13 # 0, and asq # 0 then
’01:14_%_'_‘}113_'_%7 v2:m+1+|L+m
a21 @31 a21a42 a2 a12a31 a42
U3 = asi + asi1ai2 |_"f|1 + a31a120a24 ’ U4 = Q42021 _|_ ﬂ|_|‘f|w + 1
a3 aizasi 1302142 a24a12 az4 a24a12a31
(8) If a12 # 0, a13 # 0, and azq # 0 then
b= 1+ﬂ+|§1;|3+m’ b2 = m+1+a2|1¥1|3_~_a21a13a34
az1 as1 a31a43 a1z ai2a31 1203143
" v e v

_(l' aszia asq
31_|_ 3112_|_1+ 34

443031 443031012 + a43 + 1’
ai3 a13az21 a3 az4a13 a34a13a21 aszq



PERFECT COLOURINGS OF REGULAR GRAPHS

(4) If a12 # 0, a14 # 0, and as3 # 0 then
14

v =
(112 a12a23 1114 ’
1+ + az21a32 +
\4
vs = M_Fan 41 4 9820210140
a23a12 a23a12a41

(5) If a12 # 0, a14 # 0, and asq # 0 then

V]
v = )
1 a12 a140Q43 a4
+ + 41034 + aql
V]
U3 = a34a41 + 434041012 +1+ asa’
a43a14 a43@14021 a43

(6) If a12 # 0, a3 # 0, and asq # 0 then
14

v = )
1 (112 a12023 12024
+ + 21032 + a21042
V]
U3 = G32021 4 ¢132 41 4 232024 ’
423412 423042

(7) If a12 # 0, as3 # 0, and azq # 0 then
V]

v = a )
a1z a12a23 @12a23034
1+ a21 + az1asz + a21a32a43
. V]
3 = Tagzagy + a32 1+ %4’
az3a12
(8) If a1 # 0, asq # 0, and azq # 0 then
. 14
1= 1+ aiz + 212024043 412024
a1 21042034 az1a42
Y vl
T a34G42021 34042 1 asq )’
43024012 + Q43024 +1+ as3
(9) If a13 # 0, a14 # 0, and azz # 0 then
oy = \4
- a13a32 a1z a14 ’
1 + a31a23 + asz1 +
e 4
- a31 a32 asi1aiq ’
+ +1+ a13a41
(10) If a13 # 0, a14 # 0, and azq # 0 then
oy = V|
- a14Q42 ais ais’
L+ ag1a24 + as1 + a4l
. v
~ as1 a31a14Q42 asiaiq’
ais + a13a41024 +1+ a13aql

(11) If a13 # 0, azs # 0, and azy # 0 then
14

v = )
1 a13a32 a3 413032024
+ a31a23 + asi + a31a23042
V]
V3 =
asy a3z 1 aszaazq ’
a3 + +1+ a23042

Vi

Vo =
a21 1 a23 a21014
+ + as2 + a12a41
V]
V4 = 4 041012 | 041012023 4 1
a140a21 14021032
V]
Vo =
azi 1 421014043 a21a14
a12 +1+ 12041034 + a12a41
V]
Vg4 =
aql a410a12 a43 1
a4 + a14a21 + +
V]
Vg =
az1 1 az3 a24
aiz +1+ as2 + a42
V]
Vg = Q42021 | (142 4 Q42023 | 1
24012 a24a32
V]
Vg =
a21 1 a23 a23a34
+1+ + a32a43
IVI
Vg = .
443032021 443032 a43 1
434023012 + a34a23 + +
V]
Vg =
as1 1 a24a43 a24
a12 +1+ a42034 + 42
V]
Vg = .
Q42021 a42 a43 1
a24012 + + +
V]
Vo =
a23a31 1 a2'3 423031Q14
13032 +1+ + 32013041
IVI
V4 =
aal 441013032 a41013 1
a4 + a14a31023 + a14a31 +
V]
V2 424041 | | 4 G24041a13 | agq
a14a42 42014031 a42
V]
Vg4 =
aq1 a42 a41a13 1
aiq + + 14031 +
V]
U2 = Q23031 | | | a23 + a24
a32a13
IVI
Vg4 =

442023031 a42 a420a23 1 :
a24032013 + + a24a32 +
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(12) If a13 # 0, azs # 0, and asy # 0 then

01:14_%2/; 13034 U22M+14|_V1@+M
a310a23 asi 31043 a320a13 asz2 a32a43
U3:m+4‘11+m’ Y4 = “agzaa; $+m+1'
ais az3 a43 a34a13 34023 asz4
(13) If a13 # 0, az4 # 0, and asq # 0 then
U1:1+M|Z|m+m’ v2:m+1|z|w+m
a31a430a24 aszi a31a43 142034013 42034 aq2
U3:m+as47a‘g|+1+m’ U4:M+g‘+m+1'
ais 43024 aq3 a340a13 az4 asq
(14) If a14 # 0, as3 # 0, and azq # 0 then
U1 = 1 + Q10 _|_|L/1|4a42a23 4 a1a”’ Y2 = agaaar + 1|‘_/|_|M + az
a41024 a41024G32 aql a42014 as2 aq2
v3:w+g|+1+m’ U4:@+@|K|M+1'
23042014 a23 a23a42 a4 az4 a240a32

(15) If a14 # 0, az3 # 0, and aszq # 0 then

v = 14 vy — V|
1 a14a43a32 14043 aig’ 23034041 1 az3 a23a34
+ 41034023 41034 + aq1 a32043014 +1+ aszz + az2a43
V] V|
U3 = 3 YR V4 = .
34041 asz asq a1 43032 aa3
43014 + a23 + 1 + a43 a4 + 34023 + a3q + 1
(16) If a14 # 0, az4 # 0, and asy # 0 then
V] V]
v = 2 s Vg =
14042 a14a43 aiq a240a41 a240a43 a4
1+ ag1a24 + Q41034 + a1 a42014 +1+ 42034 + a2
V] V]
U3 = 3 ; Uy = .
34Q41 a34042 asa aal a2 aa3
43014 + a43a24 +1+ as3 a4 + a24 + as4 +1

Again the proof is in complete analogy to the one of Lemmal5} we count |V| by |V| = vi+vo+v5+
vg. Then we express for instance v, using Equation in terms of vy, v3, ... using the appropriate
(non-zero) a;j, depending on the possible spanning tree for G'.

3. SUFFICIENCY OF LEMMAS [T} 2], AND [3]

It turns out that Lemmas [T}f3] provide the necessary and sufficient conditions for a matrix to be the
colour incidence matrix of a perfect colouring of some connected graph (not necessarily regular).

Theorem 7. Let A = (a;;) € N™*™. Then A is a colour incidence matriz for a perfect colouring
of a graph G = (V, E) if and only if

(1) a;; =0 if and only if aj; =0 for 1 <i,5 <m, and
(2) for any nontrivial cycle (ny,na,...,ng) in the symmetric group S,, on {1,2,...,m},

Ani,na@nyng * " Any_1,nOnyny = Ony g Gngng * " Ang ng 1 Ong ng

Moreover, there exists a connected graph G and a perfect colouring of G having colour incidence
matriz A if and only if there exists an (m — 1)-tuple (Gny nys Gngnas - - - s Cngpy_s.mam_2) Of NONZETO
components such that ny # ng, and if m > 3, ng;—1 ¢ {n1,...,n2—2} and ng; € {n1,...,N2_2}
for2<i<m-—1.
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Proof. The necessity of these conditions are Lemmas We show the sufficiency of Lemmas
and 3| by constructing a graph together with a perfect colouring for any given colour incidence
matrix A fulfilling the weak symmetry and cycle conditions. We rely on two (probably well-known)
facts:

Lemma 8. There ezists a k-reqular graph with n vertices if and only if n > k+1 and nk is even.

Proof. This is a simple consequence of the Erdés-Gallai Theorem. But for the if-part it is even
simpler to construct a graph G = (V, E) with the required properties. Let V' ={0,1,...,n — 1}.

Fork=2mlet E={{i,i+jmodn}|0<i<n-—1,1<j<m}. Clearly each vertex is of degree
k.

For k = 2m + 1 (which is possible only if n is even) add edges {i,i+ 5} to E (0 <i < 5 —1). O

A bipartite graph with bipartition (V,V2) is (p, ¢)-semiregular if each vertex in Vi (resp. V) has
degree p (resp. ¢). Note that p = 0 if and only if ¢ = 0.

Lemma 9. Let p < s, g <r. If pr = qs then there exists a (p, q)-semiregular bipartite graph with
bipartition (U, V) and |U| =r, |V] = s.

Proof. We assume p, q¢ # 0 and construct a graph with the desired properties. Denote the vertices
in U by ug, w1, - .., ur—1 and the vertices in V by vg, v, ...,vs—1. We will use a greedy construction:
join vertex up with vp,v1,...,Vp—1 mod s, jOIN vertex u; with vp mod s, Up+1 mod ss - - - s V2p—1 mod s>
and so on. Clearly every vertex in U is adjacent to p vertices in V', and, because of pr = gs, every
vertex in V' is adjacent to exactly ¢ vertices in U. U

Now let A be a matrix satisfying the conditions of Lemma [I| (weak symmetry) and of Lemma
(cycles condition). We construct a graph G with colour incidence matrix A € N™*™ where the
colour classes are denoted by Vi,...,Vy,.

e Using the non-zero non-diagonal entries we obtain the ratio of v; to v;. (If the matrix
is a sum of blocks, then these ratios are only between each pair of vertices in the same
corresponding block). Because of the cycles condition, we know these ratios are consistent,

and there exists an ordered m-tuple of positive integers (v], ..., v,,) satisfying all required
relations.
e There is a large enough multiple (v1,...,v,,) of the m-tuple above such that for each ¢,

v; > max{a;; + 1,a;5(j # 1)} and a;;v; is even.

e Let V; have v; elements. With the vertices in V;, form an a;;-regular graph (according to
Lemma . Between distinct cells V; and V; form the edge set of an (a;j, a;;)-semiregular
bipartite graph (according to Lemma E[)

The constructed graph fulfils the conditions of Lemmas [I] and [3] Suppose A also satisfies the
connectedness condition of Lemma [2] The constructed graph G is not necessarily connected yet:
G may consist of more than one connected component. But by construction, each connected
component already fulfils the conditions of Lemma [l| and Lemma O

Remark 2. The regularity is not required above. But the construction ensures that the vertices
in V; have common degree equal to the i-th row sum of A. Hence if the row sum is constant, the
graph constructed above is regular.

4. IMPLEMENTATION

Altogether the necessary conditions above yield the following procedure to enumerate all colour
incidences matrices for connected regular graphs. We need (m — 1)? nested loops to go through
all matrices A = (a;;)mxm € N™*™ with constant row sum k. In these loops each matrix A needs
to pass the following five tests. The order of the tests is in part arbitrary: we implemented them
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before we realized the sufficiency of the conditions in Theorem [7| But the most time-consuming
test is the last one, so it is desirable to exclude as many matrices as possible before that one.

(1.) Check if for i # j, a;; = 0 if and only if a;; = 0.

(2.) Ensure connectedness through Lemma 2] For m = 2, this means a;2 is nonzero; for m = 3
and m = 4, as mentioned above, at least one of the three pairs in Lemma [5| must be all
nonzero; and at least one of the sixteen triples in Lemma [6] must be all nonzero.

(3.) Use Lemma |3[to ensure that the various ways of counting v; in terms of v; for distinct ¢ and
j are consistent with one another. For example, if m = 4 and all non-diagonal entries of A
are nonzero, then equality of all sixteen expressions in Lemma [f] is guaranteed by Lemma
Bl Thus later it will suffice to consider just one case. Furthermore, several of the products
in Lemma |3| may be zero, but by connectedness there is a way to relate any v, and vs by
products of nonzero a;;’s.

(4.) Without loss of generality, we assume that v; < v;11 for ¢ < m. Moreover, in each case in
Lemma and @ we have |V| = vy + -+ + vy,. Therefore, for m = 2,3,4, we identify a
suitable case that A satisfies and replace the v; in the above equation with the corresponding
expressions. Dividing the resulting equation by |V| leaves right-hand side expressions involv-
ing only the entries a;;. We check whether these expressions are in non-decreasing order and
do sum up to 1.

The analogue for two colours needs not to be checked at this step, since the sum is always 1.
Hence it suffices to check if a12 < ag1. But in the next section we need that these expressions
for v; and vy are integers.

(5.) Finally we want to consider colourings that differ only by a permutation of colours as identical.
Hence we identify matrices if they differ only by a permutation, i.e. we omit a matrix A’ if
PA'P~! = A for some permutation matrix P.

The tests (1.)-(5.) can be implemented in a straight-forward manner in a computer algebra system.
We implemented them both in scilab and sagemath. The sagemath worksheets are available for
download [I5]. There are three worksheets, one for each number of colours. The worksheets are
organized in sections, one for each degree k of regularity (k € {3,4,5}). The comments in the
code indicate the different cases and tests. After executing all cells in all sections in the worksheet
the list 1 contains all colour incidence matrices passing the tests (1.)-(5.) for the respective value
of k. Each section contains further code to determine all perfect colourings for Platonic graphs,
see Section

The worksheets for two and three colours will need at most a few minutes computing time on
a common laptop or desktop computer. The worksheets for four colours need several hours of
computation on a modern laptop. The most time is needed for test (5.). Therefore we provide
the list containing all colour incidence matrices for download, too [I5]. One can download the
files, store them in some folder (e.g. /home/user/sage) and load the content into any sage
worksheet using open(’/home/user/sage/4col-1list.sage’), for instance. After executing the
above command, the list 143 contains all colour incidence matrices for perfect 4-colourings of
3-regular graphs, 144 contains all colour incidence matrices for perfect 4-colourings of 4-regular
graphs, and 145 the corresponding list for perfect 4-colourings of 5-regular graphs. These lists can
then be proceeded further, for instance like in the examples in Section

Using these criteria all colour incidence matrices A for perfect 2-colourings of k-regular graphs
with k € {3,4,5} are only the ones listed in the Table [I] All colour incidence matrices A for

kA
3 g?%)a ES?% 58837 (%%g, (%%ga (?%;
41 (98),(52), (84), (96), (18), (38), (3%), ($3), (33), (¥3)-
51(92): (83),(83), (93),(88), (1), (23), (43), (i1), (11),
(33). (33), (21), (33), (11).
TABLE 1. All colour incidence matrices for k-regular graphs with two colours.
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perfect 3-colourings of k-regular graphs with k € {3,4,5} are given in Appendix A. There are 18
possible matrices for 3-regular graphs, 64 for 4-regular graphs, and 153 for 5-regular graphs.

The lists of all colour incidence matrices A for perfect 4-colourings of k-regular graphs with &k €
{3,4,5} are quite long: there are 72 matrices for 3-regular graphs, 485 for 4-regular graphs, and
2042 for 5-regular graphs. They are available online at [I5] in two forms: as a list in pdf, and as a
loadable sage data file. Table [2| compares the number of all matrices in N"**"" with all row sums
equal to k with the number of all colour incidence matrices for perfect colourings for 4-colourings
of k-regular graphs with k € {3,4,5}.

m\ k| 3 4 5
2 6 of 16 10 of 25 15 of 36
3 18 of 1000 64 of 3375 153 of 9261

4 72 of 16 000 485 of 1 500 625 2042 of 9 834 496
TABLE 2. This table compares the number of all colour incidence matrices (pass-
ing the tests (1.)-(5.)) with the entire number of matrices in N™*™ with all row
sums equal to k.

5. PERFECT COLOURINGS OF PLATONIC GRAPHS

A very useful fact in the context of perfect colourings is the following result [10, Theorem 9.3.3].

Theorem 10. Let M be the adjacency matrixz of some graph G and let A be the colour inci-
dence matriz of some perfect colouring of G. Then the characteristic polynomial of A divides the
characteristic polynomial of M. In particular, each eigenvalue of A is an eigenvalue of M.

This can be used to as a further necessary criterion for possible colour incidence matrices for
some particular graph G. We illustrate this with the edge graphs of the five Platonic solids. The
eigenvalues of those are given in Table [3] An entry a™ means that a is an eigenvalue of algebraic
multiplicity n.

G ‘ tetrahedron cube octahedron dodecahedron icosahedron
‘ _1373 _3,_1371373 _2270334 _\/537_247047157\/5373 _\/537_153\/53,5
TABLE 3. The eigenvalues of the Platonic graphs. A superscript denotes the
multiplicity of the respective eigenvalue.

In order to determine all perfect colourings of the Platonic graphs with two colours one can check
which matrices in Table [I| have all eigenvalues in {—1,3} (for the tetrahedral graph), respectively
in {—3,—1,1,3} (for the cube), and so on. This is the actual test we implemented in sage. One
could refine it in order to include counting the multiplicities, but we found that the latter condition
does not exclude further matrices.

5.1. The 2-colourings of Platonic graphs. By the methods in the previous section we obtained
a list of all colour incidence matrices for perfect 2-colourings of k-regular graphs for k € {3,4,5}.
For each matrix in each of these lists we now check whether the corresponding expressions in
Lemma [4 are integers, and whether the matrix has the correct eigenvalues, according to the
Platonic graph under consideration. For example, since the icosahedron is 5-regular, we check for
all fifteen matrices in the last row of Table [T] whether the expressions in Lemma [f] are all integers,
and whether all eigenvalues of the matrix are contained in {—+/5, —1,v/5,5}. In this manner we
obtained the following candidates for colour incidence matrices for 2-colourings of the Platonic
graphs, respectively.

(1) Tetrahedron: ((1) 3), (% %)
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(2) Cube: (93), (8
(3) Octahedron: (9
(4) Dodecahedron:

(5) Icosahedron: (¢

For the tetrahedron, the cube, the dodecahedron, and the icosahedron, all possible colour incidence
matrices in the list above actually do belong to perfect 2-colourings. These colourings are shown
in Figures [T} 2 @] and [f] on page [[1I} For the octahedron there are only two perfect 2-colourings,
shown in Figure |3l In this case, one of the matrices above does not belong to a perfect 2-colouring:
the matrix in grey can be checked to be impossible in a straightforward manner by attempting to
colour a graph according to these colour incidences. This list confirms the results in [3].

5.2. The 3-colourings of Platonic graphs. Applying the analogous procedure, and with Lemma
[ rather than Lemma [4 we obtained a list of all colour incidence matrices for 3-colourings of the
Platonic graphs, respectively. In this case, all candidates are valid colour incidence matrices for
perfect colourings of Platonic graphs.

1) Tetrahedron: (

0
(1) !
12

@ cube ({41).(
(3) Octahedron: (8 01
112

(4) Dodecahedron: (§
14

(5) 04

5) Icosahedron: ((£

The perfect colourings corresponding to the colour incidence matrices above are shown in Figures

[}

This list corrects [I] by providing the three cases missing there, namely (% § (%)) for the
octahedron and ( ((1: % %) and ((1J 1 2) for the dodecahedron.

5.3. The 4-colourings of Platonic graphs. We obtained in a similar manner the following
candidates for colour incidence matrices for 4-colourings of the Platonic graphs, respectively.

1011
(1) Tetrahedron: | {9371 ).
1110
0003 0012 0111 0111 1011
(2) Cube: (00370 0021 1011 1011 0111
“loi02 1200 1101 1110 1110
1020 2100 1110 1101 1101
1033) (bi33
(3) Octahedron: | $9273 0922
1120 1111
§987Y (007) (BB13) (8837 (4083
(4) Dodecahedron: | §5§ 1 0111 1110 1020 001 2
1110 1110 1101 2100 1110
4EOE) (1R (1033 (1433
(5) Icosahedron: { 939 1103 1112 2021
1022 1112 1121 2210

All of these candidates have corresponding perfect colourings, and these are shown in Figures [1H5]
respectively.
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APPENDIX A: ALL COLOUR INCIDENCE MATRICES FOR 3-COLOURINGS

All colour incidence matrices A for perfect 3-colourings of k-regular graphs with k € {3,4,5}:
00 003\ 003\ /003\ /003) /003) /012 /012) /012 /012
3-regular graphs: ( 00 003)(o12)(o12)(0o21)(021)(102)(111)(120) (120
11 i20/\111/\120/ \111/ \210/ \111/ \210/ \102/ \201
030 102 102 102 102 111 111 120
102 003 012 012 021 111 120 102
012 120 111 120 111 111 102 012
00 004 /004 /004) (004 /004 (004) (004 /004 /004
4-regular graphs: ( 00 004)(004)(004)(013)(013)(013)(013)(022) (022
11 i21/\130/\220/ \112/\121/\130/ \220/ \112/ \121
0 4 04Y £004Y /004Y £004Y (013 (013Y (013 /013\ /013Y /013 /022
22 22) (031 031 031 103 103 121 130 130) (130 103
11 20 112/ \211 310 112) \220/ \310 103/ \202/ \301 130
22 22\ 7022\ /022 /022 /022 /022Y /022) /040\ /040) 7040\ /040
12 21 130) (202) (202) (211 220) (220 103 103 112) (202
21 12 103 112/ \220/ \211 103/ \202/ \o13/ \022/ \013/ \013
03 03 103 103 103 103 103 103 103 103 103 112
04 04)(013)(013)(013)(013)(022) (022) (022) (031 031 112
21 30 112 121 130/ \220 112 121/ \220 112/ \211 112
12 12 112 130 130 130 130 /202Y /202 /202Y /202 /202
21 30 130 103 103 112)(202)(004)(013)(013)(022) (022
11 03/ \202/ \o0o13/ \o22/\013/ \013 130 121 130/ \112 121
02 11 211 220 220 220
31 21 130 103 103 112
12 12 103 013 022 013
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APPENDIX B: PERFECT COLOURINGS OF PLATONIC GRAPHS

VAW ANV

F1cURE 1. The perfect 2-, 3- and 4-colourings of the tetrahedral graph.
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FIGURE 2. The perfect 2-, 3- and 4-colourings of the cube graph.
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FI1GURE 3. The perfect 2-; 3- and 4-colourings of the octahedral graph.
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FI1GURE 4. The perfect 2-, 3- and 4-colourings of the dodecahedral graph.



12

PERFECT COLOURINGS OF REGULAR GRAPHS

V-V V-V V.
IV V-V..V..\

FI1GURE 5. The perfect 2-, 3- and 4-colourings of the icosahedral graph.
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