
PERFECT COLOURINGS OF REGULAR GRAPHS

JOSEPH RAY CLARENCE DAMASCO AND DIRK FRETTLÖH

Abstract. A vertex colouring of some graph is called perfect if each vertex of colour i has
exactly aij neighbours of colour j. Being perfect imposes several restrictions on the colour

incidence matrix (aij). We list several (old and new) necessary conditions for a matrix to be the

colour incidence matrix of a perfect colouring. Moreover we show that a certain combination of
these conditions is also sufficient. Using this we determine a list of all colour incidence matrices

corresponding to perfect colourings of 3-regular, 4-regular and 5-regular graphs with two, three

and four colours, respectively. As an application we determine all perfect colourings of the edge
graphs of the Platonic solids with two, three and four colours, respectively.

1. Introduction

In this paper an m-colouring of some graph G = (V,E) is a partition of V into disjoint nonempty
sets V1, . . . , Vm. Note that we do not require adjacent vertices to have different colours. A colouring
of the vertex set V of some graph G = (V,E) with m colours is called perfect if (1) all colours
are used, and (2) for all i, j the number of neighbours of colours j of any vertex v of colour i is a
constant aij . See [10, Sec. 9.3], where perfect colourings are called equitable partitions. It seems
that the term “equitable partition” is used for two different concepts in graph theory: one is what
we call perfect colouring above, the second is a colouring where every pair of adjacent vertices has
different colours, and where the number of any two colour classes differs by at most one. Hence
we will refer to the first concept by the term perfect colouring here. See Figures 1-5 below for
some examples of perfect colourings.

The matrix A = (aij) is called the colour incidence matrix of the perfect colouring. Any subgroup
of the automorphism group of a graph G induces a perfect colouring of G by considering the orbits
of the group [10, Sec. 9.3], but not every perfect colouring arises from a graph automorphism.

Perfect colourings have been studied in different contexts, see for instance [4, 5, 8, 9, 12, 13]. This
paper is organized as follows: In Section 2 several combinatorial arguments and a little algebraic
graph theory yield a list of (old and new) necessary conditions for a matrix being a colour incidence
matrix. We show that a combination of these conditions is also sufficient in Section 3. Using these
results we computed the list of all colour incidence matrices of perfect colourings with two, three
and four colours for k-regular connected graphs for k ∈ {3, 4, 5}, respectively (Section 4). To our
best knowledge this list has not been published before.

As an application we determine all perfect colourings of the edge graphs of the Platonic solids
using two, three and four colours, respectively (Section 5). All perfect 2-colourings of the edge
graphs of the Platonic solids have been determined in [3] already. The perfect three-colourings of
the edge graphs of the Platonic solids were studied in [1], but some cases were missed. To our
knowledge the perfect 4-colourings of the edge graphs of the Platonic solids given in this paper
are new.
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2 PERFECT COLOURINGS OF REGULAR GRAPHS

2. Necessary conditions for colour incidence matrices

Let G be a k-regular connected graph and A ∈ Nm×m be a colour incidence matrix for a perfect
colouring of G with m colours. Clearly each row sum of A equals k. Thus for each row there are(
k+m−1
m−1

)
different possibilities to distribute the entries such that the row sum equals k. Hence

there are
(
k+m−1
m−1

)m
matrices to consider altogether. We use the following lemmas to reduce the

number of matrices to consider.

Let A = (aij)m×m be a colour incidence matrix for a graph G = (V,E). This first observation
says A must possess a weak form of symmetry, following from the symmetry of vertex adjacency
relations.

Lemma 1. Suppose A = (aij)m×m is a colour incidence matrix for a graph G = (V,E). Then,
aij = 0 if and only if aji = 0 for 1 ≤ i, j ≤ m.

Since we are interested in connected regular graphs, we also sought conditions for colour incidence
matrices of connected graphs. The following lemma is essentially a rephrasing of the fact that
the induced graph G′ = ({V1, . . . , Vm}, E′) ( where the colour classes Vi of G are the vertices of
G′, and there is an edge between Vi and Vj in G′ if there is an edge between Vi and Vj in G) is
connected, hence has a spanning tree. The pairs (n1, n2), (n3, n4), . . . are an enumeration of the
edges of a spanning tree of G′. In the lemma, the expressions in curly braces are multisets.

Lemma 2. Suppose A = (aij)m×m is a colour incidence matrix for a connected graph G = (V,E).
Then there exists an (m − 1)-tuple (an1,n2 , an3,n4 , . . . , an2m−3,n2m−2) of nonzero components such
that n1 6= n2, and if m ≥ 3, n2i−1 /∈ {n1, . . . , n2i−2} and n2i ∈ {n1, . . . , n2i−2} for 2 ≤ i ≤ m− 1.

Proof. By connectedness, there exist distinct n1, n2 such that an1,n2
6= 0. If m = 2, this means

a12 6= 0. For m ≥ 3, there must also exist n3 such that an3,n1
6= 0 or an3,n2

6= 0, otherwise G is
the disjoint union of the graph induced by Vn1 ∪ Vn2 and the graph induced by the other vertices.
Choose n4 ∈ {n1, n2} such that an3,n4 6= 0. The result then follows inductively. �

Remark 1. The condition of Lemma 2 together with the weak symmetry condition of Lemma 1
is equivalent to A not being conjugate via a permutation matrix to a block diagonal matrix.

For 1 ≤ i, j ≤ m, let vi and vj denote the number of vertices in Vi and Vj respectively. The central
fact that provides the next result is the following:

(1) aijvi = ajivj holds for all 1 ≤ i 6= j ≤ m.

Hence there are several ways to relate vi and vj by aij and aji.

Lemma 3. Suppose A = (aij)m×m is a colour incidence matrix for a graph G = (V,E). Then
for any nontrivial cycle (n1, n2, . . . , nt) in the symmetric group Sm on {1, 2, . . . ,m},

an1,n2an2,n3 · · · ant−1,ntant,n1 = an2,n1an3,n2 · · · ant,nt−1an1,nt .

Proof. When t = 2, this is trivial: an1,n2
an2,n1

= an2,n1
an1,n2

. If one of the aij is zero then also
aji = 0 and the statement is trivial, too.

When 2 < t ≤ m, this identity arises from equation (1). Indeed, an1,n2vn1 = an2,n1vn2 , and
therefore an1,n2

an2,n3
vn1

= an2,n1
an2,n3

vn2
= an2,n1

an3,n2
vn3

. It follows by induction that
an1,n2

an2,n3
· · · ant−1,nt

vn1
= an2,n1

an3,n2
· · · ant,nt−1

vnt
. Combining this with an1,nt

vn1
= ant,n1

vnt

gives the expression above. �

For m = 2, 3, 4, the next lemmas count the number of vertices of each colour. Depending on the
different ways how the induced graph G′ = ({V1, . . . , Vm}, E′) (see above) might be connected
there are several cases how to express vi in terms of aij and vj . By Cayley’s formula the number
of possible spanning trees of G′ equals mm−2. Hence there is only one case to consider for m = 2,
there are three cases for m = 3 and 16 cases for m = 4. The case m = 2 (Lemma 4) occurs in [3].
The case m = 3 (Lemma 5) occurs in [1]. Moreover, for the case m = 3, Proposition 2.1 in [2] is
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equivalent to Lemmas 2, 3, and 5 combined. Hence we sketch a proof for the case when m = 3
only.

Lemma 4. Let A =
(
a11 a12
a21 a22

)
be a colour incidence matrix of some connected graph G = (V,E).

Then a12 and a21 are both nonzero and

v1 =
|V |

1 + a12

a21

, v2 =
|V |

a21

a12
+ 1

.

Lemma 5. Let A =
(

a11 a12 a13
a21 a22 a23
a31 a32 a33

)
be a colour incidence matrix of some connected graph G =

(V,E). Let vi denote the number of vertices of colour i.

(1) If a12 6= 0 and a13 6= 0, then

v1 =
|V |

1 + a12

a21
+ a13

a31

, v2 =
|V |

a21

a12
+ 1 + a21a13

a12a31

, v3 =
|V |

a31

a13
+ a31a12

a13a21
+ 1

.

(2) If a12 6= 0 and a23 6= 0, then

v1 =
|V |

1 + a12

a21
+ a12a23

a21a32

, v2 =
|V |

a21

a12
+ 1 + a23

a32

, v3 =
|V |

a32a21

a23a12
+ 1 + a32

a23

.

(3) If a13 6= 0 and a23 6= 0, then

v1 =
|V |

1 + a13a32

a31a23
+ a13

a31

, v2 =
|V |

a23a31

a32a13
+ 1 + a23

a32

, v3 =
|V |

a31

a13
+ a32

a23
+ 1

.

The proof goes along the lines of counting the total number of vertices as |V | = v1 + v2 + v3,
considering that in Case 1 we have a1iv1 = ai1vi, hence |V | = v1 + a12

a21
v1 + a13

a31
v1. Here, a23 and

a32 may equal zero. Hence they cannot necessarily be used to relate v2 and v3. But, as in the
counting procedure in the proof of Lemma 3, one obtains a21a13v2 = a12a31v3, and consequently
the expressions for v2 and v3 above.

We have the following analogue for four colours:

Lemma 6. Let A =

(
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

)
be a colour incidence matrix of some connected graph

G = (V,E). Let vi denote the number of vertices of colour i.

(1) If a12 6= 0, a13 6= 0, and a14 6= 0 then

v1 =
|V |

1 + a12

a21
+ a13

a31
+ a14

a41

, v2 =
|V |

a21

a12
+ 1 + a21a13

a12a31
+ a21a14

a12a41

v3 =
|V |

a31

a13
+ a31a12

a13a21
+ 1 + a31a14

a13a41

, v4 =
|V |

a41

a14
+ a41a12

a14a21
+ a41a13

a14a31
+ 1

.

(2) If a12 6= 0, a13 6= 0, and a24 6= 0 then

v1 =
|V |

1 + a12

a21
+ a13

a31
+ a12a24

a21a42

, v2 =
|V |

a21

a12
+ 1 + a21a13

a12a31
+ a24

a42

v3 =
|V |

a31

a13
+ a31a12

a13a21
+ 1 + a31a12a24

a13a21a42

, v4 =
|V |

a42a21

a24a12
+ a42

a24
+ a42a21a13

a24a12a31
+ 1

.

(3) If a12 6= 0, a13 6= 0, and a34 6= 0 then

v1 =
|V |

1 + a12

a21
+ a13

a31
+ a13a34

a31a43

, v2 =
|V |

a21

a12
+ 1 + a21a13

a12a31
+ a21a13a34

a12a31a43

v3 =
|V |

a31

a13
+ a31a12

a13a21
+ 1 + a34

a43

, v4 =
|V |

a43a31

a34a13
+ a43a31a12

a34a13a21
+ a43

a34
+ 1

.
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(4) If a12 6= 0, a14 6= 0, and a23 6= 0 then

v1 =
|V |

1 + a12

a21
+ a12a23

a21a32
+ a14

a41

, v2 =
|V |

a21

a12
+ 1 + a23

a32
+ a21a14

a12a41

v3 =
|V |

a32a21

a23a12
+ a32

a23
+ 1 + a32a21a14

a23a12a41

, v4 =
|V |

a41

a14
+ a41a12

a14a21
+ a41a12a23

a14a21a32
+ 1

.

(5) If a12 6= 0, a14 6= 0, and a34 6= 0 then

v1 =
|V |

1 + a12

a21
+ a14a43

a41a34
+ a14

a41

, v2 =
|V |

a21

a12
+ 1 + a21a14a43

a12a41a34
+ a21a14

a12a41

v3 =
|V |

a34a41

a43a14
+ a34a41a12

a43a14a21
+ 1 + a34

a43

, v4 =
|V |

a41

a14
+ a41a12

a14a21
+ a43

a34
+ 1

.

(6) If a12 6= 0, a23 6= 0, and a24 6= 0 then

v1 =
|V |

1 + a12

a21
+ a12a23

a21a32
+ a12a24

a21a42

, v2 =
|V |

a21

a12
+ 1 + a23

a32
+ a24

a42

v3 =
|V |

a32a21

a23a12
+ a32

a23
+ 1 + a32a24

a23a42

, v4 =
|V |

a42a21

a24a12
+ a42

a24
+ a42a23

a24a32
+ 1

.

(7) If a12 6= 0, a23 6= 0, and a34 6= 0 then

v1 =
|V |

1 + a12

a21
+ a12a23

a21a32
+ a12a23a34

a21a32a43

, v2 =
|V |

a21

a12
+ 1 + a23

a32
+ a23a34

a32a43

v3 =
|V |

a32a21

a23a12
+ a32

a23
+ 1 + a34

a43

, v4 =
|V |

a43a32a21

a34a23a12
+ a43a32

a34a23
+ a43

a34
+ 1

.

(8) If a12 6= 0, a24 6= 0, and a34 6= 0 then

v1 =
|V |

1 + a12

a21
+ a12a24a43

a21a42a34
+ a12a24

a21a42

, v2 =
|V |

a21

a12
+ 1 + a24a43

a42a34
+ a24

a42

v3 =
|V |

a34a42a21

a43a24a12
+ a34a42

a43a24
+ 1 + a34

a43

, v4 =
|V |

a42a21

a24a12
+ a42

a24
+ a43

a34
+ 1

.

(9) If a13 6= 0, a14 6= 0, and a23 6= 0 then

v1 =
|V |

1 + a13a32

a31a23
+ a13

a31
+ a14

a41

, v2 =
|V |

a23a31

a13a32
+ 1 + a23

a32
+ a23a31a14

a32a13a41

v3 =
|V |

a31

a13
+ a32

a23
+ 1 + a31a14

a13a41

, v4 =
|V |

a41

a14
+ a41a13a32

a14a31a23
+ a41a13

a14a31
+ 1

.

(10) If a13 6= 0, a14 6= 0, and a24 6= 0 then

v1 =
|V |

1 + a14a42

a41a24
+ a13

a31
+ a14

a41

, v2 =
|V |

a24a41

a14a42
+ 1 + a24a41a13

a42a14a31
+ a24

a42

v3 =
|V |

a31

a13
+ a31a14a42

a13a41a24
+ 1 + a31a14

a13a41

, v4 =
|V |

a41

a14
+ a42

a24
+ a41a13

a14a31
+ 1

.

(11) If a13 6= 0, a23 6= 0, and a24 6= 0 then

v1 =
|V |

1 + a13a32

a31a23
+ a13

a31
+ a13a32a24

a31a23a42

, v2 =
|V |

a23a31

a32a13
+ 1 + a23

a32
+ a24

a42

v3 =
|V |

a31

a13
+ a32

a23
+ 1 + a32a24

a23a42

, v4 =
|V |

a42a23a31

a24a32a13
+ a42

a24
+ a42a23

a24a32
+ 1

.
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(12) If a13 6= 0, a23 6= 0, and a34 6= 0 then

v1 =
|V |

1 + a13a32

a31a23
+ a13

a31
+ a13a34

a31a43

, v2 =
|V |

a23a31

a32a13
+ 1 + a23

a32
+ a23a34

a32a43

v3 =
|V |

a31

a13
+ a32

a23
+ 1 + a34

a43

, v4 =
|V |

a43a31

a34a13
+ a43a32

a34a23
+ a43

a34
+ 1

.

(13) If a13 6= 0, a24 6= 0, and a34 6= 0 then

v1 =
|V |

1 + a13a34a42

a31a43a24
+ a13

a31
+ a13a34

a31a43

, v2 =
|V |

a24a43a31

a42a34a13
+ 1 + a24a43

a42a34
+ a24

a42

v3 =
|V |

a31

a13
+ a34a42

a43a24
+ 1 + a34

a43

, v4 =
|V |

a43a31

a34a13
+ a42

a24
+ a43

a34
+ 1

.

(14) If a14 6= 0, a23 6= 0, and a24 6= 0 then

v1 =
|V |

1 + a14a42

a41a24
+ a14a42a23

a41a24a32
+ a14

a41

, v2 =
|V |

a24a41

a42a14
+ 1 + a23

a32
+ a24

a42

v3 =
|V |

a32a24a41

a23a42a14
+ a32

a23
+ 1 + a32a24

a23a42

, v4 =
|V |

a41

a14
+ a42

a24
+ a42a23

a24a32
+ 1

.

(15) If a14 6= 0, a23 6= 0, and a34 6= 0 then

v1 =
|V |

1 + a14a43a32

a41a34a23
+ a14a43

a41a34
+ a14

a41

, v2 =
|V |

a23a34a41

a32a43a14
+ 1 + a23

a32
+ a23a34

a32a43

v3 =
|V |

a34a41

a43a14
+ a32

a23
+ 1 + a34

a43

, v4 =
|V |

a41

a14
+ a43a32

a34a23
+ a43

a34
+ 1

.

(16) If a14 6= 0, a24 6= 0, and a34 6= 0 then

v1 =
|V |

1 + a14a42

a41a24
+ a14a43

a41a34
+ a14

a41

, v2 =
|V |

a24a41

a42a14
+ 1 + a24a43

a42a34
+ a24

a42

v3 =
|V |

a34a41

a43a14
+ a34a42

a43a24
+ 1 + a34

a43

, v4 =
|V |

a41

a14
+ a42

a24
+ a43

a34
+ 1

.

Again the proof is in complete analogy to the one of Lemma 5: we count |V | by |V | = v1+v2+v3+
v4. Then we express for instance v1 using Equation (1) in terms of v2, v3, . . . using the appropriate
(non-zero) aij , depending on the possible spanning tree for G′.

3. Sufficiency of Lemmas 1, 2, and 3

It turns out that Lemmas 1-3 provide the necessary and sufficient conditions for a matrix to be the
colour incidence matrix of a perfect colouring of some connected graph (not necessarily regular).

Theorem 7. Let A = (aij) ∈ Nm×m. Then A is a colour incidence matrix for a perfect colouring
of a graph G = (V,E) if and only if

(1) aij = 0 if and only if aji = 0 for 1 ≤ i, j ≤ m, and
(2) for any nontrivial cycle (n1, n2, . . . , nt) in the symmetric group Sm on {1, 2, . . . ,m},

an1,n2an2,n3 · · · ant−1,ntant,n1 = an2,n1an3,n2 · · · ant,nt−1an1,nt .

Moreover, there exists a connected graph G and a perfect colouring of G having colour incidence
matrix A if and only if there exists an (m− 1)-tuple (an1,n2

, an3,n4
, . . . , an2m−3,n2m−2

) of nonzero
components such that n1 6= n2, and if m ≥ 3, n2i−1 /∈ {n1, . . . , n2i−2} and n2i ∈ {n1, . . . , n2i−2}
for 2 ≤ i ≤ m− 1.
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Proof. The necessity of these conditions are Lemmas 1-3. We show the sufficiency of Lemmas 1
and 3 by constructing a graph together with a perfect colouring for any given colour incidence
matrix A fulfilling the weak symmetry and cycle conditions. We rely on two (probably well-known)
facts:

Lemma 8. There exists a k-regular graph with n vertices if and only if n ≥ k + 1 and nk is even.

Proof. This is a simple consequence of the Erdős-Gallai Theorem. But for the if-part it is even
simpler to construct a graph G = (V,E) with the required properties. Let V = {0, 1, . . . , n− 1}.
For k = 2m let E = {{i, i+ j mod n} | 0 ≤ i ≤ n− 1, 1 ≤ j ≤ m}. Clearly each vertex is of degree
k.

For k = 2m+ 1 (which is possible only if n is even) add edges {i, i+ n
2 } to E (0 ≤ i ≤ n

2 − 1). �

A bipartite graph with bipartition (V1, V2) is (p, q)-semiregular if each vertex in V1 (resp. V2) has
degree p (resp. q). Note that p = 0 if and only if q = 0.

Lemma 9. Let p ≤ s, q ≤ r. If pr = qs then there exists a (p, q)-semiregular bipartite graph with
bipartition (U, V ) and |U | = r, |V | = s.

Proof. We assume p, q 6= 0 and construct a graph with the desired properties. Denote the vertices
in U by u0, u1, . . . , ur−1 and the vertices in V by v0, v1, . . . , vs−1. We will use a greedy construction:
join vertex u0 with v0, v1, . . . , vp−1 mod s, join vertex u1 with vp mod s, vp+1 mod s, . . . , v2p−1 mod s,
and so on. Clearly every vertex in U is adjacent to p vertices in V , and, because of pr = qs, every
vertex in V is adjacent to exactly q vertices in U . �

Now let A be a matrix satisfying the conditions of Lemma 1 (weak symmetry) and of Lemma 3
(cycles condition). We construct a graph G with colour incidence matrix A ∈ Nm×m, where the
colour classes are denoted by V1, . . . , Vm.

• Using the non-zero non-diagonal entries we obtain the ratio of vi to vj . (If the matrix
is a sum of blocks, then these ratios are only between each pair of vertices in the same
corresponding block). Because of the cycles condition, we know these ratios are consistent,
and there exists an ordered m-tuple of positive integers (v′1, . . . , v

′
m) satisfying all required

relations.
• There is a large enough multiple (v1, . . . , vm) of the m-tuple above such that for each i,

vi ≥ max{aii + 1, aji(j 6= i)} and aiivi is even.
• Let Vi have vi elements. With the vertices in Vi, form an aii-regular graph (according to

Lemma 8). Between distinct cells Vi and Vj form the edge set of an (aij , aji)-semiregular
bipartite graph (according to Lemma 9).

The constructed graph fulfils the conditions of Lemmas 1 and 3. Suppose A also satisfies the
connectedness condition of Lemma 2. The constructed graph G is not necessarily connected yet:
G may consist of more than one connected component. But by construction, each connected
component already fulfils the conditions of Lemma 1 and Lemma 3. �

Remark 2. The regularity is not required above. But the construction ensures that the vertices
in Vi have common degree equal to the i-th row sum of A. Hence if the row sum is constant, the
graph constructed above is regular.

4. Implementation

Altogether the necessary conditions above yield the following procedure to enumerate all colour
incidences matrices for connected regular graphs. We need (m − 1)2 nested loops to go through
all matrices A = (aij)m×m ∈ Nm×m with constant row sum k. In these loops each matrix A needs
to pass the following five tests. The order of the tests is in part arbitrary: we implemented them
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before we realized the sufficiency of the conditions in Theorem 7. But the most time-consuming
test is the last one, so it is desirable to exclude as many matrices as possible before that one.

(1.) Check if for i 6= j, aij = 0 if and only if aji = 0.
(2.) Ensure connectedness through Lemma 2. For m = 2, this means a12 is nonzero; for m = 3

and m = 4, as mentioned above, at least one of the three pairs in Lemma 5 must be all
nonzero; and at least one of the sixteen triples in Lemma 6 must be all nonzero.

(3.) Use Lemma 3 to ensure that the various ways of counting vi in terms of vj for distinct i and
j are consistent with one another. For example, if m = 4 and all non-diagonal entries of A
are nonzero, then equality of all sixteen expressions in Lemma 6 is guaranteed by Lemma
3. Thus later it will suffice to consider just one case. Furthermore, several of the products
in Lemma 3 may be zero, but by connectedness there is a way to relate any vr and vs by
products of nonzero aij ’s.

(4.) Without loss of generality, we assume that vi ≤ vi+1 for i < m. Moreover, in each case in
Lemma 4, 5, and 6, we have |V | = v1 + · · · + vm. Therefore, for m = 2, 3, 4, we identify a
suitable case that A satisfies and replace the vi in the above equation with the corresponding
expressions. Dividing the resulting equation by |V | leaves right-hand side expressions involv-
ing only the entries aij . We check whether these expressions are in non-decreasing order and
do sum up to 1.
The analogue for two colours needs not to be checked at this step, since the sum is always 1.
Hence it suffices to check if a12 ≤ a21. But in the next section we need that these expressions
for v1 and v2 are integers.

(5.) Finally we want to consider colourings that differ only by a permutation of colours as identical.
Hence we identify matrices if they differ only by a permutation, i.e. we omit a matrix A′ if
PA′P−1 = A for some permutation matrix P .

The tests (1.)-(5.) can be implemented in a straight-forward manner in a computer algebra system.
We implemented them both in scilab and sagemath. The sagemath worksheets are available for
download [15]. There are three worksheets, one for each number of colours. The worksheets are
organized in sections, one for each degree k of regularity (k ∈ {3, 4, 5}). The comments in the
code indicate the different cases and tests. After executing all cells in all sections in the worksheet
the list l contains all colour incidence matrices passing the tests (1.)-(5.) for the respective value
of k. Each section contains further code to determine all perfect colourings for Platonic graphs,
see Section 5.

The worksheets for two and three colours will need at most a few minutes computing time on
a common laptop or desktop computer. The worksheets for four colours need several hours of
computation on a modern laptop. The most time is needed for test (5.). Therefore we provide
the list containing all colour incidence matrices for download, too [15]. One can download the
files, store them in some folder (e.g. /home/user/sage) and load the content into any sage
worksheet using open(’/home/user/sage/4col-list.sage’), for instance. After executing the
above command, the list l43 contains all colour incidence matrices for perfect 4-colourings of
3-regular graphs, l44 contains all colour incidence matrices for perfect 4-colourings of 4-regular
graphs, and l45 the corresponding list for perfect 4-colourings of 5-regular graphs. These lists can
then be proceeded further, for instance like in the examples in Section 5.

Using these criteria all colour incidence matrices A for perfect 2-colourings of k-regular graphs
with k ∈ {3, 4, 5} are only the ones listed in the Table 1. All colour incidence matrices A for

k A

3
(
0 3
1 2

)
,
(
0 3
2 1

)
,
(
0 3
3 0

)
,
(
1 2
1 2

)
,
(
1 2
2 1

)
,
(
2 1
1 2

)
.

4
(
0 4
1 3

)
,
(
0 4
2 2

)
,
(
0 4
3 1

)
,
(
0 4
4 0

)
,
(
1 3
1 3

)
,
(
1 3
2 2

)
,
(
1 3
3 1

)
,
(
2 2
1 3

)
,
(
2 2
2 2

)
,
(
3 1
1 3

)
.

5
(
0 5
1 4

)
,
(
0 5
2 3

)
,
(
0 5
3 2

)
,
(
0 5
4 1

)
,
(
0 5
5 0

)
,
(
1 4
1 4

)
,
(
1 4
2 3

)
,
(
1 4
3 2

)
,
(
1 4
4 1

)
,
(
2 3
1 4

)
,(

2 3
2 3

)
,
(
2 3
3 2

)
,
(
3 2
1 4

)
,
(
3 2
2 3

)
,
(
4 1
1 4

)
.

Table 1. All colour incidence matrices for k-regular graphs with two colours.
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perfect 3-colourings of k-regular graphs with k ∈ {3, 4, 5} are given in Appendix A. There are 18
possible matrices for 3-regular graphs, 64 for 4-regular graphs, and 153 for 5-regular graphs.

The lists of all colour incidence matrices A for perfect 4-colourings of k-regular graphs with k ∈
{3, 4, 5} are quite long: there are 72 matrices for 3-regular graphs, 485 for 4-regular graphs, and
2042 for 5-regular graphs. They are available online at [15] in two forms: as a list in pdf, and as a
loadable sage data file. Table 2 compares the number of all matrices in Nm×m with all row sums
equal to k with the number of all colour incidence matrices for perfect colourings for 4-colourings
of k-regular graphs with k ∈ {3, 4, 5}.

m \ k 3 4 5
2 6 of 16 10 of 25 15 of 36
3 18 of 1000 64 of 3375 153 of 9261
4 72 of 16 000 485 of 1 500 625 2042 of 9 834 496

Table 2. This table compares the number of all colour incidence matrices (pass-
ing the tests (1.)-(5.)) with the entire number of matrices in Nm×m with all row
sums equal to k.

5. Perfect colourings of Platonic graphs

A very useful fact in the context of perfect colourings is the following result [10, Theorem 9.3.3].

Theorem 10. Let M be the adjacency matrix of some graph G and let A be the colour inci-
dence matrix of some perfect colouring of G. Then the characteristic polynomial of A divides the
characteristic polynomial of M . In particular, each eigenvalue of A is an eigenvalue of M .

This can be used to as a further necessary criterion for possible colour incidence matrices for
some particular graph G. We illustrate this with the edge graphs of the five Platonic solids. The
eigenvalues of those are given in Table 3. An entry an means that a is an eigenvalue of algebraic
multiplicity n.

G tetrahedron cube octahedron dodecahedron icosahedron

−13, 3 −3,−13, 13, 3 −22, 03, 4 −
√

5
3
,−24, 04, 15,

√
5
3
, 3 −

√
5
3
,−15,

√
5
3
, 5

Table 3. The eigenvalues of the Platonic graphs. A superscript denotes the
multiplicity of the respective eigenvalue.

In order to determine all perfect colourings of the Platonic graphs with two colours one can check
which matrices in Table 1 have all eigenvalues in {−1, 3} (for the tetrahedral graph), respectively
in {−3,−1, 1, 3} (for the cube), and so on. This is the actual test we implemented in sage. One
could refine it in order to include counting the multiplicities, but we found that the latter condition
does not exclude further matrices.

5.1. The 2-colourings of Platonic graphs. By the methods in the previous section we obtained
a list of all colour incidence matrices for perfect 2-colourings of k-regular graphs for k ∈ {3, 4, 5}.
For each matrix in each of these lists we now check whether the corresponding expressions in
Lemma 4 are integers, and whether the matrix has the correct eigenvalues, according to the
Platonic graph under consideration. For example, since the icosahedron is 5-regular, we check for
all fifteen matrices in the last row of Table 1 whether the expressions in Lemma 4 are all integers,
and whether all eigenvalues of the matrix are contained in {−

√
5,−1,

√
5, 5}. In this manner we

obtained the following candidates for colour incidence matrices for 2-colourings of the Platonic
graphs, respectively.

(1) Tetrahedron:
(
0 3
1 2

)
,
(
1 2
2 1

)
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(2) Cube:
(
0 3
1 2

)
,
(
0 3
3 0

)
,
(
1 2
2 1

)
,
(
2 1
1 2

)
.

(3) Octahedron:
(
0 4
2 2

)
,
(
1 3
3 1

)
,
(
2 2
2 2

)
.

(4) Dodecahedron:
(
0 3
2 1

)
,
(
2 1
1 2

)
.

(5) Icosahedron:
(
0 5
1 4

)
,
(
1 4
2 3

)
,
(
2 3
3 2

)
.

For the tetrahedron, the cube, the dodecahedron, and the icosahedron, all possible colour incidence
matrices in the list above actually do belong to perfect 2-colourings. These colourings are shown
in Figures 1, 2, 4 and 5 on page 11. For the octahedron there are only two perfect 2-colourings,
shown in Figure 3. In this case, one of the matrices above does not belong to a perfect 2-colouring:
the matrix in grey can be checked to be impossible in a straightforward manner by attempting to
colour a graph according to these colour incidences. This list confirms the results in [3].

5.2. The 3-colourings of Platonic graphs. Applying the analogous procedure, and with Lemma
5 rather than Lemma 4, we obtained a list of all colour incidence matrices for 3-colourings of the
Platonic graphs, respectively. In this case, all candidates are valid colour incidence matrices for
perfect colourings of Platonic graphs.

(1) Tetrahedron:
(

0 1 2
1 0 2
1 1 1

)
(2) Cube:

(
0 1 2
1 0 2
1 1 1

)
,
(

1 0 2
0 1 2
1 1 1

)
.

(3) Octahedron:
(

0 0 4
0 0 4
1 1 2

)
,
(

0 2 2
2 0 2
2 2 0

)
,
(

0 2 2
2 1 1
2 1 1

)
.

(4) Dodecahedron:
(

0 0 3
0 0 3
1 1 1

)
,
(

0 3 0
1 0 2
0 1 2

)
,
(

1 0 2
0 1 2
1 2 0

)
.

(5) Icosahedron:
(

0 1 4
1 0 4
1 1 3

)
,
(

0 2 3
1 1 3
1 2 2

)
,
(

1 2 2
2 1 2
2 2 1

)
.

The perfect colourings corresponding to the colour incidence matrices above are shown in Figures

1-5. This list corrects [1] by providing the three cases missing there, namely
(

0 2 2
2 0 2
2 2 0

)
for the

octahedron and
(

0 3 0
1 0 2
0 1 2

)
and

(
1 0 2
0 1 2
1 2 0

)
for the dodecahedron.

5.3. The 4-colourings of Platonic graphs. We obtained in a similar manner the following
candidates for colour incidence matrices for 4-colourings of the Platonic graphs, respectively.

(1) Tetrahedron:

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
.

(2) Cube:

(
0 0 0 3
0 0 3 0
0 1 0 2
1 0 2 0

) (
0 0 1 2
0 0 2 1
1 2 0 0
2 1 0 0

) (
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

) (
0 1 1 1
1 0 1 1
1 1 1 0
1 1 0 1

) (
1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

)
.

(3) Octahedron:

(
0 0 2 2
0 0 2 2
1 1 0 2
1 1 2 0

) (
0 0 2 2
0 0 2 2
1 1 1 1
1 1 1 1

)
(4) Dodecahedron:

(
0 0 0 3
0 0 2 1
0 2 0 1
1 1 1 0

) (
0 0 0 3
0 1 1 1
0 1 1 1
1 1 1 0

) (
0 0 1 2
0 0 1 2
1 1 1 0
1 1 0 1

) (
0 0 1 2
0 2 0 1
1 0 2 0
2 1 0 0

) (
1 0 0 2
0 1 0 2
0 0 1 2
1 1 1 0

)
(5) Icosahedron:

(
0 0 0 5
0 0 5 0
0 1 2 2
1 0 2 2

) (
0 1 1 3
1 0 1 3
1 1 0 3
1 1 1 2

) (
0 1 2 2
1 0 2 2
1 1 1 2
1 1 2 1

) (
0 1 2 2
1 2 0 2
2 0 2 1
2 2 1 0

)
All of these candidates have corresponding perfect colourings, and these are shown in Figures 1-5,
respectively.
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Appendix A: All colour incidence matrices for 3-colourings

All colour incidence matrices A for perfect 3-colourings of k-regular graphs with k ∈ {3, 4, 5}:

3-regular graphs:
(

0 0 3
0 0 3
1 1 1

) (
0 0 3
0 0 3
1 2 0

) (
0 0 3
0 1 2
1 1 1

) (
0 0 3
0 1 2
1 2 0

) (
0 0 3
0 2 1
1 1 1

) (
0 0 3
0 2 1
2 1 0

) (
0 1 2
1 0 2
1 1 1

) (
0 1 2
1 1 1
2 1 0

) (
0 1 2
1 2 0
1 0 2

) (
0 1 2
1 2 0
2 0 1

)
(

0 3 0
1 0 2
0 1 2

) (
1 0 2
0 0 3
1 2 0

) (
1 0 2
0 1 2
1 1 1

) (
1 0 2
0 1 2
1 2 0

) (
1 0 2
0 2 1
1 1 1

) (
1 1 1
1 1 1
1 1 1

) (
1 1 1
1 2 0
1 0 2

) (
1 2 0
1 0 2
0 1 2

)
4-regular graphs:

(
0 0 4
0 0 4
1 1 2

) (
0 0 4
0 0 4
1 2 1

) (
0 0 4
0 0 4
1 3 0

) (
0 0 4
0 0 4
2 2 0

) (
0 0 4
0 1 3
1 1 2

) (
0 0 4
0 1 3
1 2 1

) (
0 0 4
0 1 3
1 3 0

) (
0 0 4
0 1 3
2 2 0

) (
0 0 4
0 2 2
1 1 2

) (
0 0 4
0 2 2
1 2 1

)
(

0 0 4
0 2 2
2 1 1

) (
0 0 4
0 2 2
2 2 0

) (
0 0 4
0 3 1
1 1 2

) (
0 0 4
0 3 1
2 1 1

) (
0 0 4
0 3 1
3 1 0

) (
0 1 3
1 0 3
1 1 2

) (
0 1 3
1 0 3
2 2 0

) (
0 1 3
1 2 1
3 1 0

) (
0 1 3
1 3 0
1 0 3

) (
0 1 3
1 3 0
2 0 2

) (
0 1 3
1 3 0
3 0 1

) (
0 2 2
1 0 3
1 3 0

)
(

0 2 2
1 1 2
1 2 1

) (
0 2 2
1 2 1
1 1 2

) (
0 2 2
1 3 0
1 0 3

) (
0 2 2
2 0 2
1 1 2

) (
0 2 2
2 0 2
2 2 0

) (
0 2 2
2 1 1
2 1 1

) (
0 2 2
2 2 0
1 0 3

) (
0 2 2
2 2 0
2 0 2

) (
0 4 0
1 0 3
0 1 3

) (
0 4 0
1 0 3
0 2 2

) (
0 4 0
1 1 2
0 1 3

) (
0 4 0
2 0 2
0 1 3

)
(

1 0 3
0 0 4
1 2 1

) (
1 0 3
0 0 4
1 3 0

) (
1 0 3
0 1 3
1 1 2

) (
1 0 3
0 1 3
1 2 1

) (
1 0 3
0 1 3
1 3 0

) (
1 0 3
0 1 3
2 2 0

) (
1 0 3
0 2 2
1 1 2

) (
1 0 3
0 2 2
1 2 1

) (
1 0 3
0 2 2
2 2 0

) (
1 0 3
0 3 1
1 1 2

) (
1 0 3
0 3 1
2 1 1

) (
1 1 2
1 1 2
1 1 2

)
(

1 1 2
1 2 1
2 1 1

) (
1 1 2
1 3 0
1 0 3

) (
1 1 2
1 3 0
2 0 2

) (
1 3 0
1 0 3
0 1 3

) (
1 3 0
1 0 3
0 2 2

) (
1 3 0
1 1 2
0 1 3

) (
1 3 0
2 0 2
0 1 3

) (
2 0 2
0 0 4
1 3 0

) (
2 0 2
0 1 3
1 2 1

) (
2 0 2
0 1 3
1 3 0

) (
2 0 2
0 2 2
1 1 2

) (
2 0 2
0 2 2
1 2 1

)
(

2 0 2
0 3 1
1 1 2

) (
2 1 1
1 2 1
1 1 2

) (
2 1 1
1 3 0
1 0 3

) (
2 2 0
1 0 3
0 1 3

) (
2 2 0
1 0 3
0 2 2

) (
2 2 0
1 1 2
0 1 3

)
5-regular graphs(

0 0 5
0 0 5
1 1 3

) (
0 0 5
0 0 5
1 2 2

) (
0 0 5
0 0 5
1 3 1

) (
0 0 5
0 0 5
1 4 0

) (
0 0 5
0 0 5
2 2 1

) (
0 0 5
0 0 5
2 3 0

) (
0 0 5
0 1 4
1 1 3

) (
0 0 5
0 1 4
1 2 2

) (
0 0 5
0 1 4
1 3 1

) (
0 0 5
0 1 4
1 4 0

) (
0 0 5
0 1 4
2 2 1

) (
0 0 5
0 1 4
2 3 0

)
(

0 0 5
0 2 3
1 1 3

) (
0 0 5
0 2 3
1 2 2

) (
0 0 5
0 2 3
1 3 1

) (
0 0 5
0 2 3
2 2 1

) (
0 0 5
0 2 3
2 3 0

) (
0 0 5
0 2 3
3 2 0

) (
0 0 5
0 3 2
1 1 3

) (
0 0 5
0 3 2
1 2 2

) (
0 0 5
0 3 2
2 1 2

) (
0 0 5
0 3 2
2 2 1

) (
0 0 5
0 3 2
3 2 0

) (
0 0 5
0 4 1
1 1 3

)
(

0 0 5
0 4 1
2 1 2

) (
0 0 5
0 4 1
3 1 1

) (
0 0 5
0 4 1
4 1 0

) (
0 1 4
1 0 4
1 1 3

) (
0 1 4
1 0 4
2 2 1

) (
0 1 4
1 2 2
2 1 2

) (
0 1 4
1 3 1
4 1 0

) (
0 1 4
1 4 0
1 0 4

) (
0 1 4
1 4 0
2 0 3

) (
0 1 4
1 4 0
3 0 2

) (
0 1 4
1 4 0
4 0 1

) (
0 2 3
1 1 3
1 2 2

)
(

0 2 3
1 4 0
1 0 4

) (
0 2 3
2 0 3
1 1 3

) (
0 2 3
2 0 3
2 2 1

) (
0 2 3
2 1 2
3 2 0

) (
0 2 3
2 2 1
3 1 1

) (
0 2 3
2 3 0
1 0 4

) (
0 2 3
2 3 0
2 0 3

) (
0 2 3
2 3 0
3 0 2

) (
0 3 2
2 3 0
1 0 4

) (
0 3 2
3 0 2
1 1 3

) (
0 3 2
3 2 0
1 0 4

) (
0 5 0
1 0 4
0 1 4

)
(

0 5 0
1 0 4
0 2 3

) (
0 5 0
1 0 4
0 3 2

) (
0 5 0
1 1 3
0 1 4

) (
0 5 0
1 1 3
0 2 3

) (
0 5 0
1 2 2
0 1 4

) (
0 5 0
2 0 3
0 1 4

) (
0 5 0
2 0 3
0 2 3

) (
0 5 0
2 1 2
0 1 4

) (
0 5 0
3 0 2
0 1 4

) (
1 0 4
0 0 5
1 2 2

) (
1 0 4
0 0 5
1 3 1

) (
1 0 4
0 0 5
1 4 0

)
(

1 0 4
0 0 5
2 3 0

) (
1 0 4
0 1 4
1 1 3

) (
1 0 4
0 1 4
1 2 2

) (
1 0 4
0 1 4
1 3 1

) (
1 0 4
0 1 4
1 4 0

) (
1 0 4
0 1 4
2 2 1

) (
1 0 4
0 1 4
2 3 0

) (
1 0 4
0 2 3
1 1 3

) (
1 0 4
0 2 3
1 2 2

) (
1 0 4
0 2 3
1 3 1

) (
1 0 4
0 2 3
2 2 1

) (
1 0 4
0 2 3
2 3 0

)
(

1 0 4
0 3 2
1 1 3

) (
1 0 4
0 3 2
1 2 2

) (
1 0 4
0 3 2
2 1 2

) (
1 0 4
0 3 2
2 2 1

) (
1 0 4
0 3 2
3 2 0

) (
1 0 4
0 4 1
1 1 3

) (
1 0 4
0 4 1
2 1 2

) (
1 0 4
0 4 1
3 1 1

) (
1 1 3
1 1 3
1 1 3

) (
1 1 3
1 1 3
2 2 1

) (
1 1 3
1 3 1
3 1 1

) (
1 1 3
1 4 0
1 0 4

)

https://www.math.uni-bielefeld.de/~frettloe/perfect-col-graph/
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1 1 3
1 4 0
2 0 3

) (
1 1 3
1 4 0
3 0 2

) (
1 2 2
1 0 4
1 4 0

) (
1 2 2
1 1 3
1 3 1

) (
1 2 2
1 2 2
1 2 2

) (
1 2 2
1 3 1
1 1 3

) (
1 2 2
1 4 0
1 0 4

) (
1 2 2
2 1 2
1 1 3

) (
1 2 2
2 1 2
2 2 1

) (
1 2 2
2 2 1
2 1 2

) (
1 2 2
2 3 0
1 0 4

) (
1 2 2
2 3 0
2 0 3

)
(

1 4 0
1 0 4
0 1 4

) (
1 4 0
1 0 4
0 2 3

) (
1 4 0
1 0 4
0 3 2

) (
1 4 0
1 1 3
0 1 4

) (
1 4 0
1 1 3
0 2 3

) (
1 4 0
1 2 2
0 1 4

) (
1 4 0
2 0 3
0 1 4

) (
1 4 0
2 0 3
0 2 3

) (
1 4 0
2 1 2
0 1 4

) (
1 4 0
3 0 2
0 1 4

) (
2 0 3
0 0 5
1 2 2

) (
2 0 3
0 0 5
1 3 1

)
(

2 0 3
0 0 5
1 4 0

) (
2 0 3
0 1 4
1 2 2

) (
2 0 3
0 1 4
1 3 1

) (
2 0 3
0 1 4
1 4 0

) (
2 0 3
0 1 4
2 3 0

) (
2 0 3
0 2 3
1 1 3

) (
2 0 3
0 2 3
1 2 2

) (
2 0 3
0 2 3
1 3 1

) (
2 0 3
0 2 3
2 2 1

) (
2 0 3
0 2 3
2 3 0

) (
2 0 3
0 3 2
1 1 3

) (
2 0 3
0 3 2
1 2 2

)
(

2 0 3
0 3 2
2 2 1

) (
2 0 3
0 4 1
1 1 3

) (
2 0 3
0 4 1
2 1 2

) (
2 1 2
1 2 2
1 1 3

) (
2 1 2
1 3 1
2 1 2

) (
2 1 2
1 4 0
1 0 4

) (
2 1 2
1 4 0
2 0 3

) (
2 3 0
1 0 4
0 1 4

) (
2 3 0
1 0 4
0 2 3

) (
2 3 0
1 0 4
0 3 2

) (
2 3 0
1 1 3
0 1 4

) (
2 3 0
1 1 3
0 2 3

)
(

2 3 0
1 2 2
0 1 4

) (
2 3 0
2 0 3
0 1 4

) (
2 3 0
2 0 3
0 2 3

) (
2 3 0
2 1 2
0 1 4

) (
3 0 2
0 0 5
1 3 1

) (
3 0 2
0 0 5
1 4 0

) (
3 0 2
0 1 4
1 3 1

) (
3 0 2
0 1 4
1 4 0

) (
3 0 2
0 2 3
1 2 2

) (
3 0 2
0 2 3
1 3 1

) (
3 0 2
0 3 2
1 1 3

) (
3 0 2
0 3 2
1 2 2

)
(

3 0 2
0 4 1
1 1 3

) (
3 1 1
1 3 1
1 1 3

) (
3 1 1
1 4 0
1 0 4

) (
3 2 0
1 0 4
0 1 4

) (
3 2 0
1 0 4
0 2 3

) (
3 2 0
1 0 4
0 3 2

) (
3 2 0
1 1 3
0 1 4

) (
3 2 0
1 1 3
0 2 3

) (
3 2 0
1 2 2
0 1 4

)
Appendix B: Perfect colourings of Platonic graphs

Figure 1. The perfect 2-, 3- and 4-colourings of the tetrahedral graph.

Figure 2. The perfect 2-, 3- and 4-colourings of the cube graph.

Figure 3. The perfect 2-, 3- and 4-colourings of the octahedral graph.

Figure 4. The perfect 2-, 3- and 4-colourings of the dodecahedral graph.
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Figure 5. The perfect 2-, 3- and 4-colourings of the icosahedral graph.
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