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Point lattice Γ in Rd : the Z-span of d linearly independent vectors.

Fundamental cell of Γ: Rd/Γ.
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Point lattice Γ in Rd : the Z-span of d linearly independent vectors.

Fundamental cell of Γ: Rd/Γ.

(x,0)

(y,z)
F

Point group P(Γ) of Γ: All g ∈ O(d ,R) with gΓ = Γ.
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A point group of a lattice is finite. Its elements are

◮ rotations and reflections (d = 2)

◮ rotations, reflections and rotoreflections (d = 3)

Crystallographic point group: A subgroup of a lattice point group.
In other words: a subgroup of O(n,R) fixing some lattice.

How many lattice point groups are there?
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A point group of a lattice is finite. Its elements are

◮ rotations and reflections (d = 2)

◮ rotations, reflections and rotoreflections (d = 3)

Crystallographic point group: A subgroup of a lattice point group.
In other words: a subgroup of O(n,R) fixing some lattice.

How many lattice point groups are there?

Crystallographic restriction: Rotational symmetries of 2-dim and
3-dim lattices are either 2-fold, 3-fold, 4-fold, or 6-fold.

d = 2: 10 candidates: C1, C2, C3, C4, C6,D1,D2,D3,D4,D6

d = 3: 32 candidates.

Dirk Frettlöh Highly symmetric fundamental cells for lattices in R
2 and R

3



. .

d = 2: 10 candidates: C1, C2, C3, C4, C6,D1,D2,D3,D4,D6

d = 3: 32 candidates.

Only 4 lattice point groups* in R2:

C2,D2,D4,D6 (2, ∗2, ∗4, ∗6 in orbifold notation)

Only 7 lattice point groups* in R3:

C2,D2,D2 × C2,D3 × C2,D4 × C2,D6 × C2, cube group

(2, ∗2, ∗222, 2 ∗ 3, ∗422, ∗622, ∗432 in orbifold notation)

(*: since, for instance, x 7→ −x is symmetry of any lattice)
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Trivially, each lattice Γ has a fundamental cell whose symmetry
group is P(Γ).

For instance, take the Voronoi cell of a lattice point x . (That is
the set of points closer to x than to each other lattice point.)
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Theorem (Elser, F)

Let Γ ⊂ R2 be a lattice, but not a rhombic lattice. Then there is a
fundamental cell F of Γ whose symmetry group S(F ) is strictly
larger than P(Γ): [S(F ) : P(Γ)] = 2.

’Rhombic lattice’ means: one with basis vectors of equal length,
but neither a square lattice nor a hexagonal lattice.

a
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Proof: Case 1: Generic lattice (C2):

(x,0)

(y,z)
F
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Case 1: Generic lattice:

(x,0)

(y,z)
F
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Case 2: Square lattice (D4) (V. Elser):
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Case 3: Hexagonal lattice (D6)
(Elser-Cockayne, Baake-Klitzing-Schlottmann):

Case 4: Rectangular lattice
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Euclidean algorithm at work:

Edge length of the rectangular gap: a, b with a > b.

a, a− b, a− 2b, a − 3b, . . . , a −
⌊a

b

⌋

b

Leaves a gap with edge length b, c := a −
⌊

a
b

⌋

b.

Continue.
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Application: Short perfect matchings

Consider the square lattice Z2, and R45Z
2, the square lattice

rotated by 45◦.

Problem: Find a perfect matching between Z2 and R45Z
2 with

maximal distance not larger than C > 0. How small can C be?

(It is easy to see that C ≥
√
2
2

= 0.7071....)
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Naively: difficult.

Using the 8-fold fundamental cell F yields a matching with
C = 0.92387....

How?
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Naively: difficult.

Using the 8-fold fundamental cell F yields a matching with
C = 0.92387....

How?

◮ Consider Z2 + F . Each x + F (x ∈ Z2) contains exactly one
point of Z2 in its centre.

◮ F is also fundamental cell for R45Z
2. Thus each x + F

(x ∈ Z2) contains exactly one point x ′ ∈ R45Z
2.

◮ Match x and x ′.
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This (and its analogues) yields good matchings for

◮ Z2 and R45Z
2: C = 0.92387....

◮ The hexagonal lattice H and R30H: C = 0.78867...

◮ A rectangular lattice P and R90P : C ≤ 1√
2

√
5+1
2

b.

(b is the length of the longer lattice basis vector of P .)

Dirk Frettlöh Highly symmetric fundamental cells for lattices in R
2 and R

3



. .
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Todo:

◮ Rhombic lattices

◮ Higher dimensions

◮ Hyperbolic spaces

◮ Dimension of the boundaries

◮ Connectivity

◮ Better matchings

◮ ...
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New Results

Theorem (F)

Let Γ ⊂ R3 be a lattice, but not a cubic lattice. Then there is a
fundamental cell F of Γ whose symmetry group S(F ) is strictly
larger than P(Γ): [S(F ) : P(Γ)] = 2.

“Cubic”: One of Z3, Z3 ∪
(

Z3 + (1
2
, 1
2
, 1
2
)
)

(”bcc”), A3 (”fcc”).

Theorem (hm, maybe)

Let Γ ⊂ R2 be a rhombic lattice, such that tan(α
2
) = p

q
∈ Q, and

either p or q even (and furthermore . . .).
Then there is a fundamental cell F of Γ whose symmetry group
S(F ) is strictly larger than P(Γ): [S(F ) : P(Γ)] = 2.

a
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Proof for R3: Consider the 14 cases:

Nr Name Point group Order 2dim FC (# sym.)

1 Z3
∗432 48 —

2 bcc ∗432 48 —
3 fcc ∗432 48 —

4 Hexagonal ∗622 24 12fold (48)

5 Tetragonal prim. ∗422 16 8fold (32)
6 Tetragonal body-c. ∗422 16 8fold (32)

7 Rhombohedral 2 ∗ 3 12 6fold (24) / 12fold(48)

8 Orthorhombic prim. ∗222 8 4fold (16)
9 Orthorhombic base-c. ∗222 8 4fold (16)
10 Orthorhombic body-c. ∗222 8 4fold (16)
11 Orthorhombic face-c. ∗222 8 4fold (16)

12 Monoclinic prim. 2∗ 4 2fold (8)/4fold(16)
13 Monoclinic base-c. 2∗ 4 2fold (8)/4fold(16)

14 Triclinic prim. 2 2 [monocl.(4)] / 2fold (8)
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Idea for rhombic lattices in R2:
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