Dirk Frettlöh

Arbeitsgruppe Diskrete Geometrie Institut für Mathematik FU Berlin

12. Dec 2011

Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of *d* linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .

Point lattice Γ in \mathbb{R}^d : the \mathbb{Z} -span of *d* linearly independent vectors.

Fundamental cell of Γ : \mathbb{R}^d/Γ .

Point group $P(\Gamma)$ of Γ : All $g \in O(d, \mathbb{R})$ with $g\Gamma = \Gamma$.

A point group of a lattice is finite. Its elements are

- rotations and reflections (d = 2)
- rotations, reflections and rotoreflections (d = 3)

Crystallographic point group: A subgroup of a lattice point group. In other words: a subgroup of $O(n, \mathbb{R})$ fixing some lattice.

How many lattice point groups are there?

・ 同 ト ・ ヨ ト ・ ヨ ト

A point group of a lattice is finite. Its elements are

- rotations and reflections (d = 2)
- rotations, reflections and rotoreflections (d = 3)

Crystallographic point group: A subgroup of a lattice point group. In other words: a subgroup of $O(n, \mathbb{R})$ fixing some lattice.

How many lattice point groups are there?

Crystallographic restriction: Rotational symmetries of 2-dim and 3-dim lattices are either 2-fold, 3-fold, 4-fold, or 6-fold.

d = 2: 10 candidates: $C_1, C_2, C_3, C_4, C_6, D_1, D_2, D_3, D_4, D_6$

d = 3: 32 candidates.

 $d = 2: 10 \text{ candidates: } \mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3, \mathcal{C}_4, \mathcal{C}_6, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \mathcal{D}_6$ d = 3: 32 candidates.

Only 4 lattice point groups* in \mathbb{R}^2 :

 $\mathcal{C}_2, \mathcal{D}_2, \mathcal{D}_4, \mathcal{D}_6$ (2, *2, *4, *6 in orbifold notation)

Only 7 lattice point groups* in \mathbb{R}^3 :

 $\mathcal{C}_2, \mathcal{D}_2, \mathcal{D}_2 \times \mathcal{C}_2, \mathcal{D}_3 \times \mathcal{C}_2, \mathcal{D}_4 \times \mathcal{C}_2, \mathcal{D}_6 \times \mathcal{C}_2, \text{cube group}$

(2, *2, *222, 2 * 3, *422, *622, *432 in orbifold notation)

(*: since, for instance, $x \mapsto -x$ is symmetry of any lattice)

イロト イポト イヨト イヨト 二日

Trivially, each lattice Γ has a fundamental cell whose symmetry group is $P(\Gamma)$.

For instance, take the Voronoi cell of a lattice point x. (That is the set of points closer to x than to each other lattice point.)

Theorem (Elser, F)

Let $\Gamma \subset \mathbb{R}^2$ be a lattice, but not a rhombic lattice. Then there is a fundamental cell F of Γ whose symmetry group S(F) is strictly larger than $P(\Gamma)$: $[S(F) : P(\Gamma)] = 2$.

'Rhombic lattice' means: one with basis vectors of equal length, but neither a square lattice nor a hexagonal lattice.

<u>Proof:</u> Case 1: Generic lattice (C_2) :

・ロン ・回と ・ヨン ・ヨン

Case 1: Generic lattice:

<ロ> (四) (四) (注) (注) (注) [注

Case 2: Square lattice (\mathcal{D}_4) (V. Elser):

・ロ・・ (日・・ ヨ・ (日・・ ロ・)

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

★ロ→ ★御→ ★注→ ★注→ 「注

Case 3: Hexagonal lattice (\mathcal{D}_6) (Elser-Cockayne, Baake-Klitzing-Schlottmann):

Case 4: Rectangular lattice

•	•	•	•	•	•

.

.

Euclidean algorithm at work:

Edge length of the rectangular gap: a, b with a > b.

a,
$$a-b$$
, $a-2b$, $a-3b$, ..., $a-\left\lfloor\frac{a}{b}\right\rfloor b$

Leaves a gap with edge length $b, c := a - \lfloor \frac{a}{b} \rfloor b$.

Continue.

Consider the square lattice \mathbb{Z}^2 , and $R_{45}\mathbb{Z}^2$, the square lattice rotated by 45°.

Problem: Find a perfect matching between \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$ with maximal distance not larger than C > 0. How small can C be?

(It is easy to see that $C \geq \frac{\sqrt{2}}{2} = 0.7071....$)

Naively: difficult.

Using the 8-fold fundamental cell F yields a matching with C=0.92387....

How?

Naively: difficult.

Using the 8-fold fundamental cell F yields a matching with C = 0.92387...

How?

- Consider Z² + F. Each x + F (x ∈ Z²) contains exactly one point of Z² in its centre.
- F is also fundamental cell for R₄₅Z². Thus each x + F (x ∈ Z²) contains exactly one point x' ∈ R₄₅Z².
- Match x and x'.

This (and its analogues) yields good matchings for

- \mathbb{Z}^2 and $R_{45}\mathbb{Z}^2$: C = 0.92387....
- The hexagonal lattice H and $R_{30}H$: C = 0.78867...
- A rectangular lattice P and $R_{90}P$: $C \leq \frac{1}{\sqrt{2}} \frac{\sqrt{5}+1}{2}b$.

(b is the length of the longer lattice basis vector of P.)

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Rhombic lattices
- Higher dimensions
- Hyperbolic spaces
- Dimension of the boundaries
- Connectivity
- Better matchings
- ► ...

New Results

Theorem (F)

Let $\Gamma \subset \mathbb{R}^3$ be a lattice, but not a cubic lattice. Then there is a fundamental cell F of Γ whose symmetry group S(F) is strictly larger than $P(\Gamma)$: $[S(F) : P(\Gamma)] = 2$.

"Cubic": One of \mathbb{Z}^3 , $\mathbb{Z}^3 \cup (\mathbb{Z}^3 + (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}))$ ("*bcc*"), A_3 ("*fcc*").

Theorem (hm, maybe)

Let $\Gamma \subset \mathbb{R}^2$ be a rhombic lattice, such that $\tan(\frac{\alpha}{2}) = \frac{p}{q} \in \mathbb{Q}$, and either p or q even (and furthermore . . .). Then there is a fundamental cell F of Γ whose symmetry group S(F) is strictly larger than $P(\Gamma)$: $[S(F) : P(\Gamma)] = 2$.

<u>Proof for \mathbb{R}^3 </u>: Consider the 14 cases:

Nr	Name	Point group	Order	2dim FC (# sym.)
1	\mathbb{Z}^3	*432	48	
2	bcc	*432	48	—
3	fcc	*432	48	—
4	Hexagonal	*622	24	12fold (48)
5	Tetragonal prim.	*422	16	8fold (32)
6	Tetragonal body-c.	*422	16	8fold (32)
7	Rhombohedral	2 * 3	12	6fold (24) / 12fold(48)
8	Orthorhombic prim.	*222	8	4fold (16)
9	Orthorhombic base-c.	*222	8	4fold (16)
10	Orthorhombic body-c.	*222	8	4fold (16)
11	Orthorhombic face-c.	*222	8	4fold (16)
12	Monoclinic prim.	2*	4	2fold (8)/4fold(16)
13	Monoclinic base-c.	2*	4	2fold (8)/4fold(16)
14	Triclinic prim.	2	2	[monocl.(4)] / 2fold (8)

・ロト ・回 ト ・ヨト ・ヨト

Dirk Frettlöh

 $\begin{array}{ccc} & \Box \mathrel{\blacktriangleright} & \langle \boxdot \mathrel{\blacktriangleright} \mathrel{\leftarrow} & \langle \boxdot \mathrel{\leftarrow} & \rangle & \langle \boxdot \mathrel{\leftarrow} & \rangle \\ \end{array} \\ \begin{array}{ccc} Highly symmetric fundamental cells for lattices in <math display="inline">\mathbb{R}^2 \text{ and } \mathbb{R}^3 \end{array}$

Idea for rhombic lattices in \mathbb{R}^2 :

Dirk Frettlöh Highly symmetric fundamental cells for lattices in \mathbb{R}^2 and \mathbb{R}^3

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ の < @

•

.

