Highly symmetric fundamental cells for lattices in \mathbb{R}^{2} and \mathbb{R}^{3}

Dirk Frettlöh

Arbeitsgruppe Diskrete Geometrie

Institut für Mathematik
FU Berlin
12. Dec 2011

Dirk Frettlöh

Point lattice Γ in \mathbb{R}^{d} : the \mathbb{Z}-span of d linearly independent vectors.
Fundamental cell of $\Gamma: \overline{\mathbb{R}^{d} / \Gamma}$.

Point lattice Γ in \mathbb{R}^{d} : the \mathbb{Z}-span of d linearly independent vectors.
Fundamental cell of $\Gamma: \overline{\mathbb{R}^{d} / \Gamma}$.

Point group $P(\Gamma)$ of Γ : All $g \in O(d, \mathbb{R})$ with $g \Gamma=\Gamma$.

A point group of a lattice is finite. Its elements are

- rotations and reflections $(d=2)$
- rotations, reflections and rotoreflections $(d=3)$

Crystallographic point group: A subgroup of a lattice point group. In other words: a subgroup of $O(n, \mathbb{R})$ fixing some lattice.

How many lattice point groups are there?

A point group of a lattice is finite. Its elements are

- rotations and reflections $(d=2)$
- rotations, reflections and rotoreflections $(d=3)$

Crystallographic point group: A subgroup of a lattice point group. In other words: a subgroup of $O(n, \mathbb{R})$ fixing some lattice. How many lattice point groups are there?

Crystallographic restriction: Rotational symmetries of 2-dim and 3 -dim lattices are either 2 -fold, 3 -fold, 4 -fold, or 6 -fold.
$d=2: 10$ candidates: $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}, \mathcal{C}_{4}, \mathcal{C}_{6}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \mathcal{D}_{4}, \mathcal{D}_{6}$
$d=3: 32$ candidates.
$d=2: 10$ candidates: $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}, \mathcal{C}_{4}, \mathcal{C}_{6}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}, \mathcal{D}_{4}, \mathcal{D}_{6}$ $d=3: 32$ candidates.

Only 4 lattice point groups* in \mathbb{R}^{2} :

$$
\mathcal{C}_{2}, \mathcal{D}_{2}, \mathcal{D}_{4}, \mathcal{D}_{6} \quad(2, * 2, * 4, * 6 \text { in orbifold notation })
$$

Only 7 lattice point groups* in \mathbb{R}^{3} :
$\mathcal{C}_{2}, \mathcal{D}_{2}, \mathcal{D}_{2} \times \mathcal{C}_{2}, \mathcal{D}_{3} \times \mathcal{C}_{2}, \mathcal{D}_{4} \times \mathcal{C}_{2}, \mathcal{D}_{6} \times \mathcal{C}_{2}$, cube group
$(2, * 2, * 222,2 * 3, * 422, * 622, * 432$ in orbifold notation)
(*: since, for instance, $x \mapsto-x$ is symmetry of any lattice)

Trivially, each lattice Γ has a fundamental cell whose symmetry group is $P(\Gamma)$.

For instance, take the Voronoi cell of a lattice point x. (That is the set of points closer to x than to each other lattice point.)

Theorem (Elser, F)

Let $\Gamma \subset \mathbb{R}^{2}$ be a lattice, but not a rhombic lattice. Then there is a fundamental cell F of Γ whose symmetry group $S(F)$ is strictly larger than $P(\Gamma): \quad[S(F): P(\Gamma)]=2$.
'Rhombic lattice' means: one with basis vectors of equal length, but neither a square lattice nor a hexagonal lattice.

Proof: Case 1: Generic lattice $\left(\mathcal{C}_{2}\right)$:

Case 1: Generic lattice:

Case 2: Square lattice (\mathcal{D}_{4}) (V. Elser):

Dirk Frettlöh
Highly symmetric fundamental cells for lattices in \mathbb{R}^{2} and \mathbb{R}^{3}

Dirk Frettlöh
Highly symmetric fundamental cells for lattices in \mathbb{R}^{2} and \mathbb{R}^{3}

Case 3: Hexagonal lattice (\mathcal{D}_{6})
(Elser-Cockayne, Baake-Klitzing-Schlottmann):

Case 4: Rectangular lattice

Dirk Frettlöh
Highly symmetric fundamental cells for lattices in \mathbb{R}^{2} and \mathbb{R}^{3}

Dirk Frettlöh
Highly symmetric fundamental cells for lattices in \mathbb{R}^{2} and \mathbb{R}^{3}

Dirk Frettlöh
Highly symmetric fundamental cells for lattices in \mathbb{R}^{2} and \mathbb{R}^{3}

Euclidean algorithm at work:

Edge length of the rectangular gap: a, b with $a>b$.

$$
a, a-b, a-2 b, a-3 b, \ldots, a-\left\lfloor\frac{a}{b}\right\rfloor b
$$

Leaves a gap with edge length $b, c:=a-\left\lfloor\frac{a}{b}\right\rfloor b$.
Continue.

Application: Short perfect matchings

Consider the square lattice \mathbb{Z}^{2}, and $R_{45} \mathbb{Z}^{2}$, the square lattice rotated by 45°.

Problem: Find a perfect matching between \mathbb{Z}^{2} and $R_{45} \mathbb{Z}^{2}$ with maximal distance not larger than $C>0$. How small can C be?
(It is easy to see that $C \geq \frac{\sqrt{2}}{2}=0.7071 \ldots$.)
-
\bigcirc
${ }^{\circ}{ }_{0}^{\circ}$

$$
0
$$

8

- 0

-

\bigcirc

\bigcirc
(O)

- 0
∞
-
-
-

O

\bigcirc
\bigcirc

$$
0
$$

-

$$
\bullet \bullet
$$

○

\bigcirc

(O)

- ?
-

\bigcirc

Naively: difficult.
Using the 8 -fold fundamental cell F yields a matching with $C=0.92387 \ldots$.

How?

Naively: difficult.
Using the 8-fold fundamental cell F yields a matching with $C=0.92387 \ldots$...

How?

- Consider $\mathbb{Z}^{2}+F$. Each $x+F\left(x \in \mathbb{Z}^{2}\right)$ contains exactly one point of \mathbb{Z}^{2} in its centre.
- F is also fundamental cell for $R_{45} \mathbb{Z}^{2}$. Thus each $x+F$ $\left(x \in \mathbb{Z}^{2}\right)$ contains exactly one point $x^{\prime} \in R_{45} \mathbb{Z}^{2}$.
- Match x and x^{\prime}.

This (and its analogues) yields good matchings for

- \mathbb{Z}^{2} and $R_{45} \mathbb{Z}^{2}$:

$$
C=0.92387 \ldots
$$

- The hexagonal lattice H and $R_{30} H: \quad C=0.78867 \ldots$
- A rectangular lattice P and $R_{90} P$:
$C \leq \frac{1}{\sqrt{2}} \frac{\sqrt{5}+1}{2} b$.
(b is the length of the longer lattice basis vector of P.)

- Rhombic lattices
- Higher dimensions
- Hyperbolic spaces
- Dimension of the boundaries
- Connectivity
- Better matchings

New Results

Theorem (F)

Let $\Gamma \subset \mathbb{R}^{3}$ be a lattice, but not a cubic lattice. Then there is a fundamental cell F of Γ whose symmetry group $S(F)$ is strictly larger than $P(\Gamma): \quad[S(F): P(\Gamma)]=2$.
"Cubic": One of $\mathbb{Z}^{3}, \mathbb{Z}^{3} \cup\left(\mathbb{Z}^{3}+\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\right)(" b c c "), A_{3}(" f c c ")$.

Theorem (hm, maybe)

Let $\Gamma \subset \mathbb{R}^{2}$ be a rhombic lattice, such that $\tan \left(\frac{\alpha}{2}\right)=\frac{p}{q} \in \mathbb{Q}$, and either p or q even (and furthermore ...).
Then there is a fundamental cell F of Γ whose symmetry group $S(F)$ is strictly larger than $P(\Gamma): \quad[S(F): P(\Gamma)]=2$.

Proof for \mathbb{R}^{3} : Consider the 14 cases:

Nr	Name	Point group	Order	2dim FC (\# sym.)
1	\mathbb{Z}^{3}	$* 432$	48	-
2	bcc	$* 432$	48	-
3	fcc	$* 432$	48	-
4	Hexagonal	$* 622$	24	12fold (48)
5	Tetragonal prim.	$* 422$	16	8 fold (32)
6	Tetragonal body-c.	$* 422$	16	8 fold (32)
7	Rhombohedral	$2 * 3$	12	6fold (24)/12fold(48)
8	Orthorhombic prim.	$* 222$	8	4 fold (16)
9	Orthorhombic base-c.	$* 222$	8	4 fold (16)
10	Orthorhombic body-c.	$* 222$	8	4 fold (16)
11	Orthorhombic face-c.	$* 222$	8	4 fold (16)
12	Monoclinic prim.	$2 *$	4	2fold (8)/4fold(16)
13	Monoclinic base-c.	$2 *$	4	2fold (8)/4fold(16)
14	Triclinic prim.	2	2	[monocl.(4)] / 2fold (8)

Idea for rhombic lattices in \mathbb{R}^{2} :

Dirk Frettlöh
Highly symmetric fundamental cells for lattices in \mathbb{R}^{2} and \mathbb{R}^{3}

Dirk Frettlöh
Highly symmetric fundamental cells for lattices in \mathbb{R}^{2} and \mathbb{R}^{3}

Dirk Frettlöh
Highly symmetric fundamental cells for lattices in \mathbb{R}^{2} and \mathbb{R}^{3}

Dirk Frettlöh
Highly symmetric fundamental cells for lattices in \mathbb{R}^{2} and \mathbb{R}^{3}

