Tilings with tiles in finitely many and infinitely many orientations

Dirk Frettlöh

Technische Fakultät Universität Bielefeld

subtile 2013 Marseille 17 Jan 2013

イロト イポト イヨト イヨト

- 1. Tilings with tiles in infinitely many orientations
- 2. Tilings with tiles in finitely many orientations

イロト イヨト イヨト イヨト

3

Substitution tilings:

Usually, tiles occur in finitely many different orientations only.

イロト イポト イヨト イヨト

Not always. Cesi's example (1990):

A substitution σ is *primitive*, if for any tile T there is $k \ge 1$ such that $\sigma^k(T)$ contains all tile types.

Conway's Pinwheel substitution (1991):

イロト イヨト イヨト イヨト

E

... infinitely many orientations

... finitely many orientations

・ロト ・回ト ・ヨト ・ヨト

Obvious generalizations: Pinwheel (n, k)

etc.

イロト イヨト イヨト イヨト

Э

Unknown (< 1996, communicated to me by Danzer):

(+ obvious generalizations)

イロト イヨト イヨト イヨト

3

C. Goodman-Strauss, L. Danzer (ca. 1996):

▲ロト ▲部ト ▲注ト ▲注ト

Э

Pythia (m, j), here: m = 3, j = 1.

イロト イヨト イヨト イヨト

Э

For all examples: the orientations are dense in $[0, 2\pi]$. Even more: The orientations are equidistributed in $[0, 2\pi]$.

Theorem (F. '08)

In each primitive substitution tiling with tiles in infinitely many orientations, the orientations are equidistributed in $[0, 2\pi]$.

・ 同 ト ・ ヨ ト ・ ヨ ト

So far: tiles are always triangles. One exception:

Kite Domino (equivalent with Pinwheel):

Can we find examples with rhombic tiles for instance?

Answer: No.

Theorem (F.-Harriss '12+)

Let \mathcal{T} be a tiling with finitely many prototiles (i.e., finitely many different tile shapes). Let all prototiles be centrally symmetric convex polygons. Then each prototile occurs in a finite number of orientations in \mathcal{T} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Can we find examples with rhombic tiles for instance?

Answer: No.

Theorem (F.-Harriss '12+)

Let \mathcal{T} be a tiling with finitely many prototiles (i.e., finitely many different tile shapes). Let all prototiles be centrally symmetric convex polygons. Then each prototile occurs in a finite number of orientations in \mathcal{T} .

Theorem (F.-Harriss '12+)

Let \mathcal{T} be a tiling with finitely many parallelograms as prototiles. Then each prototile occurs in a finite number of orientations in \mathcal{T} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume all tiles are vertex-to-vertex.

A worm is a sequence of tiles ..., T_{-1} , T_0 , T_1 , T_2 ,... where T_k and T_{k+1} share a common edge, and all shared edges are parallel.

(1日) (日) (日)

Э

Cone Lemma: A worm defined by edge e cannot enter C_1 or C_2 . (α the minimal interior angle in the prototiles)

Loop Lemma: A worm has no loop.

Travel Lemma: Any two tiles can be connected by a finite sequence of finite worm pieces. (At most $\lceil \frac{2\pi}{\alpha} \rceil$ many.)

・ロト ・回ト ・ヨト ・ヨト

E

Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\lceil \frac{2\pi}{\alpha} \rceil$ worm pieces. That is, with $\lceil \frac{2\pi}{\alpha} \rceil$ turns.

(Non-vertex-to-vertex case can be handled.)

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\lceil \frac{2\pi}{\alpha} \rceil$ worm pieces. That is, with $\lceil \frac{2\pi}{\alpha} \rceil$ turns.

(Non-vertex-to-vertex case can be handled.)

Proof of theorem (general) Kannan-Soroker 1992: Any centrally symmetric polygon can be dissected into parallelograms.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\lceil \frac{2\pi}{\alpha} \rceil$ worm pieces. That is, with $\lceil \frac{2\pi}{\alpha} \rceil$ turns.

(Non-vertex-to-vertex case can be handled.)

Proof of theorem (general) Kannan-Soroker 1992: Any centrally symmetric polygon can be dissected into parallelograms.

Theorem

Let \mathcal{T} be a tiling with finitely many prototiles. Let all prototiles be centrally symmetric convex polygons. Then each prototile occurs in a finite number of orientations in \mathcal{T} .

(4月) (4日) (4日)

Can we drop "finitely many"?

No. Even if we assume: infimum of interior angles > 0. (Exercise)

<ロ> (日) (日) (日) (日) (日)

3

Can we drop "finitely many"?

No. Even if we assume: infimum of interior angles > 0. (Exercise)

Can we drop "convex"?

Hmm...

