Tilings with tiles in finitely many and infinitely many orientations

Dirk Frettlöh

Technische Fakultät
Universität Bielefeld
subtile 2013
Marseille
17 Jan 2013

1. Tilings with tiles in infinitely many orientations
2. Tilings with tiles in finitely many orientations

Substitution tilings:

Usually, tiles occur in finitely many different orientations only.

Not always. Cesi's example (1990):

A substitution σ is primitive, if for any tile T there is $k \geq 1$ such that $\sigma^{k}(T)$ contains all tile types.

Conway's Pinwheel substitution (1991):

The angle α is irrational; that is, $\alpha \notin \pi \mathbb{Q}$.
infinitely many orientations
finitely many orientations

Dirk Frettlöh
Tilings with tiles in ...

Obvious generalizations: Pinwheel (n, k)

etc.

Unknown ($<$ 1996, communicated to me by Danzer):

(+ obvious generalizations)

C. Goodman-Strauss, L. Danzer (ca. 1996):

Dirk Frettlöh
Tilings with tiles in ...

Pythia (m, j), here: $m=3, j=1$.

For all examples: the orientations are dense in $[0,2 \pi[$.
Even more: The orientations are equidistributed in $[0,2 \pi[$.
Theorem (F. '08)
In each primitive substitution tiling with tiles in infinitely many orientations, the orientations are equidistributed in $[0,2 \pi[$.

So far: tiles are always triangles. One exception:
Kite Domino (equivalent with Pinwheel):

Dirk Frettlöh

infinitely many orientations finitely many orientations

Dirk Frettlöh
Tilings with tiles in ...

Can we find examples with rhombic tiles for instance?
Answer: No.

Theorem (F.-Harriss '12+)

Let \mathcal{T} be a tiling with finitely many prototiles (i.e., finitely many different tile shapes). Let all prototiles be centrally symmetric convex polygons. Then each prototile occurs in a finite number of orientations in \mathcal{T}.

Can we find examples with rhombic tiles for instance?
Answer: No.

Theorem (F.-Harriss '12+)

Let \mathcal{T} be a tiling with finitely many prototiles (i.e., finitely many different tile shapes). Let all prototiles be centrally symmetric convex polygons. Then each prototile occurs in a finite number of orientations in \mathcal{T}.

Theorem (F.-Harriss '12+)

Let \mathcal{T} be a tiling with finitely many parallelograms as prototiles. Then each prototile occurs in a finite number of orientations in \mathcal{T}.

Assume all tiles are vertex-to-vertex.

A worm is a sequence of tiles $\ldots, T_{-1}, T_{0}, T_{1}, T_{2}, \ldots$ where T_{k} and T_{k+1} share a common edge, and all shared edges are parallel.

Cone Lemma: A worm defined by edge e cannot enter C_{1} or C_{2}. (α the minimal interior angle in the prototiles)

Loop Lemma: A worm has no loop.

Travel Lemma: Any two tiles can be connected by a finite sequence of finite worm pieces. (At most $\left\lceil\frac{2 \pi}{\alpha}\right\rceil$ many.)

Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\left\lceil\frac{2 \pi}{\alpha}\right\rceil$ worm pieces. That is, with $\left\lceil\frac{2 \pi}{\alpha}\right\rceil$ turns.
(Non-vertex-to-vertex case can be handled.)

Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\left\lceil\frac{2 \pi}{\alpha}\right\rceil$ worm pieces. That is, with $\left\lceil\frac{2 \pi}{\alpha}\right\rceil$ turns.
(Non-vertex-to-vertex case can be handled.)
Proof of theorem (general) Kannan-Soroker 1992: Any centrally symmetric polygon can be dissected into parallelograms.

Proof of theorem (parallelogram version): Fix some tile S. Every tile T can be connected to S by at most $\left\lceil\frac{2 \pi}{\alpha}\right\rceil$ worm pieces. That is, with $\left\lceil\frac{2 \pi}{\alpha}\right\rceil$ turns.
(Non-vertex-to-vertex case can be handled.)
Proof of theorem (general) Kannan-Soroker 1992: Any centrally symmetric polygon can be dissected into parallelograms.

Theorem

Let \mathcal{T} be a tiling with finitely many prototiles. Let all prototiles be centrally symmetric convex polygons. Then each prototile occurs in a finite number of orientations in \mathcal{T}.

Can we drop "finitely many"?

No. Even if we assume: infimum of interior angles >0. (Exercise)

Can we drop "finitely many"?
No. Even if we assume: infimum of interior angles >0. (Exercise)

Can we drop "convex"?
Hmm...

