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Substitution tilings:

Factor    2

Usually, tiles occur in finitely many different orientations only.
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Not always. Cesi’s example (1990):

A substitution σ is primitive, if for any tile T there is k ≥ 1 such
that σk(T ) contains all tile types.
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Conway’s Pinwheel substitution (1991):
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1

2

. . .

α The angle α is
irrational; that is,
α /∈ πQ.
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Obvious generalizations: Pinwheel (n, k)

3

1

3

2

n = 3, k = 1 n = 3, k = 2
etc.
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Unknown (< 1996, communicated to me by Danzer):

(+ obvious generalizations)
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C. Goodman-Strauss, L. Danzer (ca. 1996):
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Pythia (m, j), here: m = 3, j = 1.
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For all examples: the orientations are dense in [0, 2π[.

Even more: The orientations are equidistributed in [0, 2π[.

Theorem (F. ’08)

In each primitive substitution tiling with tiles in infinitely many
orientations, the orientations are equidistributed in [0, 2π[.

Dirk Frettlöh Tilings with tiles in ...



... infinitely many orientations
... finitely many orientations

So far: tiles are always triangles. One exception:

Kite Domino (equivalent with Pinwheel):
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Can we find examples with rhombic tiles for instance?

Answer: No.

Theorem (F.-Harriss ’12+)

Let T be a tiling with finitely many prototiles (i.e., finitely many
different tile shapes). Let all prototiles be centrally symmetric
convex polygons. Then each prototile occurs in a finite number of
orientations in T .

Theorem (F.-Harriss ’12+)

Let T be a tiling with finitely many parallelograms as prototiles.
Then each prototile occurs in a finite number of orientations in T .
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Assume all tiles are vertex-to-vertex.

A worm is a sequence of tiles . . . ,T−1,T0,T1,T2, . . . where Tk

and Tk+1 share a common edge, and all shared edges are parallel.
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Cone Lemma: A worm defined by edge e cannot enter C1 or C2.
(α the minimal interior angle in the prototiles)

Loop Lemma: A worm has no loop.
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Travel Lemma: Any two tiles can be connected by a finite
sequence of finite worm pieces. (At most d2πα e many.)
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Proof of theorem (parallelogram version): Fix some tile S . Every
tile T can be connected to S by at most d2πα e worm pieces. That
is, with d2πα e turns.

(Non-vertex-to-vertex case can be handled.) �

Proof of theorem (general) Kannan-Soroker 1992: Any centrally
symmetric polygon can be dissected into parallelograms.

Theorem
Let T be a tiling with finitely many prototiles. Let all prototiles be
centrally symmetric convex polygons. Then each prototile occurs
in a finite number of orientations in T .
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Can we drop “finitely many”?

No. Even if we assume: infimum of interior angles > 0. (Exercise)

Can we drop “convex”?

Hmm...
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