Symmetries of monocoronal tilings

Dirk Frettlöh

Technische Fakultät
Universität Bielefeld

Geometry and Symmetry
 29 June - 3 July 2015, Veszprém

Dedicated to Károly Bezdek and Egon Schulte on the occasion of their 60th birthdays

Mathematics Genealogy Project

Home
Search
Extrema
About MGP ,
Links
FAQs
Posters
Submit Data
Contact
Mirrors
A service of the NDSU
Department of Mathematics, in association with the American Mathematical Society.

Ludwig Danzer

MathSciNet

Dr. rer. nat. Technische Universität München 1960
Dissertation: Über zwei Lagerungsprobleme
Mathematics Subject Classification: 52-Convex and discrete geometry
Advisor 1: Hanfried Lenz
Advisor 2: Frank Löbell
Advisor 3: Robert Sauer
Students:
Click here to see the students listed in chronological order.

Name	School	Year	Descendants	
Ulrich Bolle	Universität Dortmund	1976		
Jürgen Eckhoff	Georg-August-Universität	Göttingen	1969	
Dirk Frettloeh	Universität Dortmund	2002		
Dietrich Kramer	Universität Dortmund	1974		
Hanno Schecker	Universität Dortmund	1972		
Egon Schulte	Universität Dortmund	1980	12	
Petra Sonneborn	12			
Thomas Stehling	Universität Dortmund	1994		
Rolf Stein	Universität Dortmund	1989		
Gerd Wegner	Georg-August-Universität	1982		

1. Monohedral and isohedral tilings
2. Monogonal and isogonal tilings
3. Monocoronal (and isocoronal) tilings

Joint work with Alexey Garber.

Tiling (=tessellation) covering of \mathbb{R}^{2} which is also a packing.
Pieces (tiles): nice compact sets (squares, triangles...).

A central question:

Which shapes do tile?

- Euclidean plane \mathbb{R}^{2}
- Euclidean space $\mathbb{R}^{d}(d \geq 2)$
- hyperbolic space \mathbb{H}^{2}
- finite regions like $\square, \triangle, \ldots$

A central question:

Which shapes do tile?

- Euclidean plane \mathbb{R}^{2}
- Euclidean space $\mathbb{R}^{d}(d \geq 2)$
- hyperbolic space \mathbb{H}^{2}
- finite regions like $\square, \triangle, \ldots$

Here: tilings of \mathbb{R}^{2}.
Def.: The symmetry group of a tiling \mathcal{T} of \mathbb{R}^{2} :

$$
\operatorname{Sym}(\mathcal{T})=\left\{\varphi \text { isometry in } \mathbb{R}^{2} \mid \varphi(\mathcal{T})=\mathcal{T}\right\}
$$

Monohedral and isohedral tilings

A tiling is called monohedral if all tiles are congruent. A tiling \mathcal{T} is called isohedral if its symmetry group acts transitively on the tiles.

A tiling is called monohedral if all tiles are congruent.
A tiling \mathcal{T} is called isohedral if its symmetry group acts transitively on the tiles.

Image: isohedral (hence monohedral) tiling.

Image: another isohedral and monohedral tiling.

Some isohedral and non-isohedral tilings:

?

The list of all isohedral tilings of \mathbb{R}^{2} by convex polygons is known (Reinhardt 1918, see also Grünbaum and Shephard 1987)

The list of all convex polygons allowing monohedral tilings of \mathbb{R}^{2} is maybe incomplete.

- All triangles can tile \mathbb{R}^{2} by congruent copies.
- All quadrangles (convex or non-convex) can tile \mathbb{R}^{2}.
- There are three kinds of convex hexagons that can tile \mathbb{R}^{2}.

The list of all isohedral tilings of \mathbb{R}^{2} by convex polygons is known (Reinhardt 1918, see also Grünbaum and Shephard 1987)

The list of all convex polygons allowing monohedral tilings of \mathbb{R}^{2} is maybe incomplete.

- All triangles can tile \mathbb{R}^{2} by congruent copies.
- All quadrangles (convex or non-convex) can tile \mathbb{R}^{2}.
- There are three kinds of convex hexagons that can tile \mathbb{R}^{2}.

The three species hexagons allowing monohedral tilings:

Type 1	Type 2	Type 3	
$a \\| d$	$A+B+D=2 \pi$	$A=C=E=2 \pi / 3$	
$a=d$	$a=d, c=e$	$a=b, c=d, e=f$	

A convex n-gon cannot tile \mathbb{R}^{2} by congruent copies for $n \geq 7$. Only open case: pentagons. Below a list of 14 species of convex pentagons that can tile \mathbb{R}^{2} by congruent copies. It is unknown whether this list is complete.

Dirk Frettlöh
Symmetries of monocoronal tilings

Monogonal and isogonal tilings

A tiling is called monogonal if all vertex stars (=vertex plus adjacent edges) are congruent.

A tiling is called isogonal if the symmetry group acts transitively on the vertex stars.

A tiling is called monogonal if all vertex stars (=vertex plus adjacent edges) are congruent.

A tiling is called isogonal if the symmetry group acts transitively on the vertex stars.

The classification of all isogonal tilings is known, see
Grünbaum \& Shephard: Tilings and Patterns
A classification of all monogonal tilings seems out of reach.

Monocoronal (and isocoronal) tilings

The vertex corona of a vertex is this vertex together with its incident tiles.
A tiling is called monocoronal if all vertex coronae in the tiling are congruent.

Example: All Archimedean tilings are monocoronal.

The vertex corona of a vertex is this vertex together with its incident tiles.
A tiling is called monocoronal if all vertex coronae in the tiling are congruent.

Example: All Archimedean tilings are monocoronal.
More restrictively, a tiling is called monocoronal wrt direct idometries if all vertex coronae in the tiling are congruent wrt direct isometries (i.e., no reflections allowed).

Monogonal, but not monocoronal.

A classification of all monocoronal tilings was obtained in F-Garber 2015. It is known (see Grünbaum \& Shephard) that any monocoronal tiling is of one of 11 combinatorial types:

3.3.3.4.4

3.3.3.3.3.3

3.3.3.3.6

3.6.3.6
3.4.6.4

4.4.4.4

3.12.12
4.8.8
4.6.12

6.6.6

Taking into account metrical properties one gets that:
There are 34 species of monocoronal face-to-face tilings by convex polygons (wrt different vs equal edge length)

Taking into account metrical properties one gets that:
There are 34 species of monocoronal face-to-face tilings by convex polygons (wrt different vs equal edge length)

In fact one may drop the requirements "convex" and "face-to-face". This yields only 15 additional cases to consider. Hence the results below hold for all monocoronal tilings of \mathbb{R}^{2}.

Theorem (F-Garber 2015)

Every tiling that is monocoronal wrt direct isometries (no reflections allowed) has one of the following 12 symmetry groups:
$* 632, * 442, * 333, * 2222, \quad 632,442,333,2222, \quad 4 * 2,3 * 3,2 * 22,22 *$.

Theorem (F-Garber 2015)

Every tiling that is monocoronal wrt direct isometries (no reflections allowed) has one of the following 12 symmetry groups:
$* 632, * 442, * 333, * 2222, \quad 632,442,333,2222, \quad 4 * 2,3 * 3,2 * 22,22 *$.

In particular: If \mathcal{T} is a monocoronal tiling wrt direct isometries, then

- \mathcal{T} is crystallographic (2-periodic)
- \mathcal{T} is vertex transitive (isocoronal)
- \mathcal{T} has a center of rotational symmetry of order at least 2 (Here we use orbifold notation to denote the 17 wallpaper groups. E.g., *442 denotes the symmetry group of the regular square tiling; 442 denotes its rotation group)

If we allow reflected copies of vertex coronae the situation becomes more diverse.

Theorem (F-Garber 2015)

Every monocoronal tiling (reflections allowed) is either 1-periodic, or its symmetry is one out of 16 wallpaper groups: any except $* \times$. If such a tiling is 1-periodic then its symmetry group is one of four frieze groups:

$$
\infty \infty, \infty \times, \infty * \text {, or } 22 \infty
$$

In particular, every monocoronal tiling is crystallographic or 1-periodic.

If we allow reflected copies of vertex coronae the situation becomes more diverse.

Theorem (F-Garber 2015)

Every monocoronal tiling (reflections allowed) is either 1-periodic, or its symmetry is one out of 16 wallpaper groups: any except $* \times$. If such a tiling is 1-periodic then its symmetry group is one of four frieze groups:

$$
\infty \infty, \infty \times, \infty * \text {, or } 22 \infty .
$$

In particular, every monocoronal tiling is crystallographic or 1-periodic.

\leftarrow A monocoronal tiling that is not 2-periodic. In the vertical direction one may stack layers like
... LRLLRLLLLRLLLLLLLLRLL...
(L : layer slanted to the left, R : layer slanted to the right)

For dimensions $d>2$:
Situation even more diverse. Depending on the exact assumptions (face-to-face or not, reflections allowed or not) the symmetry groups range from trivial to crystallographic.

For dimensions $d>2$:
Situation even more diverse. Depending on the exact assumptions (face-to-face or not, reflections allowed or not) the symmetry groups range from trivial to crystallographic.

Theorem (F-Garber 2015)
For any $d \geq 3$ there are non-periodic non face-to-face tilings of \mathbb{R}^{d} that are monocoronal (reflections allowed).

Theorem (F-Garber 2015)
For any $d \geq 4$ there are non-periodic non face-to-face tilings of \mathbb{R}^{d} that are monocoronal (reflections forbidden).

Both results can be obtained by the following construction and its analogues in higher dimensions. Start with a 1-periodic plane tiling:

...thicken it into a 3-dim layer:

...and stack these layers (some of them rotated) alternating with unit cube layers:

Open Problems

- Generalise Theorems 3 and 4 to face-to-face tilings.
- Consider the same problem for the hyperbolic plane \mathbb{H}^{2}.
- Consider the same problem for bicoronal tilings. In particular, is there a bicoronal nonperiodic tiling?

Partial answers to the second problem can be found in F-Garber 2015, using Böröczky tilings.
In particular, there are monocoronal tilings in \mathbb{H}^{2} with trivial
symmetry group.

Open Problems

- Generalise Theorems 3 and 4 to face-to-face tilings.
- Consider the same problem for the hyperbolic plane \mathbb{H}^{2}.
- Consider the same problem for bicoronal tilings. In particular, is there a bicoronal nonperiodic tiling?

Partial answers to the second problem can be found in F-Garber 2015, using Böröczky tilings.
In particular, there are monocoronal tilings in \mathbb{H}^{2} with trivial symmetry group.

Regarding the third problem: there are non-periodic tricoronal tilings.

Open Problems

- Generalise Theorems 3 and 4 to face-to-face tilings.
- Consider the same problem for the hyperbolic plane \mathbb{H}^{2}.
- Consider the same problem for bicoronal tilings. In particular, is there a bicoronal nonperiodic tiling?

Partial answers to the second problem can be found in F-Garber 2015, using Böröczky tilings.
In particular, there are monocoronal tilings in \mathbb{H}^{2} with trivial symmetry group.

Open Problems

- Generalise Theorems 3 and 4 to face-to-face tilings.
- Consider the same problem for the hyperbolic plane \mathbb{H}^{2}.
- Consider the same problem for bicoronal tilings. In particular, is there a bicoronal nonperiodic tiling?

Partial answers to the second problem can be found in F-Garber 2015, using Böröczky tilings.
In particular, there are monocoronal tilings in \mathbb{H}^{2} with trivial symmetry group.

Thank you!

