Formal Logic - Exercise Sheet 7

Exercise 25: (Models and non-models)

Which of the following structures are models for

$$
F=\forall x \exists y P(x, y) \wedge \exists x \neg P(x, x),
$$

which are not? Please justify your answers.
(a) $U_{\mathcal{A}}=\mathbb{N}, P^{\mathcal{A}}=\{(m, n) \mid m, n \in \mathbb{N}, m \leq n\}$
(b) $U_{\mathcal{A}}=\mathbb{N}, P^{\mathcal{A}}=\{(n, n+1) \mid n \in \mathbb{N}\}$
(c) $U_{\mathcal{A}}=\operatorname{Pot}(\mathbb{N})$, (that is the set of all subsets of $\left.\mathbb{N}\right), P^{\mathcal{A}}=\{(A, B) \mid A, B \subseteq \mathbb{N}, A \subseteq B\}$
(d) $U_{\mathcal{A}}=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ differentiable. $\}, P^{\mathcal{A}}=\left\{(f, g) \mid f=g^{\prime}\right\}$

Exercise 26: (Not a law)

Show that the two formulas in (a) (respectively, in (b)) are not equivalent to each other by providing a (counter-)example for each.
(a) $(\forall x F) \vee(\forall x G) \quad \not \equiv \quad \forall x(F \vee G)$,
(b) $\exists x(F \wedge G) \quad \not \equiv \quad \exists x F \wedge G$, where x is free in G.

Exercise 27: (Structures and models II)

Consider the formulas

$$
F=\forall x \forall y \forall z(\neg P(x, x) \wedge(P(x, y) \Rightarrow \neg P(y, x)) \wedge(P(x, y) \wedge P(y, z) \Rightarrow P(x, z))) .
$$

Find two structures $\mathcal{A}_{1}, \mathcal{A}_{1}^{\prime}$ for F that are not models for F, one with a finite universe $U_{\mathcal{A}_{1}}$, one with an infinite universe $U_{\mathcal{A}_{1}^{\prime}}$.
Moreover, find two models $\mathcal{A}_{2}, \mathcal{A}_{2}^{\prime}$ for F, one with a finite universe $U_{\mathcal{A}_{2}}$, one with an infinite universe $U_{\mathcal{A}_{2}^{\prime}}$.
Please justify why $\mathcal{A}_{1} \not \vDash F, \mathcal{A}_{2} \not \models F, \mathcal{A}_{1}^{\prime} \models F, \mathcal{A}_{2}^{\prime} \models F$, respectively.

Exercise 28: (Prenexification)

Consider the formulas
$F=\forall x P(x) \wedge \neg \forall y \exists z(P(y) \Rightarrow P(z)), \quad G=\exists x \forall y \forall z((P(x, y) \vee \neg P(y, z))) \wedge \neg \forall x \exists y(P(x, y) \vee \forall z \neg P(x, z))$.
Establish the Prenex normal form of F and G. Note that it might be necessary to rename some of the variables first.

Send your solutions until Tue 6.12.2022 at 14:00 to your respective tutor.
Please indicate the name of the tutor on your solution sheet.
Your solutions have to be in a single file (pdf or similar). Multiple jpeg files (photos) do not count.

Jakob Niermann
Constantin Lefeld
Frederic Alberti
Hannah Schweizer
Luigi Esercito / Enrico di Gaspero

Tue 16 janiermann@techfak.de
Tue 16 clefeld@techfak.de
Wed 8 falberti@math.uni-bielefeld.de
Wed 16 hschweizer@techfak.de
Thu 12 lesercito@techfak.de / edigaspero@techfak.de

