Panorama der Mathematik und Informatik

1. Anfänge: Ägypten, Mesopotamien, Griechenland

Dirk Frettlöh Technische Fakultät

Themen dieser Vorlesung:

- Geschichte: Antike, Mittelalter, Renaissance; Geschichte der (digitalen) Computer.
- Werk von Leibniz, Gödel, Turing, Knuth...
- Methoden: Im Laufe der Geschichte, heute
- ► Literatur, Publikationswesen, Recherche, LATEX, wikipedia
- Meilensteine: ein paar ausgewählte Themen (google, jpeg, RSA, erzeugende Funktionen...) im Detail vorstellen
- Aktuelle Forschungsthemen (auch) aus Bielefeld
- Mathe und Informatik in Film und Literatur

(Disclaimer: alles meine persönliche Sicht)

Literatur:

- ► Hans Wußing: 6000 Jahre Mathematik (online über Unibib)
- Steven Levy: Hackers
- AK Dewdney: Computer-Kurzweil
- alles von Ian Stewart
- Simon Singh: Fermats letzter Satz, Mathe bei den Simpsons
- Courant, Robbins: Was ist Mathematik?
- ▶ Wikipedia: deutsche und englische Seiten

Mehr Info:

http://www.math.uni-bielefeld.de/~frettloe/lehr.html

1. Geschichte: Wie alles begann...

Ab etwa 3000 v.Chr. Hochkulturen in Ägypten, Mesopotamien, (China, ...) Nun gab es Bedarf für "höhere" Mathematik

- Zählen: Notation für hohe Zahlen, Buchhaltung, Handel
- ▶ Geometrie: Messen, Bauen, Dekorieren
- Astronomie: Kalender, Ortsbestimmung

Ägypten: Notation für ganze Zahlen:

1	10	100	1.000	10.000	100.000	1.000.000	
I	Λ	9	<u>×</u>	8	B	K	
Einfacher Strich	Rinds- gespann	Seilschlinge	Wasserlilie	Finger	Kaulquappe oder Frosch	Heh (altägyptischer Gott der Unendlichkeit)	

Also etwa 335 =

Brüche: immer als $\frac{1}{n}$

Stammbrüche mit Zweierpotenzen

1/2	1/4	1/8	1/16	1/32	1/64
⋖	0	~	\triangleright	~	1

(Teile eines Auges:

) Allgemeiner:

Allgemeine Stammbrüche

_										
	2/3	1/2	1/3	1/4		1/9	1/10	1/11	1/12	
	<u>3</u>	$\overline{2}$	3	$\overline{4}$		9	10	11	12	
	(=		\			\ =====	0	O	\ ∩II	

Also z.B.

$$\bigcap_{\text{III}} \bigcap_{\text{II}} = \frac{1}{3} + \frac{1}{12} = \frac{5}{12}$$

$$\bigcirc \bigcap_{\mathbf{e} \in \mathbf{e} \cap \mathbf{I}} = \frac{1}{331}$$

Ein Zeichen für "nichts":

Zusf. (Wußing, "6000 Jahre Mathematik")

"Mathematische Methoden entstehen aus praktischen Bedürfnissen: Landvermessung, Bau von Pyramiden, Tempeln, Speichern, Bewässerungsanlagen, Abrechnungen von Lohn, Material, Abgaben. Die Methoden wurden als Handlungsanweisungen [Algorithmen!] anhand konkreter Beispiele mit Proben von staatlichen Schreibern ohne Begründung oder Beweis beschrieben."

Arithmetik: Addition und Subtraktion, Multiplikation durch sukzessive Verdopplung des Multiplikanden, Division durch Verdopplung des Divisors; Formeln für arithmetische Reihen: $a + (a + b) + (a + 2b) + \cdots$, endliche geometrische Reihen: $a + a^2 + a^3 + \cdots$

Algebra: Lineare Gleichungen: $1\frac{1}{2} \cdot x + 4 = 10$, rein quadratische Gleichungen: $x^2 = a$, Näherungen für Quadratwurzeln.

Geometrie: Flächeninhalte von Rechteck, Dreieck und Trapez, Näherung für die Kreisfläche gemäß $F = (8/9 \cdot d)^2$ mit

Durchmesser d;

Volumina von Würfel, Quader und Zylinder, korrekte Formel für den Inhalt eines Pyramidenstumpfes.

Ein paar erhaltene Papyrusschriften dienen als Quellen ("Rhind-Papyrus" fur Ägypten, Keilschrifttafeln fur Mesopotamien)

Mesopotamien: Algorithmen durch Beispiel

- Keilschrifttafel 13901 aus dem British Museum in London
- Ursprünglich 24 Probleme (einige zerstört)
- ▶ 2000 bis 1600 v. Chr.
- ▶ 11,7 cm \times 19,4 cm

Mesopotamien: Algorithmen durch Beispiel

Tablet 13901, Problem 1

Ich habe die Fläche und eine Seite eines Quadrates addiert. $\frac{3}{4}$

(in modern:)
$$x^2 + x = \frac{3}{4}$$

Nimm die Einheit 1. Teile sie in zwei; $\frac{1}{2}$. Du multiplizierst $\frac{1}{2}$ mit $\frac{1}{2}$; $\frac{1}{4}$. Du addierst $\frac{1}{4}$ zu $\frac{3}{4}$; 1. Das ist das Quadrat von 1. Du subtrahierst $\frac{1}{2}$, das du multipliziert hast, von 1; $\frac{1}{2}$, die Seite des Quadrates.

$$ax^2 + bx = c$$
 $b \to \frac{b}{2} \to \left(\frac{b}{2}\right)^2 \to c + \left(\frac{b}{2}\right)^2 \to \sqrt{c + \left(\frac{b}{2}\right)^2} \to \sqrt{c + \left(\frac{b}{2}\right)^2} \to \sqrt{c + \left(\frac{b}{2}\right)^2}$

Antikes Griechenland

Soweit bestand Mathematik (Informatik ?) aus Algorithmen. Im antiken Griechenland ging man weiter.

Proclus Diadochus (411-485) schreibt,

Eudemus von Rhodos (350-290 v.Chr., Schüler von Aristoteles) schreibe,

Thales von Milet (624-547 v.Chr.) habe folgendes gezeigt (= bewiesen!):

- ► Ein Kreis wird von seinem Durchmesser in zwei Hälften geteilt.
- ▶ Die Basiswinkel eines gleichschenkligen Dreiecks sind gleich.
- Die Winkel zwischen zwei sich schneidenden geraden Linien sind gleich.
- ➤ Zwei Dreiecke sind kongruent, wenn sie zwei gleiche Winkel und eine gleiche Seite besitzen.

Beweise:

Nicht nur Algorithmen, sondern allgemeiner.

Etwa "Für alle X gilt Y", oder "Es gibt X mit Y".

- Geometrische Aussagen ("für alle Kreise gilt..." s.o.)
- Aussagen über ganze Zahlen (s. unten)
- Korrektheit eines Algorithmus (Euklidischer Algor., s.u.)
- Existenzsätze (irrationale Zahlen, Dodekaeder)

(s. Wußing Kap. 5)

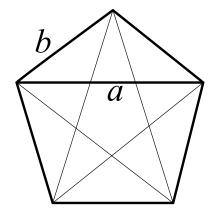
Beispiele:

- Zu 1: Satz des Pythagoras, oder: in jedem Dreieck schneiden sich die drei Winkelhalbierenden in einem Punkt.
- Zu 2.: Eindeutige Primfaktorzerlegung, oder Existenz unendlich vieler Primzahlen
- Zu 3: Euklidischer Algorithmus.
- Zu 4.:

Satz: In einem regulären Fünfeck ist das Verhältnis der Längen der Seiten und der Diagonalen irrational.

irrational: nicht von der Form $\frac{p}{q}$, wobei p und q irgendwelche ganzen Zahlen sind.

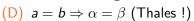
regulär: alle Seiten gleich lang, alle Innenwinkel gleich.



Wir brauchen: (Vereinbarung: Vollwinkel = 1)

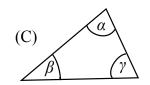
- (A) Außenwinkel eines regulären *n*-Ecks ist $\frac{1}{2} + \frac{1}{n}$
- (B) Ba

- (B) $\alpha + \beta = \frac{1}{2}$
- (C) (Winkelsumme im Dreieck) $\alpha + \beta + \gamma = \frac{1}{2}$

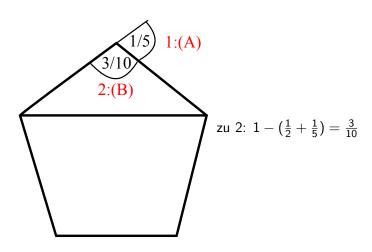


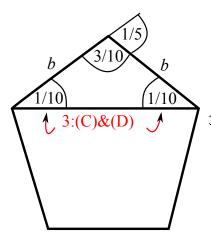
(E)
$$\alpha = \beta \Rightarrow a = b$$

(F) Haben zwei Dreiecke die gleichen Seitenlängen, dann auch die gleichen Winkel.

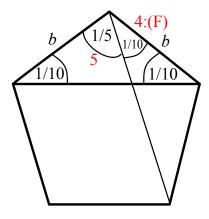


(D) & (E)



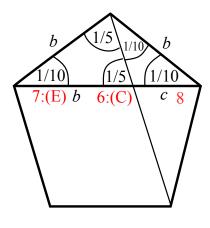


3:
$$\frac{3}{10}+?+?=\frac{1}{2}$$
, also $?=\frac{1}{10}$.



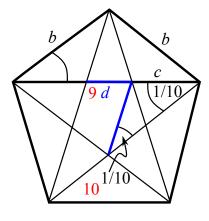
4: Regelmäßiges Fünfeck, also Dreiecke gleich (F).

5:
$$\frac{3}{10} - \frac{1}{10} = \frac{2}{10} = \frac{1}{5}$$
.



6:
$$\frac{1}{10} + \frac{1}{5} + ? = \frac{1}{2} \Rightarrow ? = \frac{1}{5}$$

8: c:=a-b



9: d:=b-c

10: Fünfeck regulär, also wie 3.



Angenommen, $\frac{a}{b}$ ist rational. Also können a und b als ganze Zahlen gewählt werden.

In der Mitte des großen regulären Fünfecks ist nun ein kleines reguläres Fünfeck. Dessen Diagonale ist c, dessen Seite d. Also: $\frac{a}{b} = \frac{c}{d}$.

Wir sahen: c = a - b und d = b - c. Also sind auch c und d ganze (positive!) Zahlen.

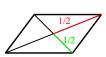
Wir können das Spiel von oben beliebig oft wiederholen, mit immer kleineren und kleineren Fünfecken. Das liefert immer kleinere und kleinere Zahlen $a>b>c>d>e>f>g>h\cdots>0$.

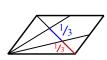
Da alles ganze Zahlen sind, ist das unmöglich. Also muss unsere Annahme: " $\frac{a}{b}$ ist rational" falsch sein. Also ist $\frac{a}{b}$ irrational!

Das geht heute übrigens viel, viel einfacher. Im obigen Beispiel mit linearer Algebra und Trigonometrie.

Andere Beispiele (mehr dazu im ersten Livetermin):

- ► In einem Parallelogramm halbieren sich die Diagonalen gegenseitig (s.u. links).
- In einem Parallelogramm drittelt die Strecke von einer Ecke zur gegenüberliegenden Seitenmitte die Diagonale (s.u. Mitte).
- ► Ein in eine Parabel einbeschriebenes Dreieck hat genau dreiviertel der Fläche der Parabel (s.u. rechts).

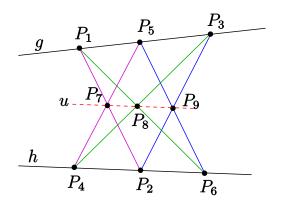




⁴/₃ Fläche(♥) =Fläche(♥) Beispiel einer komplizierten Aussage:

Satz von Pappus: Liegen sechs Punkte $P_1, P_2, P_3, P_4, P_5, P_6$ in der Ebene abwechselnd auf zwei Geraden g und h, so sind die Punkte

$$P_7:=\overline{P_1P_2}\cap\overline{P_4P_5}, P_8:=\overline{P_6P_1}\cap\overline{P_3P_4}, P_9:=\overline{P_2P_3}\cap\overline{P_5P_6}$$
 kollinear, d.h., sie liegen auf einer Geraden u (siehe Bild).



Beweis damals: lang, siehe en.wikipedia.org

Beweis später (sagen wir, vor 100 Jahren): Lineare Algebra, oder in diesem Fall einfacher mittels "projektiver Geometrie", siehe en.wikipedia.org

Beweis heute: Computer. *Cinderella*: Geometriesoftware mit eingebautem Beweiser.

[Siehe Video]