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We introduce a simple atomic structure optimization algorithm which is significantly faster than
standard implementations of the conjugate gradient method and which is competitive with more so-
phisticated quasi-Newton schemes typically used in ab initio calculations. It is based on conventional
molecular dynamics with additional velocity modifications and adaptive time steps. The efficiency,
robustness and versatility of the method is illustrated using a variety of test cases, including typical
systems encountered in nano-scale science, solid state physics, materials research and biochemistry.
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Finding mechanically stable equilibrium configurations
of atomistic systems is one of the most common tasks
in computational materials science, solid state physics,
chemistry and biology. This corresponds to finding the
(nearest) structures with minimum potential energy for
an atomic system, starting from a given initial configu-
ration. To solve this task a variety of well established
optimization methods, like steepest descent (SD), con-
jugate gradient (CG), Newton-Raphson (NR), Quasi-
Newton (QN) or Truncated-Newton (TN) methods can
be used [1–4]. Also variants of molecular dynamics
(MD) methods which systematically remove kinetic en-
ergy from the system are commonly applied for minimiza-
tion purposes [5–8]. Such local ‘quenching’ is also applied
in many algorithms for global minimization [9–11]. In-
terestingly, relaxation based on MD has been thought to
be good for practical realization, but not very competi-
tive with the afore mentioned sophisticated algorithms.
For this reason MD-quenching algorithms have been tra-
ditionally introduced as by-products of secondary impor-
tance in regular articles [5–7], never receiving the atten-
tion and effort they actually deserve.

Here we introduce and discuss a simple and yet pow-
erful MD scheme for structural relaxation. Consider a
blind skier searching for the fastest way to the bottom
of a valley in an unknown mountain range described by
the potential energy landscape E(x) with x = (x1, x2).
Assuming that the skier is able to retard and steer we
would recommend him to use the following equation of
motion:

v̇(t) = F(t)/m− γ(t)|v(t)|(v̂(t)− F̂(t)) , (1)

with the mass m, the velocity v = ẋ, the force F =
−∇E(x), and hat for a unit vector. Beyond the classical
equation of motion based exclusively on the force act-
ing on a particle, the skier may make use of additional

acceleration in the direction of the force or the velocity
vectors via the function γ(t). In order to avoid uphill
motion the skier should simply stop as soon as the power
P (t) = F(t)·v(t) becomes negative. In the case P (t) > 0,
we would recommend a continuous moderate steering in
the downhill direction, realized by a small and positive
γ(t).

We show in this letter that eq. (1) brings the skier
surprisingly fast to the desired destination. A prop-
erly discretized version of eq. (1) in combination with an
adaptive time step results in an extremely simple and ro-
bust minimization scheme for multidimensional functions
E(x1, . . . xM ) which is nevertheless competitive with the
above mentioned sophisticated optimizers. Fig. 1 shows
that our skier easily keeps up with powerful standard
schemes like the conjugate gradient and the QN Broyden-
Fletcher-Goldfarb-Shanno (BFGS) scheme [1, 2] in a two-
dimensional spiral potential landscape. In calculations on
a broad range of test systems the new algorithm was al-
ways surprisingly fast and could be used with great ease
for systems with millions of degrees of freedom and with
very demanding convergence criteria. Contrary to the
conventional schemes the new algorithm relies on inertia
and, consequently, this novel method was dubbed FIRE
for Fast Inertial Relaxation Engine.

The numerical treatment of eq. (1) is quite simple.
Any common MD integrator can be used for the prop-
agation according to the conservative force term on the
right hand side of eq. (1). The resulting trajectory is
continuously re-adjusted by two kinds of velocity modi-
fications: a) the above mentioned immediate stop upon
uphill motion (v → 0) and b) a simple mixing of the
global (3Natoms dimensional) velocity and force vectors
v → (1 − α)v + αF̂|v|, which results from an Euler-
discretization of the last term in eq. (1) and from the
introduction of ∆t with α = γ∆t. Both ∆t and α are
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treated as adaptive quantities.
Explicitly, the FIRE algorithm uses the following prop-

agation rules (given initial values for ∆t, α = αstart and
for the global vectors x, F and v = 0):

MD: calculate x, F = −∇E(x), and v using any com-
mon MD integrator; check for convergence

F1: calculate P = F · v

F2: set v → (1− α) · v + α · F̂ · |v|

F3: if the number of steps since condition (F4) was true
is larger than Nmin, increase the time step ∆t →
min(∆t · finc,∆tmax) and decrease α → α · fα.

F4: if P ≤ 0, decrease time step ∆t → ∆t · fdec, freeze
the system v → 0 and set α back to αstart.

F5: return to MD

Contrary to MD, for relaxation the accurate calculation
of the atomic trajectories is not necessary. The adaptive
time step allows FIRE to increase ∆t until either the
largest stable time step ∆tmax is reached, or an energy
minimum along the current direction of motion (P < 0)
is encountered. In the latter case the system is instantly
frozen (v → 0) and the time step is substantially reduced
in order to resolve the trajectory of the system close to
a minimum or turning point. A short ‘latency’ time of
Nmin MD steps before accelerating the dynamics of the
system is important for the stability and robustness of
FIRE.

Most of the parameters introduced above are not di-
rectly linked to the physics of the system. Like the five
parameters of the standard conjugate gradient implemen-
tation, their choice is guided by experience. For all sys-
tems under study, the following parameters yielded a fast
and robust behavior: Nmin = 5, finc = 1.1, fdec = 0.5,
αstart = 0.1 and fα = 0.99.

The maximal time step ∆tmax is the most important
adjustable parameter of the method. From a typical
MD simulation time step ∆tMD one can obtain an initial
rough estimate of ∆tmax ∼ 10 ·∆tMD. The initial time
step can be rather freely chosen, e.g. ∆t ∼ ∆tMD.

One feature of special attention is the global nature of
the algorithm, which assumes that all degrees of freedom
are comparable to each other. All the velocities should
have the same scale, which for hetero-nuclear systems can
be roughly achieved by setting all the atom masses equal.
Note that this rescales also the time step.

To demonstrate the performance of FIRE, we compare
it to two commonly used relaxation methods: BFGS and
the Polak-Ribiere version of CG. BFGS is popular in
quantum mechanical calculations of small systems where
the system evaluation at a new location is the most time
consuming part [3, 4]. However, the storage and arith-
metic cost of this method can become prohibitive for
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FIG. 1: Performance of FIRE in a spiral-shaped two-
dimensional potential energy function (see left inset for the
landscape, X is the starting point). Shown is the evolution of
the azimuthal angle θ versus the function calls of FIRE (red
solid line), CG (blue dotted line) and BFGS (green dashed
line). Since FIRE needs some time to accelerate, it is slow
at the beginning, but catches up quickly with BFGS at later
times. Note that CG does not converge within 500 function
calls. This is due to expensive line searches as displayed in
the right inset showing a part of the trajectory of FIRE (red)
and CG (blue).

large systems. For large problems with computation-
ally inexpensive atomic interaction models CG is widely
used [3, 12] [19].

We use the CG from Numerical Recipes [2] and BFGS
from the IMSL library. Although there are more special-
ized implementations of CG [13] and QN methods avail-
able (see [4] and references therein), these algorithms are
widely used and well documented, making them ideal
reference methods. In the comparisons the root-mean-
square (RMS) of the global force FRMS = |F|/(3N)
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(force norm) is taken as a representative measure for
the degree of relaxation, but also further conditions for
minimum, such as the maximum force components, are
tested. The number of ‘function calls’ n is a generic no-
tation for separate points x where either energy, force, or
both are evaluated.

As a first demonstration, Fig. 1 shows FIRE, CG and
BFGS optimizations of a function E(x1, x2) = sin(πr +
θ/2) + r2/10, modeling a curved relaxation pathway.
In atomic systems, curved relaxation paths are the re-
sult of the usually highly corrugated, intricate poten-
tial energy surfaces. In this model, FIRE (mi = 1 and
∆tmax = 0.30) reaches the minimum (E < −0.99) with
244 gradient calls. BFGS needs 283 energy and 215 gra-
dient evaluations, compared to 1071 energy and 82 gra-
dient calls for CG with a total of 82 line minimizations.
In terms of required function evaluations FIRE compares
well with BFGS, without having similar computational
overhead or memory requirements. The line searches of
the conjugate gradient are clearly inefficient to follow the
curved path of the spiral. MD type scheme gives in this
case a smooth down-hill trajectory.

Next we apply FIRE to the biomolecule fenretinide,
which is used as a cancer drug (see inset in Fig. 2 for
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FIG. 2: Relaxation of fenretinide (Lewis structure is shown in
the lower inset) modeled with density-functional based tight-
binding. The force norm as a function of the number of func-
tion evaluations is shown for FIRE (red solid line), CG (blue
dotted line) and BFGS (green dashed line). The upper inset
shows the evolution of the total energy E with respect to the
equilibrium value E0.

the structure). The atomic interaction was modeled
with a density-functional based tight-binding method
(see ref. [14] and references therein). The starting con-
figuration was created by slightly bending and twisting
the carbon chain. This setup is particularly challenging,
since the work for the straightening and unwinding of the
long chain has to be done by single carbon-carbon bonds.
In FIRE all the masses were set to one atomic mass unit,
∆tmax = 1 fs and the initial time step 0.8 fs.

For quenching the molecule down to FRMS < 5 ·
10−3 eV/Å CG required n = 2097 function calls [20],
BFGS required n = 171 and FIRE n = 161. Afterwards
the relaxation was carried further, until the numerical
limit of the respective methods was reached. The final
force norm was for CG 1.7 · 10−3 eV/Å (n = 3644) and
for BFGS 1.6·10−4 eV/Å (n = 667). FIRE, however, was
able to reach a force norm as small as 1.0 · 10−15 eV/Å
(n = 5534). The final structures produced by CG and
BFGS were 3 meV and 0.02 meV higher in energy than
the final structure of FIRE, respectively. Note, however,
that the performance of BFGS in the parabolic region
close to the minimum (inset of Fig. 2) is very good.
Analysis of the trajectory of relaxation shows that, in-
deed, due to its global nature and inertia, FIRE is effi-
cient in getting the chain straightened in its overall form.
For CG the straightening process was crowded with ineffi-
cient line search directions, indicating the high curvature
of the minimization pathway.

The tight-binding model was also applied for quench-
ing of a (5, 5)-nanotube with fullerene endcaps (160
atoms) thermalized to 1000 K, with the criterion FRMS <
5 · 10−3 eV/Å. In this case the performance of BFGS is
better (n = 61) compared to FIRE (n = 102) or CG
(n = 532), due to a fairly regular and parabolic energy
landscape [21].

The relaxation behavior of two further test systems are
shown in Fig. 3. The first system is an approximant to a
decagonal AlNiCo quasicrystal [15, 16]. Periodic bound-
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FIG. 3: Relaxation of the AlNiCo quasicrystal and the hot Cu
plate. The force norm as a function of the number of function
evaluations is shown for FIRE (red solid line) and CG (blue
dotted line).

ary conditions (PBC) with a fixed box size were applied.
This system has a complex ground state with shallow
minima for many atoms, requiring thus a rather small
convergence criterion for the force. The starting config-
uration for the other test system in Fig. 3 is taken from
the equilibration of a free-standing thin copper film at
T = 1000 K and therefore shows relatively high forces on
the atoms. This problem combines the relaxation of the
long range thermal expansion with the relaxation of local
displacements. The atomic interactions for both systems
were modeled with embedded atom method (EAM) po-
tentials [16, 17]. In both examples CG requires approx-
imately three times more function evaluations as com-
pared to FIRE even though the relaxed structures differ
only by 10−10 and 10−13 eV/atom, respectively.

Further tests were conducted on a broad range of differ-
ent systems. Amongst others were other quasi-crystalline
samples, the relaxation of a crack and of vacancies in
systems of different size. Similar to the crack, the relax-
ation of a vacancy in large boxes under PBC requires the
adaption of the atomic positions to a long range strain
field, however in this case at very low driving forces. The
large number of atoms with low forces translates to a
low starting FRMS , therefore the smallness of the max-
imum force component experienced by an atom is used
as convergence criterion. The crack, on the other hand,
is characterized by large strains. For this example, the
initial positions of the atoms around the crack and at the
fixed borders were determined by the anisotropic linear
elastic solution for a sharp crack at the Griffith load in Ni
(for details see [18]). This system shows that despite its
dynamic nature FIRE can be used to determine the me-
chanical stability of structures very close to their critical
load.

The function calls necessary to relax the different test
systems up to a given convergence criterion with CG and
FIRE are summarized in Tab. I. In all cases FIRE is
significantly faster than CG while leading to basically the
same final structures. A speed-up of the calculations by a
factor of 3-6 was typically achieved by using FIRE instead
of CG. FIRE scales well with the system size, calculations
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with up to 38 million atoms have been performed without
problems.

One important advantage of FIRE is that it is only
based on gradient information. Namely, the standard
conjugate gradient algorithm relies on the direct mini-
mization of the potential energy, and numerical insta-
bilities, especially in ab-initio methods, may cause inac-
curate determination of the local minimum. Achieving
very small gradient norms can be especially important
for subsequent normal-mode analysis [4] or for the study
of mechanical stability of systems under load. Further-
more, the capability to work with very small forces en-
ables FIRE to move through very flat valleys or saddle
point configurations, where energy based methods expe-
rience problems. For example, the quenching of fenre-
tinide in Fig. 2 even to FRMS = 10−3 eV/Å, was not
possible with given CG implementation [2] simply be-
cause the energy variations during one line search were
similar to the numerical accuracy (∼ 10−12 eV) of the
total energy.

Since FIRE requires only the first derivatives of the
target function, it can easily be adapted to various other
minimization problems. By now, FIRE has been ap-
plied successfully also to a handful of other general mul-
tidimensional minimization problems, where preliminary
results show it to be much more efficient than previ-
ously used common algorithms [22]. Furthermore, even
constrained minimization can be performed by using
the standard constrained MD methods (e.g. by setting
α = 0).

In conclusion we have presented an extremely useful
method for the relaxation of atomic structures. Com-
pared to other relaxation algorithms FIRE is embarrass-
ingly simple (around 10 additional lines of code to any
MD implementation), has practically no computational
overhead and very low memory requirements. Tests on
different systems show that for large scale simulations the
method is usually significantly faster than the standard
implementations of the commonly used conjugate gradi-
ent methods. It can furthermore compete with BFGS,
which due to its memory requirements is mostly used

TABLE I: Number of function calls required by FIRE and
CG to reach convergence for the relaxation of different test
systems. The used criteria were FRMS ≤ 10−3 eV/Å (10−6

eV/Å) for all systems except for the large ones with a vacancy,
were the maximum force component on an atom had to be
used: fix,y,z ≤ 10−3 eV/Å (10−5 eV/Å).

system N FIRE CG
AlNiCo 3360 136 (639) 661 (2131)
crack in Ni 4815 61 (207) 174 (764)
hot Cu plate 16200 299 (585) 545 (1767)
vacancy in Cu 107998 43 (132) 58 (329)
vacancy in Cu 1492991 43 (118) 59 (358)

only for small systems. The robustness, simplicity and

lack of many adjustable parameters recommend FIRE as
a versatile alternative to non-inertial relaxation methods.
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