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Outline of talk

1. Physical motivation.

2. Recap of previous results.

3. Potentials undergoing a bifurcation.

4. The case with mass.
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Background

Dynamic force spectroscopy

I The idea is to stretch a molecular bond and see how much
force is required for it to break.

I Experiment repeated many times to give a distribution of
break forces.

I This can give information about the bond strength and
internal dynamics of the molecule, but data needs to be
interpreted.

I Theoretical approach is needed.
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Bond rupture may be viewed as a thermally activated escape from
a potential well.

Bond length ys typically modelled by an SDE of the form

dys = (−U ′(ys) + Vs)ds + σdWs , y0 = a

where a is the minimum of potential U, σ > 0 the noise intensity
and V the loading rate.
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e.g. U is Lennard-Jones potential. At s = 0
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Vs = 0.1
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Vs = 0.2
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Vs = 0.3
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Vs = 0.4
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Vs = 0.5
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Recall: in the absence of external force, expected time of escape
from a potential well given by Eyring-Kramers formula (c.f. Bovier
et al, 2004)

E(τescape) ' 2π√
U ′′(x)|U ′′(z)|

e2(U(z)−U(x))/σ2

Adiabatic approximation assumed: speed of stretching much slower
than relaxation time of molecules...

...Eyring-Kramers formula gives instantaneous rate of escape k(t)
at time t.

d
ds

P(s) = −k(s)P(s)

where P(s) is bond survival probability up to time s.
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I For very slow stretching, there is enough time for thermal
fluctuations to act at smaller forces. Rupture force scales like
ln V .

I For faster stretching, break occurs when potential barrier very
low. Rupture force scales like (ln V )2/3
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A model of two breakable bonds

Let x(s) = (0, xs , 2a(1 + εs)) ∈ R3 denote the positions of three
particles.
Only the middle particle is free. It satisfies:

dxs = −∂H

∂x
(xs , εs)ds + σdWs

with initial condition x0 = a and time-dependent potential energy
given by

H(x , εs) = U(x) + U(2a(1 + εs)− x)

where U is a pair potential.
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Main properties of U:

I U has a unique minimum at a > 0

I U has finite range b > 0

I b < 2a

We will let ε = ε(σ) and consider behaviour as σ ↓ 0.
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We rescale time as t = εs, so that x(t) = (0, xt , 2a(1 + t)) and xt

solves

dxt = −1

ε

∂H

∂x
(xt , t)dt +

σ√
ε
dWt

The chain breaks when its configuration changes from the starting
potential minimum to another.

After this, the middle particle only interacts with one of its
neighbours.

The chain breaks on the left- or right-hand side if the middle
particle no longer interacts with its neighbour on that respective
side.
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Previous results

Recall that our potential U has unique minimum at a > 0 and
finite range b > 0, where b < 2a. In addition, we will assume:

There exists a0 ∈ (0, a) such that U ′′(y) > u0 > 0 for all
y ∈ (a0, b).
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An example of such a potential is a cut-off quadratic given by

U(y) =

{
(|y | − a)2 − (b − a)2 0 6 |y | 6 b

0 otherwise

where b < 2a, shown below for a = 2, b = 3.
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The potential energy H(x , t) = U(x) + U(2a(1 + t)− x) when
t = 0
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t = 0.05
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t = 0.1
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t = 0.15
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t = 0.2
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t = 0.25
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t = 0.3
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t = 0.35
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t = 0.4
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t = 0.45
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t = 0.5
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Notation: f (σ)� g(σ) means f (σ)/g(σ)→ 0 as σ ↓ 0.

Theorem (A.,Betz)

1. Fast Stretching
If

σ| lnσ|1/2 � ε(σ)� 1

then P{breaks on left-hand side} → 0 as σ ↓ 0.

2. Slow Stretching
If

1

σ2/3
exp

{
− 1

σ2/3

}
� ε(σ)� σ| lnσ|−1/2

then P{breaks on left-hand side} → 1/2 as σ ↓ 0.
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Next step

We want to do the same with U differentiable everywhere.
e.g.

U(y) =

{
−y2 e−1/(3−y) 0 6 |y | 6 3

0 otherwise
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The potential energy H(x , t) = U(x) + U(2a(1 + t)− x) when
t = 0
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t = 0.05
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t = 0.1
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t = 0.15
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t = 0.2
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t = 0.25
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t = 0.3
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t = 0.35
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t = 0.4
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t = 0.45
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t = 0.5
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We expect the middle particle to track the midpoint of the chain
for t 6 T , where T is the time of bifurcation.

Here, the effective potential H is approximately quadratic.

By changing t → t − T and x → x − a(1 + t), we will consider
instead motion in the potential

H(x , t) = −1

2
t x2 +

1

4
x4

with x−T = 0.
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H(x , t) = −1
2 t x2 + 1

4x4 for t = −3
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t = −2
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t = −1
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t = 0
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t = 1
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t = 2
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Now we are considering the following SDE instead:

dxt =
1

ε
(t xt − x3

t + ε) dt +
σ√
ε

dWt , x−T = 0

(N.B. We choose +ε in drift term)
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For ε > σ2, we know:

for times −
√
ε 6 t 6

√
ε,

E(xt) ≈
√
ε and

√
Var(xt) ≈ σε−1/4

This suggests that ε = σ4/3 is the critical scaling.

We will prove that this is indeed the case.
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Proof: Fast stretching (ε� σ4/3) will follow easily from above
calculation.

For slow stretching (σ2 < ε� σ4/3), consider the SDE

dx̃t =
1

ε
(t x̃t − x̃3

t ) dt +
σ√
ε

dWt

This is like our equation, but without the +1 drift term.

Nils Berglund and Barbara Gentz considered SDEs of this form.

We aim to show that the +1 term does not affect the sample
paths greatly during the bifurcation.
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For t >
√
ε, dynamics of x̃t dominated by diffusion as long as

|x̃t | <
σ√
2t

It is shown that x̃t typically exits the slightly larger strip

S =

{
(x , t) : t >

√
ε, |x | <

2σ
√
| log σ|√
2t

}

by times of order
√
ε log(

√
log σ)
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We know that, almost surely, for all t > − T

x̃t 6 xt 6 x̃t +

∫ t

−T
e(t2−s2)/2ε ds

When ε� σ4/3, the integral remains sufficiently small for
t 6

√
ε log(

√
log σ) so that when x̃t leaves S, xt is still close.
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Next: The drift term outside S dominates the diffusion and pushes
paths of x̃t further away from the origin.

To show this, a comparison argument is used with solutions of a
linear SDE:

dxκt =
1

ε
κt xκt dt +

σ√
ε

dWt

for suitable κ > 0. The same argument works with paths of xt , but
a different initial condition for the linear SDE is needed to
compensate for the +1 term.

By times of order
√
ε| log σ|, paths of both x̃t and xt will have

fallen into one of the two wells.
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The effect of mass

This is joint work with Martin Hairer.

So far we have only considered overdamped motion i.e. first-order
dynamics.

Consider now

dxt = vt dt

εβdvt = −vt dt +
1

ε
(t xt − x3

t + ε) dt + εα dWt

with x−T = 0, v−T = 0, where β > −1 and α > −1/2.

N.B. we have chosen σ = εα+1/2.
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If all terms were differentiable, this could be written as

εβ ẍt = −ẋt +
1

ε
(t xt − x3

t + ε) + εαẆt , x−T = 0, ẋ−T = 0

First step: Consider just

εβ ẍ0
t = −ẋ0

t +
1

ε
(t x0

t + ε) + εαẆt , x0
−T = 0, ẋ0

−T = 0

This can be solved explicitly.

The solution involves Airy functions, Ai(t) and Bi(t): these are
linearly independent solutions to ẍ − t x = 0.
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Ai(x) and Bi(x)
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x0(t) =πε(1−2β)/3×

×
(
−Ai(t(ε, β))

∫ t

−T
e−

1
2
(t−s)ε−β

Bi(s(ε, β))h(s) ds+

+ Bi(t(ε, β))

∫ t

−T
e−

1
2
(t−s)ε−β

Ai(s(ε, β))h(s) ds

)
where h(s) = 1 + εαẆs and

t(ε, β) = ε−(1+β)/3

(
t +

1

4
ε1−β

)
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Theorem (A., Betz, Hairer)

If either

I β > 0 and α > 1/4

I −1 < β < 0 and α > (1 + β)/4

then
lim
ε↓0

P{ lim
t→∞

x0
t = +∞} = 1

while for either

I β > 0 and α < 1/4

I −1 < β < 0 and α < (1 + β)/4

then

lim
ε↓0

P{ lim
t→∞

x0
t = −∞} = lim

ε↓0
P{ lim

t→∞
x0
t = +∞} = 1/2
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The main part of the proof is to show that as ε ↓ 0, we have

lim
t→∞

E(x0
t )

(Var(x0
t ))1/2

∼ ε−α+ 1
4
(1+min{β,0})

The analysis deals with four cases:

1. β > 1

2. 1/2 < β < 1

3. 0 6 β 6 1/2

4. −1 < β < 0

It can be shown that x0
t → ±∞, in which case the sign of the

exponent above is enough to prove the theorem.
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Next: Back to the full potential,

εβ ẍt = −ẋt +
1

ε
(t xt − x3

t + ε) + εαẆt

by which we mean

dxt = vt dt

εβdvt = −vt dt +
1

ε
(t xt − x3

t + ε) dt + εα dWt

Want to show that for suitably large β, sample paths behave as in
the overdamped case.

Consider the equations for t ∈ [−T , t1], where t1 > 0 is
independent of ε.
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Theorem (A., Betz, Hairer)

Let β > 2 and α > 0. Then

lim
ε↓0

P{xt 6 ξt − εβVt for all t ∈ [−T , t1]} = 1

where ξt solves

dξt =
1

ε
(tξt − ξ3t + Cε) dt + εα dWt

for some C > 0 independent of ε and

Vt = εα−β
∫ t

−T
e−(t−s)ε−β

dWs
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Proof: Let (X ,V ) solve

dXt = Vt dt

εβdVt = −Vt dt + εα dWt

Then
Xt = εαWt − εβVt

where

Vt = εα−β
∫ t

−T
e−(t−s)ε−β

dWs
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Let yt = xt − Xt and zt = vt − Vt . Then (y , z) solve

ẏt = zt

εβ żt = −zt +
1

ε
g(t, yt + Xt)

where g(t, yt + Xt) := t(yt + Xt)− (yt + Xt)3 + ε, so that

zt = ε−(1+β)

∫ t

−T
e−(t−s)ε−β

g(s, ys + Xs)ds

6
1

ε
g(t, yt + Xt) + C

and so

ẏt 6
1

ε
g(t, yt + Xt) + C
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Since xt = yt + Xt , this leads us to xt 6 ηt , where

dηt =
1

ε
(tηt − η3

t + Cε) dt + εα dWt − εβ dVt

Using that εβVt 6 Cεα+β/2 and by the assumptions on α and β,
we can then show that ηt 6 ξt − εβVt , where

dξt =
1

ε
(tξt − ξ3t + Cε) dt + εα dWt

as required.
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Outlook

Smaller β, where overdamped approximation no longer valid. Need
new approach.

Large noise: −1/2 < α 6 0. Possible approach to show that the
invariant measure, for any given t, is reached faster than rate at
which potential changes.
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