

3rd Workshop on Random Dynamical Systems, Bielefeld

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Local Shape of Random Invariant Manifolds

Dirk Blömker

November 20, 2009

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

joint work with : Wei Wang (Nanjing / Adelaide)

Local Shape of Random Invariant Manifolds

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

- SPDE
- RDS
- LRIM
- Main Results
- $\mathsf{Flow} \text{ on } \mathsf{M}$
- Idea of Proof
- Conclusions

Consider here:

- Equation of Burgers type (quadratic nonlinearity)
- perturbed by simple multiplicative noise
- deterministic fixed point 0
- local random invariant manifolds near 0 using a cut-off

structure of the manifold near 0

Contents

- Local Shape of Random Invariant Manifolds
- Dirk Blömker
- Introduction
- SPDE
- RDS
- LRIM
- Main Results
- $\mathsf{Flow} \text{ on } \mathsf{M}$
- Idea of Proof
- Conclusions

- SPDE of Burgers type
- RDS Random Dynamical Systems
- RIM Random Invariant Manifolds

- Main results on LRIM (local RIM)
- Flow on the manifold
- Some ideas of proofs

An Equation of Burgers type

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Equation of Burgers type

$$du = [Lu + \nu u + B(u, u)]dt + \sigma u \circ d\omega$$

(B)

- ► *L* non positive differential operator on Hilbert-space *H* Exp. $L = \partial_x^2 + 1$ on $[0, \pi]$ Dirichlet b.c.
- Kernel $\mathcal{N} = \mathcal{N}(L)$, finite dimensional
- ► Bilinear operator $B : H \times H \rightarrow D((1 L)^{-\alpha}), \alpha \in [0, 1)$ Exp. $B(u, v) = \partial_x(uv)$
- ▶ $\{\omega(t)\}_{t\geq 0}$ standard two-sided Brownian motion in \mathbb{R}
- σ noise strength
- ν distance from bifurcation

An Equation of Burgers type

Local Shape of Random Invariant Manifolds	
Dirk Blömker	
Introduction	
SPDE	It is known:
RDS	(B) generates a Random Dynamical System on <i>H</i> .
LRIM	
Main Results	► How?
Flow on M	
Idea of Proof	Definition of RDS?
Conclusions	

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Wiener space and Shift

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Consider the probability space $(\Omega_0, \mathcal{F}_0, \mathbb{P})$, where

 $\Omega_0 = \{\omega \in C^0(\mathbb{R},\mathbb{R}) : \omega(0) = 0\}.$

On Ω_0 let \mathbb{P} be the two-sided Wiener measure. The identity on Ω_0 is a Brownian motion.

Define the Shift $\theta_{\tau}: \Omega_0 \to \Omega_0$

$$heta_ au\omega(t)=\omega(t+ au)-\omega(au)\ ,$$

which is measure preserving/ergodic with respect to \mathbb{P} .

Random Dynamical System (RDS)

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

[L. Arnold, Crauel, Schmalfuß, Flandoli, Scheutzow, Chueshov, Duan, Caraballo, Kloeden, Robinson,....]

A RDS on H over the shift θ_t on $(\Omega_0, \mathcal{F}_0, \mathbb{P})$ is a measurable map

$$arphi: \mathbb{R}^+ imes \Omega_0 imes H o H \ (t, \omega, u) \mapsto arphi(t, \omega) u$$

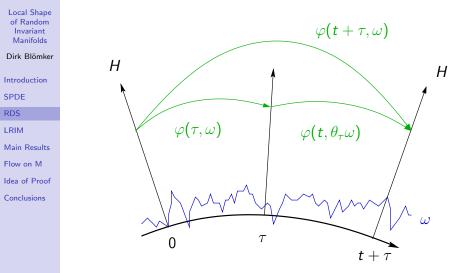
with the cocycle property

 $\varphi(0,\omega) = Id, \qquad \varphi(t, heta_{ au}\omega)\varphi(au,\omega) = \varphi(t+ au,\omega)$

for all $t, \tau \in \mathbb{R}^+$ and $\omega \in \Omega_0$.

Remark: Usually, $\varphi(t, \omega)u$ is continuous in t and in u.

Cocycle Property $\varphi(t, \theta_{\tau}\omega)\varphi(\tau, \omega) = \varphi(t + \tau, \omega)$



Ornstein-Uhlenbeck process

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Definition (OU-process)

Define on Ω_0 ,

$$z(\omega) = -\sigma \int_{-\infty}^{0} e^{s} \omega(s) ds$$
.

and

$$z(t) = z(\theta_t \omega) = -\sigma \int_{-\infty}^t e^{s-t} \omega(s) ds + \sigma \omega(t) \; .$$

 $t \mapsto z(\theta_t \omega)$ is continuous and solves

$$dz = -zdt + \sigma d\omega.$$

Remark: z(t) is a stationary OU-process on the Wiener space. ▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Transformation

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Theorem

The solution to (B) generates a RDS.

Using the standard transformation

$$v(t) = e^{-z(t)}u(t)$$

Equation (B) becomes:

$$\partial_t v = Lv + zv + \nu v + e^z B(v, v),$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The solution defines a RDS, which by the transformation defines the RDS φ for (B).

Random Invariant Manifold (RIM)

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results Flow on M Idea of Proof Conclusions

Definition (Random Invariant Manifold)

A random set $M(\omega)$ is positive invariant for the RDS φ , if

 $\varphi(t,\omega)M(\omega)\subset M(heta_t\omega) ext{ for all } t\geq 0.$

lf

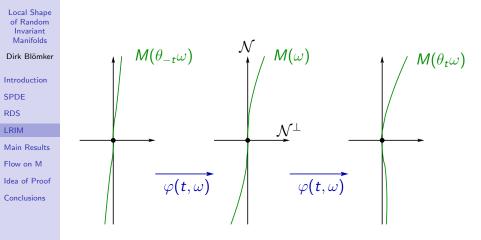
$$M(\omega) = \{u + \psi(\omega, u) | u \in \mathcal{N}\}$$

is the graph of a random Lipschitz mapping

$$\psi(\omega, \cdot) : \mathcal{N} \to \mathcal{N}^{\perp}$$
,

then $M(\omega)$ is called a Lipschitz invariant manifold (RIM).

RIM are moving in time!



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lipschitz Condition

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results Flow on M Idea of Proof Conclusions Theorem

If the nonlinearity is globally Lipschitz with sufficiently small Lipschitz-constant, then there exists a RIM. The RIM is pull-back attracting.

See for example: [Duan,Lu, Schmalfuß '03, '04] [Duan, Wang '07] [Mohammed, Zhang, Zhao, 08]

Based on Fixed-Point arguments / Ljapunov-Perron method

Local Random Invariant Manifold (LRIM) compare [Lu, Schmalfuß, 07]

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

A random set $M^{R}(\omega)$ is a LRIM with radius R > 0 of (B), if it is graph of a random function $\psi(\omega, \cdot) : \mathcal{N} \to \mathcal{N}^{\perp}$ such that for all bounded sets $B \subset B_{R}(0) \subset H$

$$arphi(t,\omega)[M^R(\omega)\cap B]\subset M^R(heta_t\omega)$$

for all $t \in [0, \tau_e(\omega))$ with

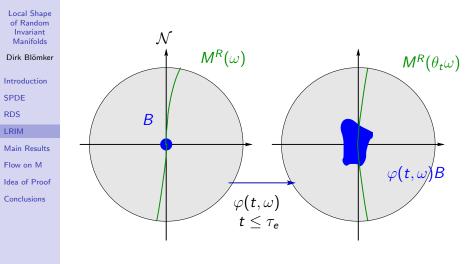
 $\tau_e(\omega) = \inf\{t \ge 0 : \varphi(t,\omega)[M^R(\omega) \cap B] \not\subset B_R(0)\}.$

 $B \subset B_R(0)$ might also be random.

Key Idea

Take a cut-off at radius R > 0 for (B) such that the nonlinearity is Lipschitz with small constant.

A Sketch of a LRIM



(ロ)、(型)、(E)、(E)、 E) の(の)

Existence

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

I RIM

Main Results

Flow on M

Idea of Proof

Conclusions

Theorem (DB, Wang '09) The RDS φ defined by (B) has a LRIM $M^{R}(\omega)$ for sufficiently

small R > 0.

It is given as the graph of a random Lipschitz map defined by $h(\omega, \cdot) : \mathcal{N} \to \mathcal{N}^{\perp}$:

$$M^{R}(\omega) = \left\{ \left(\xi, e^{z(\omega)} h(\omega, e^{-z(\omega)} \xi) \right) \in B_{R}(0) : \xi \in \mathcal{N} \right\}$$

Remark: The LRIM is locally exponentially attracting in the pullback sense. (compare [Duan, Wang '07] for RIM)

LRIM = RIM

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Is the LRIM a RIM for (B)?

The precise relation between LRIM and a RIM is not yet settled.

Problem: Both are moving in time and parts might always leave the ball $B_R(0)$.

Solutions:

If *ν* < 0 it is straightforward to show that a small random neighboorhood of 0 does not leave B_R(0).

► Take random radius *R*?

Local Shape

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Denote by P_s the projection onto \mathcal{N}^{\perp} and define $B_s = P_s B$ and $L_s = P_s L$.

Theorem (DB, Wang '09)

Suppose $\sigma>0$, $|\nu|<\sigma$ and $R\leq$ 1, and let h be the LRIM given by the previous theorem. Then

 $\|e^{z(\omega)}h(\omega,e^{-z(\omega)}\xi)-L_s^{-1}B_s(\xi,\xi)\|\leq C(\|\xi\|+R^2+\sqrt{\sigma})\cdot\|\xi\|^2$

holds for all $\|\xi\| \leq \frac{1}{2}R$ with probability larger than $1 - C \exp\{-1/\sqrt{\sigma}\}$.

Remark: It is possible to extend the bound for $M^{R}(\omega)$ to bounds for $M^{R}(\theta_{t}\omega)$ on some time-intervals.

Example

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

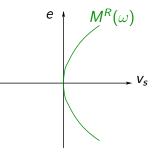
Flow on M

Idea of Proof

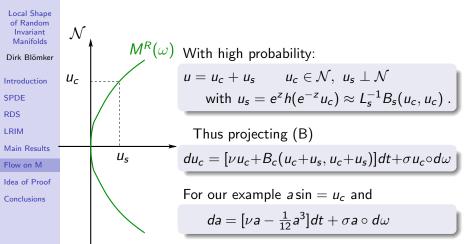
Conclusions

Suppose $\mathcal{N} = \text{span}\{e\}$ and fix $\xi = \alpha \cdot e \in \mathcal{N}$. The LRIM $\mathcal{M}^{R}(\omega)$ is given (with high probability) as the graph of

$$L_s^{-1}B_s(\xi,\xi) = \alpha^2 L_s^{-1}B_s(e,e) =: \alpha^2 v_s \perp \mathcal{N}.$$



Flow along the Manifold



Flow along the Manifold

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

 $\mathsf{Flow} \text{ on } \mathsf{M}$

Idea of Proof Conclusions Problem:

The equation for the flow on $M(\omega)$ holds true at a single time t with high probability.

If one has bounds on $M^R(\theta_t \omega)$ on time-intervals, then it is possible to extend this result.

Amplitude Equations

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

 $\mathsf{Flow} \text{ on } \mathsf{M}$

Idea of Proof

Conclusions

The flow along the manifold has a relation to amplitude equations.

Consider the special scaling:

$$du = [Lu + \nu_0 \epsilon^2 u + B(u, u)]dt + \epsilon u \circ d\omega$$

(B)

For simplicity only the example:

• $L = \partial_x^2 + 1$ and Dirichlet b.c on $[0, \pi]$

$$\blacktriangleright B(u,v) = \partial_x(uv)$$

• $\mathcal{N} = \operatorname{span}(\sin)$

Amplitude Equations

Theorem [DB '07]

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Under the previous assumptions, suppose that $P_c u(0) = O(\epsilon)$, $P_s u(0) = O(\epsilon^2)$.

Then with high probability

$$u(t) = \epsilon A(\epsilon^2 t) \sin + \mathcal{O}(\epsilon^2)$$
 for all $t \in [0, T_0 \epsilon^{-2}]$

where A solves

$$dA = [\nu A - \frac{1}{12}A^3]dt + A \circ d\tilde{\omega}$$

where $\tilde{\omega}(T) = \epsilon \omega(t \epsilon^{-2})$ is a rescaled Brownian motion.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Idea of Proof

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Some ideas of Proof

Cut Off

compare [Caraballo, Langa, Robinson '01], [Lu, Schmalfuß, 07]

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Let $\chi : H \to \mathbb{R}$ be a bounded smooth function such that $\chi(u) = 1$ if $||u|| \le 1$ and $\chi(u) = 0$ if $||u|| \ge 2$. For all R > 0 define

 $\chi_R(u) = \chi(u/R)$ for all $u \in H$

$$\mathsf{B}^{(R)}(u) = \chi_R(u)\mathsf{B}(u,u).$$

Now $B^{(R)}$ is globally Lipschitz-continuous with constant

$$\operatorname{Lip}(B^{(R)}) = C_B C_{\chi} R o 0$$
 for $R o 0$.

Consider the following cut-off equation

 $du = [Lu + \nu u + B^{(R)}(u)]dt + \sigma u \circ d\omega, \qquad u(0) = u_0.$

Cut off

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Transformation
$$v = ue^{-z}$$
 yields

$$\partial_t v = Lv + zv + \nu v + e^{-z} B^{(R)}(e^z v), \qquad v(0) = u_0 e^{-z(0)}$$

In order to obtain a RIM for the RDS $\varphi^{R}(t,\omega)$ of the cut-off equation, we consider the RIM of the transformed equation above.

イロト 不得 トイヨト イヨト

э

We use the Ljapunov-Perron Method.

The fixed point space

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Let $-\lambda_* < 0$ be the largest non-zero eigenvalue of L. For $-\nu < \eta < \lambda_* - \nu$ define the Banach space

$$\mathcal{C}_{\eta}^{-} = \left\{ \mathbf{v} \in \mathcal{C}^{0}((-\infty, 0], \mathcal{H}) : \|\mathbf{v}\|_{\mathcal{C}_{\eta}^{-}} < \infty \right\}$$

with norm

$$\|v\|_{C_{\eta}^{-}}=\sup_{t\leq 0}\left\{e^{\eta t-\int_{0}^{t}z(\tau)d\tau}\|v(t)\|\right\}<\infty.$$

Ljapunov-Perron Operator

Local Shape of Random Invariant Manifolds

Dirk Blömker Introduction SPDE Define the evolution operator:

$$S(t,\tau) = e^{(L+\nu)(t-\tau) + \int_{\tau}^{t} z(r)dr}$$

The nonlinearity:
$$\mathcal{B}(au) = e^{-z(au)} \cdot B^{(R)}\left(v(au)e^{z(au)}
ight)$$

RDS LRIM

Main Results

 $\mathsf{Flow} \text{ on } \mathsf{M}$

Idea of Proof

Conclusions

Given
$$\xi \in \mathcal{N}$$
, define the nonlinear operator \mathcal{T} on \mathcal{C}_{η}^{-} by

$$\mathcal{T}(v)(t) = S(t,0)\xi + \int_0^t S(t,\tau) P_c \mathcal{B}(\tau) d\tau + \int_{-\infty}^t S(t,\tau) P_s \mathcal{B}(\tau) d\tau$$

- 日本 - 1 日本 - 日本 - 日本

with $v \in C_{\eta}^{-}$, $\omega \in \Omega_{0}$, and $t \leq 0$.

Fixed Point

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

The operator \mathcal{T} has a unique fixed point $v^* = v^*(\omega, \xi) \in C_{\eta}^-$. Define $h(\omega, \xi) = P_s v^*(0, \omega; \xi)$, then $\mathcal{M}(\omega) = \{(\xi, h(\omega, \xi)) : \xi \in \mathcal{N}\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

is a RIM for the transformed cut-off equation.

Manifold

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

Define a Lipschitz mapping ψ by

.

$$egin{aligned} \psi(\omega,\cdot) &: \mathcal{N} & o & \mathcal{N}^{\perp} \ , \ \xi &\mapsto & \psi(\omega,\xi) = e^{z(\omega)}h(\omega,e^{-z(\omega)}\xi) \,. \end{aligned}$$

Then

$$\mathcal{M}^{\mathcal{R}}_{\textit{cut}}(\omega) = \{(\xi,\psi(\omega,\xi)): \xi\in\mathcal{N}\}$$

is a RIM for the RDS φ^R of the cut-off equation, and

$$\mathcal{M}^{R}(\omega) = \mathcal{M}^{R}_{cut}(\omega) \cap B_{R}(0)$$

defines a LRIM of the RDS $\varphi(t, \omega)$.

Local Shape

Local Shape of Random Invariant Manifolds

Dirk Blömker

Introduction

SPDE

RDS

LRIM

Main Results

Flow on M

Idea of Proof

Conclusions

By Definition of ${\mathcal T}$ and h, as ${\mathsf v}^* = {\mathcal T}({\mathsf v}^*)$

$$\begin{split} h(\xi) &= P_s v^*(0) \\ &= P_s \mathcal{T}(v^*)(0) \\ &= \int_{-\infty}^0 S(0,\tau) e^{-z(\tau)} P_s B^{(R)}(v^*(\tau,\xi) e^{z(\tau)}) d\tau. \end{split}$$

This allows for estimates on h and thus on ψ , where estimates on v^* in C_n^- are necessary.

Conclusions

Local Shape of Random Invariant Manifolds

Dirk Blömker

- Introduction
- SPDE
- RDS
- LRIM
- Main Results
- Flow on M
- Idea of Proof
- Conclusions

Results:

- Existence of LRIM using a cut-off
- LRIM is locally a parabola
- Flow on the manifold (cf. Amplitude equations)

To do:

- ▶ Relation of RIM of (B) to LRIM?
- ▶ Is M^R a RIM in a small (random) neighboorhood of 0?

Formulation of LRIM without cut-off?