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Stochastic differential equations

Itô stochastic ordinary differential equations (SODEs) on J := [0,∞)

X (s)
∣∣∣t
0

=
t∫

0

f (s,X (s)) ds +
m∑

r=1

t∫
0

gr (s,X (s)) dWr (s), X (0) = X0

m scalar Wiener processes: Wr = {Wr (t, ω), t ∈ J, ω ∈ Ω} on
(Ω,F , {Ft}t∈J ,P).

coefficients: (globally Lipschitz) f : J × Rn → Rn,
G = (g1, . . . , gm) : J × Rn → Rn×m;

initial data: X (0) is a given F0-measurable initial value,
independent of the Wiener process and with finite second moment.

We assume that there exists a path-wise unique strong solution X (·) of

the above equation.
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Stability behaviour
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Linear stability analysis for ODEs

I Question: given an ODE x ′(t) = f (x(t)) and a numerical
method, does the (convergent) method share the qualitative
properties of the ODE and if so, under which restrictions on the
step-size?

I (Usually) first step: linear stability analysis, using the test
equation x ′(t) = λx(t), λ ∈ C.

I Based on: linearisation and centering of nonlinear ODE around
an equilibrium, the resulting linear system x′(t) = Ax(t) (A the
Jacobian of f evaluated at equilibrium) is then diagonalised and
the system thus decoupled, justifying the use of the scalar test
equation.
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Linear stability analysis for SODEs

I Question: given an SODE and a numerical method, does the
(convergent) method share the qualitative properties of the SODE
and if so, under which restrictions on the step-size?

I (Usually) first step: linear stability analysis, now with which
test equation?

I Further questions: Stability in which sense, i.e. in the a.s. sense
or in mean-square? What effect does the m-dim noise have?
I Still holding: linearisation and centering of nonlinear SODE

around an equilibrium, the resulting linear system is now
dX (t) = (AX (t))dt +

∑m
r=1 Br X (t)dWr (t) (A, Br the Jacobians

of f , gr evaluated at equilibrium). Simultaneously diagonalisable?
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Linear stability analysis for SODEs

I Most existing results for scalar
dX (t) = λX (t)dt + σX (t)dW1(t), e.g., Mitsui & Saito, Higham,
Debrabant & Rößler, B. & Horvath-Bokor & Winkler, mean-square
stability, various methods, strong and weak convergence;
I Higham: results for scalar dX (t) = λX (t)dt + σX (t)dW1(t),

stochastic θ-method, a.s. sense;
I Saito & Mitsui: analysis for 2-dim systems, 1 WP,

Euler-Maruyama method, mean-square sense wrt a certain
logarithmic matrix norm;
I Rathinasamy & Balachandran: analysis of weak second-order

Runge-Kutta methods for systems with 1 and several noises,
mean-square sense wrt a certain logarithmic matrix norm.
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Linear stability analysis for SODEs

Goal:

Develop a systematic stability analysis of numerical methods,
justifying the choice of test equations/systems, gaining insight into
deterministic/stochastic features relevant for stability issues,
identifying benchmark problems, develop appropriate analytical
techniques
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Linear stability analysis for SODEs

Definition

1 The zero solution of an SDE is mean-square stable/a.s. stable
if and only if, for each ε > 0, there exists a δ ≥ 0 such that

E|X (t)|p < ε, t ≥ 0, / |X (t)| < ε, t ≥ 0, a.s.

whenever E|X (0)|p < δ / |X (0)| < δ;

2 The equilibrium is asymptotically mean-square stable/a.s.
stable if and only if it is mean-square stable/a.s. stable, and
for all X (0) ∈ R,

lim
t→∞

E|X (t)|p = 0 / lim
t→∞

X (t) = 0 a.s.
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Part 1: A scalar test equation with m Wiener
processes

Part 1: Consider simultaneously diagonalisable drift and diffusion
matrices and m Wiener processes and the θ-Maruyama and
θ-Milstein method wrt mean-square stability.
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The test equation and the methods

We consider dX (t) = λX (t)dt +
m∑

r=1

µrX (t)dWr (t), λ, µr ∈ C, (1)

the θ-Maruyama method with Wr (ti + h)−Wr (ti ) ∼
√

h ξr,i and ξr,i is N (0, 1)

Xi+1 = Xi + h (θλXi+1 + (1− θ)λXi ) +
√

h
m∑

r=1

µrXi ξr,i , i = 0, 1, . . . , (2)

and the θ-Milstein method with
∫ t+h

t

∫ s

t
Wr1 (u)dWr2 (s) as h(ξ2

r,i − 1)

Xi+1 = Xi + (h (θλXi+1 + (1− θ)λXi ) +
√

h
m∑

r=1

µrXi ξr,i

+
1

2
h

m∑
r=1

µ2
r Xi (ξ2

r,i − 1) , i = 0, 1, . . . (3)
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Mean-square stability analysis, θ-Maruyama method

Rewrite Xi+1 = Xi + h (θλXi+1 + (1− θ)λXi ) +
√

h
∑m

r=1 µrXi ξr,i

as recurrence Xi+1 =
(
a +

∑m
r=1 br ξr,i

)
Xi

with a := 1 + hλ
1−θhλ , br :=

√
hµr

1−θhλ

Then squaring and taking expectation yields a recurrence for E|Xi |2:
E|Xi+1|2 =

(
|a|2 +

∑m
r=1 |br |2

)
E|Xi |2 .

Result: the zero solution of the above recurrence is asymptotically mean-square
stable if and only if |a|2 +

∑m
r=1 |br |2 < 1 .
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Mean-square stability analysis, θ-Milstein method

Rewrite Xi+1 =
Xi + h (θλXi+1 + (1− θ)λXi ) +

√
h
∑m

r=1 µrXi ξr,i + 1
2
h
∑m

r=1 µ
2
r Xi (ξ2

r,i − 1)

as recurrence Xi+1 =
(
â +

∑m
r=1 br ξr,i +

∑m
r=1 cr ξ

2
r,i

)
Xi

with â := a−
∑m

r=1 cr , br :=
√

hµr
1−θhλ , cr =

1
2
hµ2

r

1−θhλ

Then squaring and taking expectation yields a recurrence for E|Xi |2:
E|Xi+1|2 =

(
|a|2 +

∑m
r=1 |br |2 + 2

∑m
r=1 |cr |2

)
E|Xi |2 .

Result: the zero solution of the above recurrence is asymptotically mean-square
stable if and only if |a|2 +

∑m
r=1 |br |2 + 2

∑m
r=1 |cr |2 < 1 .
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Comparison of stability conditions with original
parameters

In terms of λ, µr , θ, h we have that the zero solution of
the test equation is asymp. ms-stable iff.

R(λ) +
1

2

m∑
r=1

|µr |2 < 0 ,

the θ-Maruyama method is asymp. ms-stable iff.

R(λ) +
1

2

m∑
r=1

|µr |2 +
1

2
h(1− 2θ)|λ|2 < 0 ,

the θ-Milstein method is asymp. ms-stable iff.

R(λ) +
1

2

m∑
r=1

|µr |2 +
1

2
h(1− 2θ)|λ|2+

1

4
h

m∑
r=1

|µr |4 < 0 ,
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Comparison of stability regions for m = 1, x = hλ, y = hµ2
1, λ, µ1 real
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Stabilisation and destabilisation by multiplicative noise
Numerical Methods

Part 2: Linear Systems of SODEs

Part 2: Consider d-dimensional linear systems of SODEs, that is
dX (t) = (AX (t))dt +

∑m
r=1 Br X (t)dWr (t)

where A, Br are d × d-dimensional matrices.

Obvious: full systems have too many parameters.

Derive simple test systems of SODEs based on stochastic
stabilisation and destabilisation and analyse the θ-Maruyama
method wrt mean-square and a.s. stability.
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Stabilisation and destabilisation by multiplicative noise
Numerical Methods

General idea starting with Mao, 1994

Compares solutions of d-dim. ODE x ′(t) = f (x(t))
with those of d-dim. SODE dX (t) = f (X (t))dt + g(X (t))dW (t),
W r -dim. WP
Stabilisation: find a diffusion g , given a drift f s.t. solutions of
stoch. system satisfy

lim
t→∞

X (t) = 0, a.s.,

Destabilisation find a diffusion g , given a drift f , s.t. solutions of
stoch. system satisfy

lim inf
t↑τe

|X (t)| > 0, a.s.,

Solutions of a scalar equation may be stabilised by state-dependent
Wiener perturbations, independent stochastic perturbations can
destabilize solutions when the number of dimensions increases to
two and higher.
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Stabilisation and destabilisation by multiplicative noise
Numerical Methods

Nonlinear theory Appleby, Mao, Rodkina

Theorem

If there exists ϕ ∈ (0, 1) such that for all x ∈ Rd ,
|x |2(2〈x , f (x)〉+ |g(x)|2F )− (2− ϕ)|xT g(x)|2 ≤ 0,
and for every L > 0, min|x |=L |xT g(x)| > 0, then
limt→∞ X (t) = 0, a.s.

Theorem

If there exists ϕ ∈ (0, 1) such that for all x ∈ Rd ,
|x |2(2〈x , f (x)〉+ |g(x)|2F )− (2 + ϕ)|xT g(x)|2 ≥ 0,
then lim inf

t↑τξe
|X (t)| > 0, a.s.
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Stabilisation and destabilisation by multiplicative noise
Numerical Methods

Linear examples (based on Nonlinear theory by Appleby, Mao,

Rodkina)

(1) d

(
X1(t)
X2(t)

)
=

(
λ 0
0 λ

)(
X1(t)
X2(t)

)
dt +

m∑
r=1

(
σ√
m

0

0 σ√
m

)(
X1(t)
X2(t)

)
dWr (t)

(2) d

(
X1(t)
X2(t)

)
=

(
λ 0
0 λ

)(
X1(t)
X2(t)

)
dt +

m∑
r=1

(
0 − ε√

m
ε√
m

0

)(
X1(t)
X2(t)

)
dWr (t).

(3) d

X1(t)
X2(t)
X3(t)

 =

λ 0 0
0 λ 0
0 0 λ

X1(t)
X2(t)
X3(t)

 dt + ε

X2dW1(t)
X3dW2(t)
X1dW3(t)

 .
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Stabilisation and destabilisation by multiplicative noise
Numerical Methods

Stability results

MS-stab. a.s.-stab.
SODE (cont.) (cont., (3) suff.)

Eq. (1)
(stabilising) λ+ 1

2
σ2 < 0 λ− 1

2
σ2 < 0

Eq. (2)
(destabilising) λ+ 1

2
ε2 < 0 λ+ 1

2
ε2 < 0

Eq. (3)
(destabilising) λ+ 1

2
ε2 < 0 λ+ 1

2
ε2 < 0

scalar case:
Eq. (1), d = m = 1 λ+ 1

2
σ2 < 0 λ− 1

2
σ2 < 0
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Stabilisation and destabilisation by multiplicative noise
Numerical Methods

Test equations

d

(
X1(t)
X2(t)

)
=

(
λ 0
0 λ

)(
X1(t)
X2(t)

)
dt

+

(
σ 0
0 σ

)(
X1(t)
X2(t)

)
dW1(t)+

(
0 −ε
ε 0

)(
X1(t)
X2(t)

)
dW2(t), t > 0,

(4)

and

d

X1(t)
X2(t)
X3(t)

 =

λ 0 0
0 λ 0
0 0 λ

X1(t)
X2(t)
X3(t)

 dt+ε

X2dW1(t)
X3dW2(t)
X1dW3(t)

 , t > 0,

(5)
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Stabilisation and destabilisation by multiplicative noise
Numerical Methods

Θ-Maruyama methods

(
X1,n+1

X2,n+1

)
=

(
1+(1−θ)hλ

1−θhλ +
√

hσξ1,n+1

1−θhλ
−
√

hεξ2,n+1

1−θhλ√
hεξ2,n+1

1−θhλ
1+(1−θ)hλ

1−θhλ +
√

hσξ1,n+1

1−θhλ

)(
X1,n

X2,n

)
(6)

andX1,n+1

X2,n+1

X3,n+1

 =


1+(1−θ)hλ

1−θhλ

√
hεξ1,n+1

1−θhλ 0

0 1+(1−θ)hλ
1−θhλ

√
hεξ2,n+1

1−θhλ√
hεξ3,n+1

1−θhλ 0 1+(1−θ)hλ
1−θhλ


X1,n

X2,n

X3,n

 ,

(7)
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Stabilisation and destabilisation by multiplicative noise
Numerical Methods

Mean-square stability results

(based on Bellmann result on product of random matrices for MS
stability)

Theorem

The equilibrium solution of (6) is asymptotically mean-square
stable iff

λ+
1

2
(σ2 + ε2) +

1

2
h (1− 2 θ)λ2 < 0,

The equilibrium solution of (7) is asymptotically mean-square
stable iff

λ+
1

2
ε2 +

1

2
h (1− 2 θ)λ2 < 0,
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Stabilisation and destabilisation by multiplicative noise
Numerical Methods

a.s.stability results

(based on discrete Martingale convergence theorems)

Theorem

The equilibrium solution of (6) is a.s. asymptotically stable if

λ+
1

2
(σ2 + ε2) +

1

2
h (1− 2 θ)λ2 < 0,

The equilibrium solution of (7) is a.s. asymptotically stable if

λ+
1

2
ε2 +

1

2
h (1− 2 θ)λ2 < 0,
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Summary and Work in Progress

I We suggest several multi-dimensional test equations to perform
a linear stability analysis of numerical methods for systems of
SODEs. The main points are:
I Test equations for this type of analysis require some

justification and some thought.
I Multi-dimensional noise and/or systems affect the stability

behaviour of the methods.
I Using stochastic perturbation structures from the theory of

stochastic stabilisation and destabilisation appear to yield useful
test systems.
I We have carried further the mean-square and a.s. stability

analysis of θ-methods.
I Analysis of further methods.
I Analysis for ’more pathological’ deterministic behaviour, e.g.,

nonnormality, stiffness.
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d

X1(t)
X2(t)
X3(t)

 =

λ b 0
0 λ b
0 0 λ

X1(t)
X2(t)
X3(t)

dt+
3∑

r=1


σ√

3
0 0

0 σ√
3

0

0 0 σ√
3


X1(t)

X2(t)
X3(t)

dWr (t)

(8)

and

d

X1(t)
X2(t)
X3(t)

 =

λ b 0
0 λ b
0 0 λ

X1(t)
X2(t)
X3(t)

dt + ε

X2 dW1(t)
X3 dW2(t)
X1 dW3(t)

 , (9)

with non-random initial values (X1(0),X2(0),X3(0))T and λ = −1, b = 10 and

σ = ε = 0.05.
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Figure 2. Simulations for Eq. (8) with θ = 0.5 and h = 0.03125.
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Figure 3. Simulations for Eq. (9) with θ = 0.5 and h = 0.03125 .
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Thank you for your attention
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