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(If the time allows)

SPDES driven by Lévy processes – p.2



A typical Example

Let O be a bounded domain in Rd with smooth boundary.

The Equation:

(⋆)































du(t,ξ)
dt

=
∑d

i=1
∂2

∂ξ2
i

u(t, ξ) + α∇u(t, ξ) + g(u(t, ξ))L̇(t, ξ)

+ f(u(t, ξ)), ξ ∈ O, t > 0;

u(0, ξ) = u0(ξ) ξ ∈ O;

u(t, ξ) = u(t, ξ) = 0, t ≥ 0, ξ ∈ ∂O;

where u0 ∈ Lp(O), p ≥ 1, g a certain mapping and L = {L(t, ξ)} 0≤t<∞
ξ∈O

is

a space time Lévy noise.

Problem: To find a process

u : [0,∞) ×O −→ R

solving Equation (⋆) in some certain sense.
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The Abstract Cauchy Problem

Linear evolution equations, as parabolic, hyperbolic or delay equations,
can often be formulated as an evolution equation in a Banach space E:

Given:

E Banach space,

the pair (A, dom(A)), where dom(A) is a dense linear subspace of
E and A : dom(A) → E a linear operator;

initial value u0 ∈ E;
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The Abstract Cauchy Problem

Linear evolution equations, as parabolic, hyperbolic or delay equations,
can often be formulated as an evolution equation in a Banach space E:

Given:

E Banach space,

the pair (A, dom(A)), where dom(A) is a dense linear subspace of
E and A : dom(A) → E a linear operator;

initial value u0 ∈ E;

Problem: The solution to the following initial valued problem:

(∗)

{

u′(t) = A u(t), t ≥ 0,

u(0) = u0 ∈ E.
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The Laplace Operator

Example 1 In one of the first slides we had the following example: Let
O be a bounded domain in Rd with smooth boundary.

(⋆)















du(t,ξ)
dt

=
∑d

i=1
∂2

∂x2
i

u(t, ξ), t > 0, ξ ∈ O;

u(0, ξ) = u0(ξ), ξ ∈ O;

u(t, ξ) = 0, t ≥ 0; ξ ∈ ∂O

Formulated in semigroup theory, (⋆) gives the following Cauchy
problem:

E := Lp(O), 1 < p < ∞,

A =

d
∑

i=1

∂2

∂x2
i

, u(0) = u0;

dom(A) := W 2,p(O) ∩ W
1,p
0 (O).
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The Abstract Cauchy problem:

We assume that A is a generator of a C0–semigroup on E. Then the
solution of the problem (∗) can be defined as

e−tAu0 = u(t, u0), ∀u0 ∈ E, ∀t ≥ 0.
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The Abstract Cauchy problem:

We assume that A is a generator of a C0–semigroup on E. Then the
solution of the problem (∗) can be defined as

e−tAu0 = u(t, u0), ∀u0 ∈ E, ∀t ≥ 0.

—————————————
Let f ∈ L1([0,∞);E). The solution of a the perturbed problem

(•)

{

u′(t) = Au(t) + f(t), t ≥ 0,

u(0) = u0 ∈ E.

is given by the mild solution

u(t) = e−tAu0 +

∫ t

0
e−(t−s)Af(s) ds, t ∈ (0, T ].
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Analytic Semigroups

Definition 1 A family of operators {e−z A}z∈Σδ∪{0} ⊂ L(X) is called an
analytic semigroup if

e−0A = I and e−(z1+z2)A = e−z1Ae−z2A for all z1, z2 ∈ Σδ;

the map z 7→ e−zA is analytic in Σδ;

limz→0,z∈Σδ′
e−zAx = x and 0 < δ′ < δ.

A be a sectorial and densely defined operator in E

⇐⇒

the semigroup {e−tA}t≥0 generated by A on E is analytic;

=⇒

∣

∣Ae−tAx
∣

∣ ≤
M

t
|x| for all x ∈ E, t ∈ (0, T ].

SPDES driven by Lévy processes – p.7



Analytic Semigroups

E := Lp(O), 1 < p < ∞,

A =

d
∑

i=1

∂2

∂x2
i

, u(0) = u0;

dom(A) := W 2,p(O) ∩ W
1,p
0 (O).

=⇒

∣

∣e−tAx
∣

∣

W 2,p(O)
≤

M

t
|x|Lp(O) for all x ∈ Lp(O), t ∈ (0, T ].

SPDES driven by Lévy processes – p.8



A typical Example

The Equation:

(⋆)































du(t,ξ)
dt

=
∑d

i=1
∂2

∂ξ2
i

u(t, ξ) + α∇u(t, ξ) + g(u(t, ξ))L̇(t, ξ)

+ f(u(t, ξ)), ξ ∈ O, t > 0;

u(0, ξ) = u0(ξ) ξ ∈ O;

u(t, ξ) = u(t, ξ) = 0, t ≥ 0, ξ ∈ ∂O;

where u0 ∈ Lp(O), p > 1, g : R → R a certain function and L is a space
time Lévy noise specified later.

Problem: To find a process

u : [0,∞) ×O −→ R

solving Equation (⋆).
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A Lévy Process

Definition 2 Let E be a Banach space. An E–valued stochastic
process L = {L(t), 0 ≤ t < ∞} is a Lévy process over (Ω;F ; P) iff

L(0) = 0;

L has independent and stationary increments;

L is stochastically continuous, i.e. for any A ∈ B(E) the function
[0,∞) ∋ t 7→ E1A(L(t)) ∈ R is continuous;

L has a.s. càdlàga paths;

acàdlàg = continue à droite, limitée à gauche.
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Lévy - Khinchin - Formula

E denotes a separable Banach space and E′ the dual on E.
If L is an E-valued Lévy process, then there exist (see e.g. Linde
(1986))

a ∈ E′,

a positive operator Q : E′ → E,

and a Lévy measure ν : B(E) → R
+

(called usually the characteristic measure of L).

such that following formula holds for all y ∈ E′

E ei〈L(1),y〉 =

exp

{

i〈a, y〉λ −
1

2
〈Qy, y〉 +

∫

E

(

eiλ〈y,a〉 − 1 − iλy1{|y|≤1}

)

ν(dy)

}

.
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A Lévy Process

In what follows E denotes a separable Banach space, B(E) denotes the

Borel-σ algebra on E and E′ the dual on E.

Definition 3 (see Linde (1986), Section 5.4) A symmetric a σ–finite,

Borel-measure ν : B(E) → R+ is called a Lévy measure if ν({0}) = 0 and

the function

E′ ∋ a 7→ exp

(
∫

E

(cos(〈x, a〉) − 1) ν(dx)

)

∈ C

is a characteristic function of a certain Radon measure on E.

An arbitrary σ-finite Borel measure ν is a Lèvy measure if its

symmetrization ν + ν− is a symmetric Lévy measure.
a
ν(A) = ν(−A) for all A ∈ B(E)
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Poisson Random Measure

Remark 1 Let L be a Lévy process over (Ω,F , P). Defining the
so–called counting measure for A ∈ B(E)

N(t, A) = ♯ {s ∈ (0, t] : ∆L(s) = L(s) − L(s−) ∈ A} ∈ IN ∪ {∞}

one can show that

N(t, A) is a random variable over (Ω;F ; P);

N(t, A) ∼ Poisson (tν(A)) and N(t, ∅) = 0;

For any disjoint sets A1, . . . , An, the random variables
N(t, A1), . . . , N(t, An) are independent;
(independently scattered)
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Poisson Random Measure

Definition 4 Let (Z,Z) be a measurable space and (Ω,A, P) a probability

space. A Poisson random measure on (Z,Z) is a measurable function

η : (Ω,F) → (MI(Z),MI(Z))a

such that

η(�, ∅) = 0 a.s.

η is a.s. σ–additive.

η is a.s. independently scattered.

for each A ∈ Z such that E η(·, A) is finite, η(·, A) is a Poisson

random variable with parameter E η(·, A).

aMI(Z) denotes the set of all integer valued measures from Z into IN and MI(Z) is the

σ-field on MI(Z) generated by functions iB : M(Z) ∋ µ 7→ µ(B) ∈ IN, B ∈ Z .SPDES driven by Lévy processes – p.14



Poisson Random Measure

Let (S,S) be a measurable space and (Ω,F , {Ft}t≥0, P) be a probability space.

Definition 5 (see Ikeda Watanabe - 1981) A time homogeneous Poisson
random measure η on (S,S) over (Ω,F , {Ft}t≥0, P), is a measurable function

η : (Ω,F) → (MI(S × R+),MI(S × R+)),

such that

(i) for each B ∈ S ⊗ B(R+), η(B) := iB ◦ η : Ω → N̄ is a Poisson random variable
with parameter Eη(B)a;

(ii) η is independently scattered;

(iii) for each U ∈ S, the N̄-valued process (N(t, U))t≥0 defined by

N(t, U) := η(U × (0, t]), t ≥ 0

is {Ft}t≥0-adapted and its increments are independent of the past, i.e. if
t > s ≥ 0, then N(t, U) − N(s, U) = η(U × (s, t]) is independent of Fs.

aIf Eη(B) = ∞, then obviously η(B) = ∞ a.s.. SPDES driven by Lévy processes – p.15



Poisson Random Measure

Example 2 Let E be of M type p, η be a time homogeneous Poisson
random measure on E with intensity ν, where ν is a p-integrable
symmetric Lévy measure. Then, the stochastic process (Dettweiler

1984)

[0,∞) ∋ t 7→ L̂(t) :=

∫ t

0

∫

E

z η̃a(dz, dt)

is a Lévy process with characteristic measure ν.

aGive a Poisson random measure η : B(E) × B([0,∞)) → IN0 we denote the

compensated Poisson random measure by η̃.
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Poisson Random Measure

Definition 6 Let
η : Ω × B(E) × B(R+) → R

+

be a Poisson random measure on E over (Ω;F ; P) and {Ft, 0 ≤ t < ∞}

the filtration induced by η. Then the predictable measure

γ : Ω × B(E) × B(R+) → R
+

is called compensator of η, if for any A ∈ B(E) the process

η̃(A × (0, t]) := η(A × (0, t]) − γ(A × [0, t])

is a local martingale over (Ω;F ; P).
Remark 2 The compensator is unique up to a P-zero set and in case
of a time homogeneous Poisson random measure given by

γ(A × [0, t]) = t ν(A), A ∈ B(E).
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Space - Time - White - Noise

Let us recall the Definition of a Gaussian white noise (Dalang 2003):

Definition 7 Let (Ω,F , P) be a complete probability space and
(S,S, σ) a measure space. Then a Gaussian white noise on S based
on σ is a measurable mapping

W : (Ω,F) → (M(S),M(S))a

For A ∈ S , W (A) is a real valued Gaussian random variable with
mean 0 and variance σ(A), provided σ(A) < ∞;

if A and B ∈ S are disjoint, then the random variables W (A) and
W (B) are independent and W (A ∪ B) = W (A) + W (B).

aM(S) denotes the set of all measures from S into R,

i.e. M(S) := {µ : S → R} and M(S) is the σ-field on M(S) generated by functions

iB : M(S) ∋ µ 7→ µ(B) ∈ R, B ∈ S .
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Space - Time - White - Noise

Put

O ⊂ Rd be a bounded domain with smooth boundary.

S = O × [0,∞),

S = B(O) × B([0,∞))

σ = λd+1
a.

Then, by definition, the space time Gaussian white noise is the
measure valued process process

t 7→ W ( · × [0, t)).

aλd+1 denotes the Lebesgue measure in Rd.
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Space - Time - White - Noise

SPDES driven by Lévy processes – p.20



Space - Time - White - Noise

Definition 8 Let (Ω,F , P) be a complete probability space and let (S,S, σ) be a
measurable space. Then the Lévy white noise on S based on σ with
characteristic jump size measure ν ∈ L(R) is a measurable mapping

L : (Ω,F) → (M(S),M(S))a

such that

For A ∈ S, L(A)

is a real valued infinite divisible random variables with characteristic exponent

eiθL(A) = exp
(

σ(A)
∫

R

(

1 − eiθx − i sin(θx)
)

ν(dx)
)

,

provided σ(A) < ∞.

if A and B ∈ S are disjoint, then the random variables L(A) and L(B) are
independent and L(A ∪ B) = L(A) + L(B).

aM(E) denotes the set of all measures from E into R, i.e. M(S) := {µ : S → R} and M(S) is the σ-field on

M(S) generated by functions iB : M(S) ∋ µ 7→ µ(B) ∈ R, B ∈ S .
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Space - Time - White - Noise

Again put

O ⊂ R
d be a bounded domain with smooth boundary.

S = O × [0,∞),

S = B(O) × B([0,∞))

σ = λd+1.

Then, by definition, the space time Lévy white noise is the measure
valued process process

t 7→ L( · × [0, t));

(for more details we refer to Breźniak and Hausenblas (2009) or Peszat
and Zabczyk (2007), Albeverio and Wu 1998, St. Lupert Bié, . . .)
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Space - Time - White - Noise
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Space - Time - White - Noise
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Space - Time - White - Noise

Definition 9 Let (Ω,F , P) be a complete probability space and let (S,S, σ) be a
measurable space. Then the Poisson white noise on S based on σ with
characteristic jump size measure ν ∈ L(R) is a measurable mapping

η : (Ω,F) → (M (MI(S × R)) ,M (MI(S × R)))

such that

for A×B ∈ S ×B(R), η(A×B) is a Poisson random variable with parameter
σ(A) ν(B), provided σ(A)ν(B) < ∞;

if the sets A1 ×B1 ∈ S × B(R) and A2 ×B2 ∈ S × B(R) are disjoint, then the
random variables η(A1 × B1) and η(A2 × B2) are independent and
η ( (A1 × B1) ∪ (A2 × B2) ) = η(A1 × B1) + η(A2 × B2).
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Space - Time - White - Noise

Again put

O ⊂ R
d be a bounded domain with smooth boundary.

S = O × [0,∞),

S = B(O) × B([0,∞))

σ = λd+1.

Then, by definition, the space time Poisson white noise is the measure
valued process process

t 7→ η( · × [0, t));

(for more details we refer to Breźniak and Hausenblas (2009) or
Peszat and Zabczyk (2007)).
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A typical Example

The Equation:

(⋆)































du(t,ξ)
dt

= ∂2

∂ξ2 u(t, ξ) + α∇u(t, ξ) + g(u(t, ξ))L̇(t, ξ)

+f(u(t, ξ)), ξ ∈ O, t > 0;

u(0, ξ) = u0(ξ) ξ ∈ O;

u(t, ξ) = u(t, ξ) = 0, t ≥ 0, ξ ∈ ∂O;

where u0 ∈ Lp(0, 1), p ≥ 1, g a certain mapping and L is a Lévy process taking
values in a certain Banach space E.

Let B a Banach space. A mild solution of Equation (⋆) on B is a B–valued,
adapted, càdlàg process u = {u(t) : t ∈ [0, T ]} such that for t ≥ 0 we have a.s.

u(t) = e−tAu0 +
∫ t

0
e−(t−s)A F a(u(s)) dt +

∫ t

0
e−(t−s)AG(u(s))[L(ds)]

aF and G denote the to f and g associated Nemytskii operators, {e−tA}t≥0 denotes the from operator A in E

generated semigroup.
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Banach spaces of M type p

Definition 10 a Let 0 < p < ∞. A Banach space E is of M type p, iff there
exists a constant C = C(E; p), such that for each discrete E-valued martingale
M = (M1, M2, . . .) one has

supn≥1 E|Mn|
p
E ≤ C

∑

n≥1 E|Mn − Mn−1|
p
E .

asee Pisier (1986), Maurey, Schwartz.
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Banach spaces of M type p

Definition 10 Let 0 < p < ∞. A Banach space E is of M type p, iff there
exists a constant C = C(E; p), such that for each discrete E-valued martingale
M = (M1, M2, . . .) one has

supn≥1 E|Mn|
p
E ≤ C

∑

n≥1 E|Mn − Mn−1|
p
E .

• If (S,S, σ) is a probability space and p > 1, then the space Lp(S,S, σ) is of
M -type p ∧ 2. Additionally, L∞(S,S, σ), L1(S,S, σ) and C([0, 1]; R) are not of M
type p.

• Let 0 < p ≤ 2. Let E be of M -type p and A : E → E an operator with domain
dom(A). If A−1 is bounded, then dom(A) is isomorphic to E and therefore of
M–type p.

• (Brzeźniak (1990)) Assume E1 and E2 are a Banach space of M -type p,
where E2 is continuously and densely embedded in E1. Then for any ϑ ∈ (0, 1)

the complex interpolation space [E1, E2]ϑ and the real interpolation space
(E1, E2)ϑ,p are of M–type p.

see Pisier (1986), Maurey, Schwartz.
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Burkholder Davis Gundy inequality

Proposition 1 Let E be a Banach space of M -type p, 1 ≤ p ≤ 2. Then
there exists a constant C = C(E; p) < ∞, such that we have for any
discrete E-valued martingale M = (M1,M2, . . .) and for all 1 ≤ r < ∞

E sup
n≥1

|Mn|
r
E ≤ CE





∑

n≥1

|Mn−1 − Mn|
p
E





r
p

.
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The Itô Stochastic Integral

E be a separable Banach spaces of M-type p, 1 ≤ p ≤ 2;

(Z,Z) a measurable space and ν a non negative measure on
(Z,Z);

(Ω,F , (Ft)t≥0, P) be a filtered complete probability space and

η be a time homogeneous Poisson random measure on Z over
(Ω,F , (Ft)t≥0, P) with intensity measure ν;

aπs,t ◦ f is the projection of f onto the time interval (s, t).
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The Itô Stochastic Integral

E be a separable Banach spaces of M-type p, 1 ≤ p ≤ 2;

(Z,Z) a measurable space and ν a non negative measure on
(Z,Z);

(Ω,F , (Ft)t≥0, P) be a filtered complete probability space and

η be a time homogeneous Poisson random measure on Z over
(Ω,F , (Ft)t≥0, P) with intensity measure ν;

Remark 3 Here, it is important that (Ft)t≥0 is non–anticipated to η.
That is, that for all t ≥ 0 the random variable πt,∞ ◦ η is independent of
Ft.

πs,t ◦ f is the projection of f onto the time interval (s, t).
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The Itô Stochastic Integral

Let h be a progressively measurable step function with representation

h(t) =

n
∑

i=1

Hi1(ti,ti+1](t), t ∈ R+,

where 0 = t0 ≤ · · · tn = T and Hi : Ω → Lp(Z, ν;E) is Fti–measurable
for i = 1, . . . , n.

Definition 11 The stochastic integral of h with respect to η is defined
by

I(h) :=
n

∑

i=1

∫

Z

Hi(s) η̃(ds; (ti, ti+1]). (♠)
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Definition of the Integral

Let E be a Banach space of martingale type p and

Mp([0, T ]; Lp(Z, ν; E)) :=
{

h : Ω × [0,∞) → Lp(Z, ν; E),

h is progressively measurable and
∫

R+

∫

Z

E |h(s, z)|p ν(dz) dsa < ∞
}

Theorem 1 b There exists a linear bounded operator

I : Mp([0, T ]; Lp(Z, ν; E)) → Lp(Ω,FT , P; E),

which is a unique bounded extension of the operator defined in (♠).

If h ∈ Mp([0, T ]; Lp(Z, ν; E)) and t > 0 then we put
∫ t

0

∫

Z
h(s)η̃(ds, dz) := I(1(0,t]h)

and we call the LHS the Itô integral of the process h up to time t.

aν is the intensity of η
bp = 1, 2 B. Rüdiger (2005), p ∈ (1, 2], EH (2005), EH and Brzeźniak (2008), Filipovic and Tappe (2008)

for Burkholder Davies Gundy type inequalities see Preprint E. Hausenblas (2009) and Röckner, Marinelli, Pivot (2009).SPDES driven by Lévy processes – p.32



Properties of the Stochastic Integral

If h ∈ Mp([0, T ];Lp(Z, ν;E)), then the process

X(t) =

∫ t

0

∫

Z

h(s, z) η̃(dz; ds), t ≥ 0

is an E–valued martingale having a càdlàg modification a.

ap = 1, 2 B. Rüdiger (2005), p ∈ (1, 2] EH and Brzeźniak (2009). SPDES driven by Lévy processes – p.33



Properties of the Stochastic Integral

If h ∈ Mp([0, T ];Lp(Z, ν;E)), then the process

X(t) =

∫ t

0

∫

Z

h(s, z) η̃(dz; ds), t ≥ 0

is an E–valued martingale having a càdlàg modification .

There exists a constant C = C(p,E) < ∞, such that for any
h ∈ Mp([0, T ];Lp(Z, ν;E)) and for any 0 < r ≤ p

E sup
0<t≤T

∣

∣

∣

∣

∫ t

0

∫

Z

h(s, z) η̃(dz; ds)

∣

∣

∣

∣

r

≤

C

(
∫ T

0

∫

Z

E |h(s, z)|pE ν(dz) ds

)

r
p

.

p = 1, 2 B. Rüdiger (2005), p ∈ (1, 2] EH and Brzeźniak (2009).
SPDES driven by Lévy processes – p.33



A typical Example

The Equation:

(⋆)































du(t,ξ)
dt

= ∂2

∂ξ2 u(t, ξ) + α∇u(t, ξ) + g(u(t, ξ))L̇(t, ξ)

+f(u(t, ξ)), ξ ∈ O, t > 0;

u(0, ξ) = u0(ξ) ξ ∈ O;

u(t, ξ) = u(t, ξ) = 0, t ≥ 0, ξ ∈ ∂O;

where u0 ∈ Lp(0, 1), p ≥ 1, g a certain mapping and L is a Lévy process taking
values in a certain Banach space Z.

Let B a Banach space. A mild solution of Equation (⋆) on B is an adapted
B–valued càdlàg process u = {u(t) : t ∈ [0, T ]} such that for t ≥ 0 we have a.s.

u(t) = e−tAu0 +
∫ t

0
e−(t−s)A F a(u(s)) dt +

∫ t

0
e−(t−s)AG(u(s))[L(ds)]

aF and G denote the to f and g associated Nemytskii operators.
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SPDEs - Existence and Uniqueness

Theorem 2 (EH, 2005 EJP) Assume that there exist some δg < 1
p

and
δf , δI < 1 such that

u0 satisfies E|(−A)−δI u0|
p < ∞;

(−A)−δf F : E → E is Lipschitz continuous;

(−A)−δgG : E → Lp(Z, ν;E) satisfies
∫

Z
|(−A)−δg [g(x, z) − g(y, z)] |pE ν(dz) ≤ C |x − y|pE , x, y ∈ E.

Then, there exists a unique mild solution to Problem (1), such that for
any T > 0

∫ T

0
E|u(s)|pE ds < ∞,

and (−A)−γu ∈ L0(Ω; ID([0, T ];E)), where γ > 1
p

+ 1.
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Space Time Lévy Noise

By means of Besov-spaces it is possible to show existence of an
integral solution if the driving proces is a space time Levy white noise.

Corollary 1 Let A be the Laplace operator. If there exists a p ∈ (1, 2]

with 1 < p < 2+d
d

, then there exists a solution to the SPDE above with
space time Lévy noise.
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SPDEs of Reaction Diffusion Type

We are interested in SPDEs of the following type:

(♦)











du(t) =
(

∆u(t) − u3(t) + u(t)
)

dt + dL(t), t ≥ 0,

u(0, ξ) = u0(ξ) 0 ≤ ξ ≤ 1,

u(t, 0) = u(t, 1) = 0, t ≥ 0,

where u0 ∈ Lp(0, 1), p ≥ 1, and L(t) is a Lévy process.
————————————————————–

Or an SPDE given by

(♣)











du(t) = Au(t) dt + F (t, u(t)) dt

+
∫

Z
G(t, u(t); z)η̃(dz; dt),

u(0) = u0 ∈ E,

where F and G are not global Lipschitz, but continuous and bounded,
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Solution of Martingale Type

Definition 12 A martingale solution to equation (♣) is a system

(Ω,F , P, {Ft}t≥0, {η(t)}t≥0, {u(t)}t≥0)

such that (Ω,F , P) is a complete probability space, {Ft}t≥0 a filtration
on it, {η(t)}t≥0 is a time homogeneous Poisson Random measure on Z

over (Ω,F , {Ft}t≥0, P) with intensity ν and u(t) is a B–valued adapted
process such that for any t ∈ [0, T ]

u(t) = e−tAu0 +

∫ t

0
e−(t−s)AF (s, u(s)) ds

+

∫ t

0

∫

Z

e−(t−s)AG(s, u(s); z) dη̃(dz, ds), a.s..
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Assumptions

there exists some 0 ≤ δF < 1 such that the map

A−δF F : [0,∞) × E → E

is bounded and continuous with respect to the second variable.

there exists some δG, 0 ≤ δG < 1
p

such that

(i) there exists some M < ∞ with
∫

Z

|A−δGG(t, u; z)|pE ν(dz) ≤ M (boundedness);

(ii) for all u0 ∈ E and t ∈ R+ and for all u0 ∈ E and each ε > 0 there
exists δ > 0 such that for all t ∈ R+ we have

∫

Z

|A−δG (G(t, u; z) − G(t, u0; z)) |pE ν(dz) ≤ ε (continuity)

provided u ∈ E satisfies |u − u0|E ≤ δ.
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The Result

Given

(♣)

{

du(t) = Au(t) dt + F (t, u(t)) dt +
∫

Z
G(t, u(t); z)η̃(dz; dt),

u(0) = u0 ∈ E.

Theorem 3 (Brzeźniak, E.H.) Assume there exists some ǫ < 1 such
that A−ǫx ∈ E. Then, under the assumption before, there exists a
martingale solution u = {u(t), t ≥ 0} of (♣), such that

∫ ∞

0
e−λt

E|u(t)|pE dt < ∞

and for any δ > max(0, δF − 1 + 1
p
, δG + 1

p
, ǫ) and we have a.s.

u ∈ ID(R+;B), where B = V−δ.
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Proof - The Approximating Sequence

Let sn = k
2n T if k

2n T ≤ s < k+1
2n T . Define a sequence of adapted E–valued

processes by

ūn(t) = e−tAxn +

∫ t

0

e−(t−s)AF (s, ûn(sn)) ds

+

∫ t

0

∫

Z

e−(t−s)AG(s, ûn(sn); z) η̃(dz; ds),

where u(sn) is defined by û(sn) = u0 for 0 ≤ s < 2−n, and

û(sn) := 2n

∫ sn

sn−2−n

ūn(r) dr.
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Proof - The Approximating Sequence

Let sn = k
2n T if k

2n T ≤ s < k+1
2n T . Define a sequence of adapted E–valued

processes by

ūn(t) = e−tAxn +

∫ t

0

e−(t−s)AF (s, ûn(sn)) ds

+

∫ t

0

∫

Z

e−(t−s)AG(s, ûn(sn); z) η̃(dz; ds),

where u(sn) is defined by û(sn) = u0 for 0 ≤ s < 2−n, and

û(sn) := 2n

∫ sn

sn−2−n

ūn(r) dr.

Moreover, let η̄n := η, n ∈ IN.
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Proof - The Approximating Sequence

Let sn = k
2n T if k

2n T ≤ s < k+1
2n T . Define a sequence of adapted E–valued

processes by

ūn(t) = e−tAxn +

∫ t

0

e−(t−s)AF (s, ûn(sn)) ds

+

∫ t

0

∫

Z

e−(t−s)AG(s, ûn(sn); z) η̃(dz; ds),

where u(sn) is defined by û(sn) = u0 for 0 ≤ s < 2−n, and

û(sn) := 2n

∫ sn

sn−2−n

ūn(r) dr.

Moreover, let η̄n := η, n ∈ IN.

In this way we constructed a sequence

{(ūn, η̄n) , n ∈ IN} .
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Proof - The Deterministic Convolution

For fixed α ∈ (0, 1] and f ∈ L
p
λ(R+;E) let Λ−α be defined by

(

Λ−αf
)

(t) =
1

Γ(α)

∫ t

0
(t − s)α−1e−(t−s)Af(s) ds, t ∈ R

+ .

Then, for any α ∈ (0, 1] the operator satisfies following properties:

Λ−α : Lp([0, T ];E) → Lp([0, T ];E) is bounded and compact;

for 0 < β < α − 1
q

+ γ − δ, Λ−α : Lq([0, T ];Vγ) → C(β)([0, T ];Vδ) is
bounded and compact;

[Here we use results of Brzeźniak (1997)]
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Proof - the Stochastic Convolution Term

In contrary to the stochastic convolution driven by Wiener noise, the
convolution driven by Lévy noise cannot be decomposed !

(Gu) (t) =

∫ t

0
e−(t−s)A G(s, u(s); z)η̃(dz, ds), t ∈ R

+ .

Under the assumption of the Theorem the set
{

Gx
∣

∣

∣
x ∈ L

0
(

Ω; Lp(R+;E)
)

}

is tight on L
p(R+;E) and on ID(R+;B).
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Proof - The Approximating Sequence

(1) The laws of the set {(ūn, η̄n), n ∈ IN} are tight on L
p
λ(R+; E) × M(R+ × Z).

(2) The laws of the set {(ūn, η̄n), n ∈ IN} are tight on ID(R+; B)×M(R+ ×Z).
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Proof - The Approximating Sequence

(1) The laws of the set {(ūn, η̄n), n ∈ IN} are tight on L
p
λ(R+; E) × M(R+ × Z).

(2) The laws of the set {(ūn, η̄n), n ∈ IN} are tight on ID(R+; B) × M(R+ × Z).

(1) and (2) ⇒ there exist a subsequence of {(ūn, η̄n), n ∈ IN} and

(χ∗, µ∗) ∈ M
(

L
p
λ(R+; E) ∩ ID(R+; B) × M(R+ × Z)

)

such that the laws of (ūn, ηn) converge to (χ∗, µ∗).
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Proof - The Approximating Sequence

(1) The laws of the set {(ūn, η̄n), n ∈ IN} are tight on L
p
λ(R+; E) × M(R+ × Z).

(2) The laws of the set {(ūn, η̄n), n ∈ IN} are tight on ID(R+; B) × M(R+ × Z).

(1) and (2) ⇒ there exist a subsequence of {(ūn, η̄n), n ∈ IN} and

(χ∗, µ∗) ∈ M
(

L
p
λ(R+; E) ∩ ID(R+; B) × M(R+ × Z)

)

such that the laws of (ūn, ηn) converge to (χ∗, µ∗).

By the Skorohod embedding Theorem we know that there exists a probability
space (Ω̌, F̌ , P̌), random variables (ǔn, η̌n), n ∈ IN, and (ǔ∗, η̌∗) over (Ω̌, F̌ , P̌)

such that

(ǔn, η̌n) → (ǔ∗, η̌∗) P̌-a.s.;

L ((ǔn, η̌n)) = L ((ūn, η̄n)) .
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Proof - The Approximating Sequence

Let
F̌t := σ (ǔ∗(s), η̌∗(A × [0, s)), ǔn(s), η̌n(A × [0, s)), n ∈ IN, 0 ≤ s ≤ t, A ∈ B(Z)).

It remains to show that the system

(Ω̌, F̌ , (F̌)t≥0, P̌, η̌∗, ǔ∗)

is a martingale solution to (•). In particular, that P̌ a.s.

ǔ∗(t) = e−tAx +

∫ t

0

e−(t−s)A F (ǔ∗(s)) ds

+

∫ t

0

∫

Z

e−(t−s)A G(ǔ∗(s); z) ˜̌η∗(dz; ds), t > 0.
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Proof - The Approximating Sequence

Here we have the following setting:

(ǔn, η̌n) → (ǔ∗, η̌∗) P̌-a.s.;

L ((ǔn, η̌n)) = L ((ūn, η̄n)) ;

Moreover, we know how ūn is constructed. In particular,

ūn(t) = e−tAxn +

∫ t

0

e−(t−s)AF (s, ûn(sn)) ds

+

∫ t

0

∫

Z

e−(t−s)AG(s, ûn(sn); z) dη̃(dz; ds),

where û(sn) is defined by

û(sn) := 2n

∫ sn

sn−2−n

ūn(r) dr.

Observe, the latter implies E‖ûn − ūn‖
p

L
p

λ
(R+,E)

→ 0.
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Definition of the Integral

Theorem 4 a Assume the following holds:

(Ω1,F1, (F
1
t )t≥0, P1) and (Ω1,F1, (F

1
t )t≥0, P1) are two probability spaces;

(ξ1, η1) and (ξ2, η2) belong a.s. to Lp(R+; Lp(Z, ν, E)) ×MI(S × R+);

η1 is a time homog. Prm on Z over (Ω1,F1, (F
1
t )t≥0, P1) with intensity ν;

ξ1 ∈ Mp(Ω1 × R+; Lp(Z, ν, E)) with respect to (F1
t )t≥0;

Then, if
Law((ξ1, η1)) = Law((ξ2, η2))

on Lp(R+; Lp(Z, ν, E)) ×MI(S × R+), then

Law

((
∫ ·

0

∫

Z

ξ1(s, z) η̃1(dz; ds), ξ1, η1

))

= Law

((
∫ ·

0

∫

Z

ξ2(s, z) η̃2(dz; ds), ξ2, η2

))

on ID(R+, E) ∩ Lp(R+, E) × Lp(R+; Lp(S, ν, E)) ×MI(S × R+).

aEH and Brzeźniak (2009), Proceeding of the Ascona workshop 2008
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The Stochastic Convolution Process

Content of the work: Brzeźniak and E.H. (2008):

Let us assume that 1 < p ≤ 2, 1 ≤ q ≤ p, E is a M-type p Banach space, and −A

is an infinitesimal generator of an analytic semigroup {e−tA}0≤t<∞in E. We
consider the following SPDE written in the Itô-form







du(t) = Au(t) dt +
∫

Z
ξ(t; x)η̃(dx; dt),

u(0) = 0,

where ξ : [0, T ] × Ω → Lp(Z, ν; E) is a progressively measurable process.

Then, we have

E

∫ T

0

|u(t)|p
DA(θ+ 1

p
,q)

dt ≤ CE

∫ T

0

∫

Z

|ξ(t, z)|p
DA(θ,q) dt. (-8)
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The Stochastic Convolution Process

Theorem 5 (EH and Brzeźniak (2009)) Assume the setting of Theorem (4). In
addition, assume that −A is an infinitesimal generator of an analytic semigroup
{e−t}0≤t<∞ in E. Let us consider the following SPDE written in the Itô-form







du(t) = Au(t) dt +
∫

Z
ξ(t; x)η̃(dx; dt),

u(0) = 0,

where ξ : [0, T ] × Ω → Lp(Z, ν; E) is a progressively measurable process.
Then, if Law((ξ1, η1)) = Law((ξ2, η2))

on Lp(R+; Lp(Z, ν, E)) ×MI(S × R+), then

Law
(

(

∫ ·

0

∫

Z

e−(·−s)ξ1(s, z) η̃1(dz; ds), ξ1, η1

)

)

=

Law
(

(

∫ ·

0

∫

Z

e−(·−s)ξ2(s, z) η̃2(dz; ds), ξ2, η2

)

)

on ID(R+, B) ∩ Lp(R+, X) × Lp(R+; Lp(Z, ν, E)) ×MI(S × R+).
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SPDE of Reaction Diffusion Type

We are interested in SPDEs of the following type

(♦)



























∂
∂t

u(t, ξ) = −(−∆)ku(t, ξ) − |u(t, ξ)|q sgn(u(t, ξ)) + b u(t, ξ)

+ g(u(t−, ξ), ξ; ζ) L̇(ξ, t), ξ ∈ O, t > 0,

u(0, ξ) = u0(ξ), ξ ∈ O,

u(t, ξ) = 0, for ξ ∈ ∂O, t > 0 .

where b ∈ R and L̇ denotes roughly spoken the Radon Nikodym
derivative of the space time Poissonian noise.

We are asking for the conditions on q and k under which a solution to
the equation (♦) exists.
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SPDE of Reaction Diffusion Type

Theorem 6 (Brzeźniak, E.H. (2009)) If

d <
2k

q
+ 4

(

1

q
−

1

p

)

and x0 ∈ W
−(d− d

p
)

p (O), then, there exists a martingale solution to (⋆),
such that

P (u ∈ ID(R+;B)) = 1,

for B = W
−γ
p (O) for any γ ∈ R with γ > d − d

p
.
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SPDE of Reaction Diffusion Type

Let F be defined on X = Hγ1
p (O)a for γ1 > d

p
by

F (x)(ξ) := −|x(ξ)|q sgn(x(ξ)) + x(ξ) , ξ ∈ O.

Let Fn : X → X be defined by

Fn(x) =







F (x), if |x|X ≤ n,

F
(

n
|x|X

x
)

, otherwise.

Since we have |Fn(y)|X ≤ a(n) for all y ∈ X , it follows in view of the Theorem
before, that there exists a martingale solution.

Let us denoted the family of martingales solutions by {un, n ∈ IN}. The next step
is to show, that the laws of the family of martingale solutions {un, n ∈ IN} are
tight in M(ID(R+; B)).

aNote, that H
γ1
p (O) →֒ C0

b (O).
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SPDE of Reaction Diffusion Type

Lemma 1 (Da Prato) Assume that X is a Banach space, −A a generator of a
strongly continuous semigroup of bounded linear operators on X and a mapping
F : X → X such that

< −Ax + F (t, x + y), z >≤ (1 + |y|qX) − k|x|X , (-7)

for any z ∈ x∗ = ∂|x|. Assume that for some τ > 0 two continuous functions
z, v : [0,∞) → X satisfy

z(t) =

∫ t

0

e−(t−s)AF (z(s) + v(s)) ds, t ≤ τ.

Then

|z(t)|X ≤

∫ t

0

e−k(t−s) (1 + |v(s)|qX) ds, 0 ≤ t ≤ τ.
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SPDE of Reaction Diffusion Type

Let
vn(t) :=

(

Λ−1u
)

(t) =
∫ t

0 e−(t−s)AG(z, un(t))a η̃(dz, ds), t ∈ R+ ,

and
zn(t) =

∫ t

0 e−(t−s)AFn(zn(s) + vn(s)) ds, t ≤ τ.

Then zn + vn = un is the solution to

∂

∂t
un(t, ξ) = −(−∆)kun(t, ξ) + Fn (un(t, ξ)) + g(un(t, ξ), ξ; ζ) L̇(ξ, t),

un(0, ξ) = u0(ξ), ξ ∈ O,

un(t, ξ) = 0, for ξ ∈ ∂O, t > 0 .

aG is the E valued operater associated to g
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SPDE of Reaction Diffusion Type

Let γ0 ≥ γ1 ≥ γ2 and

E := Hγ0

p (O),

X := Hγ1

p (O) = (E,B)[1− p
q
], γ1 := γ2 +

p

q
(γ0 − γ2).

B := Hγ2

p (O) and

Theorem (Bergh and Löfström)
(

L
p(R+;E), L∞(R+;B)

)

[1− p
q
]
= L

q
(

R
+; (E,B)[1− p

q
]

)
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SPDE of Reaction Diffusion Type

if γ2 < d
p
− d then the space time Poissonian noise can be identified

in H
γ2
p (O).

if γ0 − γ2 < 2
p
, that the set

{

Λ−1x
∣

∣

∣
x ∈ L

0
(

Ω; Lp(R+;E)
)

∩ L
0
(

Ω; ID(R+;B)
)

}

is tight in M (L(R+;E)) and M (ID(R+;B)).

if γ1 > d
p

then C0
b (O) →֒ H

γ1
p (O) and the mappings Fn are satisfying

the assumption of the Lemma before;
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SPDE of Reaction Diffusion Type

=⇒ the set {vn, n ∈ IN} is tight in M(Lq(R+;X));

=⇒ By the lemma before, one knows, that the set {zn, n ∈ IN} given
by

zn(t) =

∫ t

0
e−(t−s)AFn(zn(s) + vn(s)) ds, t ≤ τ.

is tight in M (C(R+;X));

=⇒ the set {un = vn + zn, n ∈ IN} is tight in M(ID(R+;B)).
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The End

Thank you for your attention
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