SPDES driven by Lévy processes

Erika Hausenblas

University of Salzburg, Austria

Outline

- Some remarks about semigroup theory
- Lévy processes Poisson Random Measure
- Stochastic Integration in Banach spaces
- SPDEs driven by Lévy processes
- SPDEs of Reaction Diffusion Type driven by Lévy processes (If the time allows)

A typical Example

Let \mathcal{O} be a bounded domain in \mathbb{R}^d with smooth boundary. The Equation:

$$(\star) \begin{cases} \frac{du(t,\xi)}{dt} &= \sum_{i=1}^{d} \frac{\partial^{2}}{\partial \xi_{i}^{2}} u(t,\xi) + \alpha \nabla u(t,\xi) + g(u(t,\xi)) \dot{L}(t,\xi) \\ &+ f(u(t,\xi)), \quad \xi \in \mathcal{O}, \ t > 0; \end{cases}$$
$$u(0,\xi) &= u_{0}(\xi) \quad \xi \in \mathcal{O}; \\ u(t,\xi) &= u(t,\xi) = 0, \quad t \ge 0, \ \xi \in \partial \mathcal{O}; \end{cases}$$

where $u_0 \in L^p(\mathcal{O})$, $p \ge 1$, g a certain mapping and $L = \{L(t,\xi)\}_{\substack{0 \le t < \infty \\ \xi \in \mathcal{O}}}$ is a space time Lévy noise.

Problem: To find a process

$$u: [0,\infty) \times \mathcal{O} \longrightarrow \mathbb{R}$$

solving Equation (\star) in some certain sense.

The Abstract Cauchy Problem

Linear evolution equations, as parabolic, hyperbolic or delay equations, can often be formulated as an evolution equation in a Banach space E:

Given:

- *E* Banach space,
- the pair (A, dom(A)), where dom(A) is a dense linear subspace of *E* and *A* : dom $(A) \rightarrow E$ a linear operator;

```
Initial value u_0 \in E;
```

Linear evolution equations, as parabolic, hyperbolic or delay equations, can often be formulated as an evolution equation in a Banach space E:

Given:

- *E* Banach space,
- the pair (A, dom(A)), where dom(A) is a dense linear subspace of *E* and *A* : dom $(A) \rightarrow E$ a linear operator;
- Initial value $u_0 \in E$;

Problem: The solution to the following initial valued problem:

(*)
$$\begin{cases} u'(t) = A u(t), & t \ge 0, \\ u(0) = u_0 \in E. \end{cases}$$

Example 1 In one of the first slides we had the following example: Let \mathcal{O} be a bounded domain in \mathbb{R}^d with smooth boundary.

$$(\star) \begin{cases} \frac{du(t,\xi)}{dt} = \sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2} u(t,\xi), \quad t > 0, \ \xi \in \mathcal{O}; \\ u(0,\xi) = u_0(\xi), \quad \xi \in \mathcal{O}; \\ u(t,\xi) = 0, \quad t \ge 0; \ \xi \in \partial \mathcal{O} \end{cases}$$

Formulated in semigroup theory, (*) gives the following Cauchy problem:

$$E := L^{p}(\mathcal{O}), \quad 1
$$A = \sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}, \quad u(0) = u_{0};$$
$$dom(A) := W^{2,p}(\mathcal{O}) \cap W_{0}^{1,p}(\mathcal{O}).$$$$

The Abstract Cauchy problem:

We assume that A is a generator of a C_0 -semigroup on E. Then the solution of the problem (*) can be defined as

$$e^{-tA}u_0 = u(t, u_0), \quad \forall u_0 \in E, \ \forall t \ge 0.$$

The Abstract Cauchy problem:

We assume that A is a generator of a C_0 -semigroup on E. Then the solution of the problem (*) can be defined as

$$e^{-tA}u_0 = u(t, u_0), \quad \forall u_0 \in E, \ \forall t \ge 0.$$

Let $f \in L^1([0,\infty); E)$. The solution of a the perturbed problem

(•)
$$\begin{cases} u'(t) = Au(t) + f(t), & t \ge 0, \\ u(0) = u_0 \in E. \end{cases}$$

is given by the mild solution

$$u(t) = e^{-tA}u_0 + \int_0^t e^{-(t-s)A}f(s) \, ds, \quad t \in (0,T]$$

Analytic Semigroups

Definition 1 A family of operators $\{e^{-zA}\}_{z \in \Sigma_{\delta} \cup \{0\}} \subset L(X)$ is called an *analytic* semigroup if

$$\bullet e^{-0A} = I \text{ and } e^{-(z_1+z_2)A} = e^{-z_1A}e^{-z_2A}$$
 for all $z_1, z_2 \in \Sigma_{\delta}$;

• the map $z \mapsto e^{-zA}$ is analytic in Σ_{δ} ;

 $\blacksquare \lim_{z \to 0, z \in \Sigma_{\delta'}} e^{-zA} x = x \text{ and } 0 < \delta' < \delta.$

A be a sectorial and densely defined operator in E

the semigroup $\{e^{-tA}\}_{t>0}$ generated by A on E is analytic;

$$\left|Ae^{-tA}x\right| \le \frac{M}{t} \left|x\right| \text{ for all } x \in E, t \in (0,T].$$

Analytic Semigroups

$$E := L^{p}(\mathcal{O}), \quad 1
$$A = \sum_{i=1}^{d} \frac{\partial^{2}}{\partial x_{i}^{2}}, \quad u(0) = u_{0};$$
$$\mathsf{dom}(A) := W^{2,p}(\mathcal{O}) \cap W_{0}^{1,p}(\mathcal{O}).$$$$

$$\left|e^{-tA}x\right|_{W^{2,p}(\mathcal{O})} \leq \frac{M}{t} |x|_{L^{p}(\mathcal{O})} \text{ for all } x \in L^{p}(\mathcal{O}), t \in (0,T].$$

A typical Example

The Equation:

$$(\star) \begin{cases} \frac{du(t,\xi)}{dt} &= \sum_{i=1}^{d} \frac{\partial^{2}}{\partial \xi_{i}^{2}} u(t,\xi) + \alpha \nabla u(t,\xi) + g(u(t,\xi)) \dot{L}(t,\xi) \\ &+ f(u(t,\xi)), \quad \xi \in \mathcal{O}, \ t > 0; \end{cases}$$
$$u(0,\xi) &= u_{0}(\xi) \quad \xi \in \mathcal{O}; \\ u(t,\xi) &= u(t,\xi) = 0, \quad t \ge 0, \ \xi \in \partial \mathcal{O}; \end{cases}$$

where $u_0 \in L^p(\mathcal{O})$, p > 1, $g : \mathbb{R} \to \mathbb{R}$ a certain function and L is a space time Lévy noise specified later.

Problem: To find a process

$$u: [0,\infty) \times \mathcal{O} \longrightarrow \mathbb{R}$$

solving Equation (\star) .

Definition 2 Let *E* be a Banach space. An *E*-valued stochastic process $L = \{L(t), 0 \le t < \infty\}$ is a Lévy process over $(\Omega; \mathcal{F}; \mathbb{P})$ iff

 $\blacksquare L(0) = 0;$

- L has independent and stationary increments;
- L is stochastically continuous, i.e. for any $A \in \mathcal{B}(E)$ the function $[0,\infty) \ni t \mapsto \mathbb{E}1_A(L(t)) \in \mathbb{R}$ is continuous;

L has a.s. càdlàg^a paths;

^acàdlàg = continue à droite, limitée à gauche.

E denotes a separable Banach space and E' the dual on *E*. If *L* is an *E*-valued Lévy process, then there exist (see e.g. Linde (1986))

 $\blacksquare a \in E'$,

• a positive operator $Q: E' \to E$,

and a Lévy measure $\nu : \mathcal{B}(E) \to \mathbb{R}^+$ (called usually the characteristic measure of *L*).

such that following formula holds for all $y \in E'$

$$\mathbb{E} e^{i\langle L(1),y\rangle} = \\ \exp\left\{i\langle a,y\rangle\lambda - \frac{1}{2}\langle Qy,y\rangle + \int_E \left(e^{i\lambda\langle y,a\rangle} - 1 - i\lambda y \mathbf{1}_{\{|y|\leq 1\}}\right)\nu(dy)\right\}.$$

In what follows *E* denotes a separable Banach space, $\mathcal{B}(E)$ denotes the Borel- σ algebra on *E* and *E'* the dual on *E*.

Definition 3 (see Linde (1986), Section 5.4) A symmetric ^a σ -finite, Borel-measure $\nu : \mathcal{B}(E) \to \mathbb{R}^+$ is called a Lévy measure if $\nu(\{0\}) = 0$ and the function

$$E' \ni a \mapsto \exp\left(\int_E (\cos(\langle x, a \rangle) - 1) \ \nu(dx)\right) \in \mathbb{C}$$

is a characteristic function of a certain Radon measure on E.

An arbitrary σ -finite Borel measure ν is a Lèvy measure if its symmetrization $\nu + \nu^-$ is a symmetric Lévy measure.

 ${}^{a}\nu(A) = \nu(-A)$ for all $A \in \mathcal{B}(E)$

Poisson Random Measure

Remark 1 Let *L* be a Lévy process over $(\Omega, \mathcal{F}, \mathbb{P})$. Defining the so–called counting measure for $A \in \mathcal{B}(E)$

 $N(t,A) = \sharp \left\{ s \in (0,t] : \Delta L(s) = L(s) - L(s-) \in A \right\} \in \mathbb{N} \cup \{\infty\}$

one can show that

- \square N(t, A) is a random variable over $(\Omega; \mathcal{F}; \mathbb{P})$;
- $N(t, A) \sim Poisson(t\nu(A))$ and $N(t, \emptyset) = 0$;

For any disjoint sets A₁,..., A_n, the random variables N(t, A₁),..., N(t, A_n) are independent; (independently scattered) **Definition 4** Let (Z, Z) be a measurable space and (Ω, A, \mathbb{P}) a probability space. A Poisson random measure on (Z, Z) is a measurable function

$$\eta: (\Omega, \mathcal{F}) \to (M_I(Z), \mathcal{M}_I(Z))^a$$

such that

 $\blacksquare \eta(\mathbf{.}, \emptyset) = 0 \text{ a.s.}$

 $\blacksquare \eta$ is a.s. σ -additive.

 $\blacksquare \eta$ is a.s. independently scattered.

for each $A \in \mathcal{Z}$ such that $\mathbb{E} \eta(\cdot, A)$ is finite, $\eta(\cdot, A)$ is a Poisson random variable with parameter $\mathbb{E} \eta(\cdot, A)$.

 $^{a}M_{I}(Z)$ denotes the set of all integer valued measures from \mathcal{Z} into \mathbb{N} and $\mathcal{M}_{I}(Z)$ is the σ -field on $M_{I}(Z)$ generated by functions $i_{B}: M(Z) \ni \mu \mapsto \mu(B) \in \mathbb{N}$, $B \in \mathcal{Z}_{\text{specesarial processes - p.14}}$

Let (S, S) be a measurable space and $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \ge 0}, \mathbb{P})$ be a probability space.

Definition 5 (see Ikeda Watanabe - 1981) A time homogeneous Poisson random measure η on (S, S) over $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \ge 0}, \mathbb{P})$, is a measurable function $\eta : (\Omega, \mathcal{F}) \to (M_I(S \times \mathbb{R}_+), \mathcal{M}_I(S \times \mathbb{R}_+)),$

such that

(i) for each $B \in S \otimes \mathcal{B}(\mathbb{R}_+)$, $\eta(B) := i_B \circ \eta : \Omega \to \overline{\mathbb{N}}$ is a Poisson random variable with parameter $\mathbb{E}\eta(B)^a$;

(ii) η is independently scattered;

(iii) for each $U \in S$, the \mathbb{N} -valued process $(N(t, U))_{t \ge 0}$ defined by

 $N(t,U) := \eta(U \times (0,t]), \quad t \ge 0$

is $\{\mathcal{F}_t\}_{t\geq 0}$ -adapted and its increments are independent of the past, i.e. if $t > s \geq 0$, then $N(t, U) - N(s, U) = \eta(U \times (s, t])$ is independent of \mathcal{F}_s .

^aIf $\mathbb{E}\eta(B)=\infty$, then obviously $\eta(B)=\infty$ a.s..

Example 2 Let *E* be of *M* type *p*, η be a time homogeneous Poisson random measure on *E* with intensity ν , where ν is a *p*-integrable symmetric Lévy measure. Then, the stochastic process (Dettweiler

1984)

$$[0,\infty) \ni t \mapsto \hat{L}(t) := \int_0^t \int_E z \, \tilde{\eta}^{\mathbf{a}}(dz,dt)$$

is a Lévy process with characteristic measure ν .

^aGive a Poisson random measure $\eta : \mathcal{B}(E) \times \mathcal{B}([0,\infty)) \to \mathbb{N}_0$ we denote the compensated Poisson random measure by $\tilde{\eta}$.

Definition 6 Let

 $\eta: \Omega \times \mathcal{B}(E) \times \mathcal{B}(\mathbb{R}^+) \to \mathbb{R}^+$

be a Poisson random measure on *E* over $(\Omega; \mathcal{F}; \mathbb{P})$ and $\{\mathcal{F}_t, 0 \leq t < \infty\}$ the filtration induced by η . Then the predictable measure

 $\gamma: \Omega \times \mathcal{B}(E) \times \mathcal{B}(\mathbb{R}^+) \to \mathbb{R}^+$

is called compensator of η , if for any $A \in \mathcal{B}(E)$ the process

$$\tilde{\eta}(A \times (0, t]) := \eta(A \times (0, t]) - \gamma(A \times [0, t])$$

is a local martingale over $(\Omega; \mathcal{F}; \mathbb{P})$.

Remark 2 The compensator is unique up to a \mathbb{P} -zero set and in case of a time homogeneous Poisson random measure given by

$$\gamma(A \times [0, t]) = t \ \nu(A), \quad A \in \mathcal{B}(E).$$

Let us recall the Definition of a Gaussian white noise (Dalang 2003):

Definition 7 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space and (S, \mathcal{S}, σ) a measure space. Then a Gaussian white noise on *S* based on σ is a measurable mapping

 $W: (\Omega, \mathcal{F}) \to (M(S), \mathcal{M}(S))^{\mathsf{a}}$

For $A \in S$, W(A) is a real valued Gaussian random variable with mean 0 and variance $\sigma(A)$, provided $\sigma(A) < \infty$;

■ if A and $B \in S$ are disjoint, then the random variables W(A) and W(B) are independent and $W(A \cup B) = W(A) + W(B)$.

 ${}^{a}M(S)$ denotes the set of all measures from ${\mathcal S}$ into ${\mathbb R},$

i.e. $M(S) := \{\mu : S \to \mathbb{R}\}$ and $\mathcal{M}(S)$ is the σ -field on M(S) generated by functions $i_B : M(S) \ni \mu \mapsto \mu(B) \in \mathbb{R}, B \in S.$

Put

- $\mathbf{I} \mathcal{O} \subset \mathbb{R}^d$ be a bounded domain with smooth boundary.
- $S = \mathcal{O} \times [0, \infty),$ $S = \mathcal{B}(\mathcal{O}) \times \mathcal{B}([0, \infty))$
- lacksquare $\sigma = \lambda_{d+1}{}^{a}$.

Then, by definition, the space time Gaussian white noise is the measure valued process process

 $t \mapsto W(\cdot \times [0, t)).$

 ${}^{a}\lambda_{d+1}$ denotes the Lebesgue measure in \mathbb{R}^{d} .

Definition 8 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space and let (S, \mathcal{S}, σ) be a measurable space. Then the Lévy white noise on *S* based on σ with characteristic jump size measure $\nu \in \mathcal{L}(\mathbb{R})$ is a measurable mapping

$$L: (\Omega, \mathcal{F}) \to (M(S), \mathcal{M}(S))^{\mathsf{a}}$$

such that

For $A \in S$, L(A)is a real valued infinite divisible random variables with characteristic exponent $e^{i\theta L(A)} = \exp\left(\sigma(A) \int_{\mathbb{R}} \left(1 - e^{i\theta x} - i\sin(\theta x)\right) \nu(dx)\right),$ provided $\sigma(A) < \infty$.

■ if *A* and $B \in S$ are disjoint, then the random variables L(A) and L(B) are independent and $L(A \cup B) = L(A) + L(B)$.

 $^{a}M(E)$ denotes the set of all measures from \mathcal{E} into \mathbb{R} , i.e. $M(S) := \{\mu : S \to \mathbb{R}\}$ and $\mathcal{M}(S)$ is the σ -field on M(S) generated by functions $i_B : M(S) \ni \mu \mapsto \mu(B) \in \mathbb{R}, B \in S$.

Again put

- $\mathbf{I} \mathcal{O} \subset \mathbb{R}^d$ be a bounded domain with smooth boundary.
- $S = \mathcal{O} \times [0, \infty),$ $S = \mathcal{B}(\mathcal{O}) \times \mathcal{B}([0, \infty))$ $\sigma = \lambda_{d+1}.$

Then, by definition, the space time Lévy white noise is the measure valued process process

$$t \mapsto L(\cdot \times [0, t));$$

(for more details we refer to Breźniak and Hausenblas (2009) or Peszat and Zabczyk (2007), Albeverio and Wu 1998, St. Lupert Bié, ...)

Definition 9 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space and let (S, \mathcal{S}, σ) be a measurable space. Then the Poisson white noise on *S* based on σ with characteristic jump size measure $\nu \in \mathcal{L}(\mathbb{R})$ is a measurable mapping

$$\eta: (\Omega, \mathcal{F}) \to (M(M_I(S \times \mathbb{R})), \mathcal{M}(M_I(S \times \mathbb{R})))$$

such that

for $A \times B \in S \times \mathcal{B}(\mathbb{R})$, $\eta(A \times B)$ is a Poisson random variable with parameter $\sigma(A) \nu(B)$, provided $\sigma(A)\nu(B) < \infty$;

■ if the sets $A_1 \times B_1 \in S \times B(\mathbb{R})$ and $A_2 \times B_2 \in S \times B(\mathbb{R})$ are disjoint, then the random variables $\eta(A_1 \times B_1)$ and $\eta(A_2 \times B_2)$ are independent and $\eta((A_1 \times B_1) \cup (A_2 \times B_2)) = \eta(A_1 \times B_1) + \eta(A_2 \times B_2)$.

Again put

 $\mathbf{I} \mathcal{O} \subset \mathbb{R}^d$ be a bounded domain with smooth boundary.

 $S = \mathcal{O} \times [0, \infty),$ $S = \mathcal{B}(\mathcal{O}) \times \mathcal{B}([0, \infty))$ $\sigma = \lambda_{d+1}.$

Then, by definition, the space time Poisson white noise is the measure valued process process

$$t \mapsto \eta(\cdot \times [0, t));$$

(for more details we refer to Breźniak and Hausenblas (2009) or Peszat and Zabczyk (2007)).

A typical Example

The Equation:

$$(\star) \begin{cases} \frac{du(t,\xi)}{dt} &= \frac{\partial^2}{\partial\xi^2}u(t,\xi) + \alpha\nabla u(t,\xi) + g(u(t,\xi))\dot{L}(t,\xi) \\ &+ f(u(t,\xi)), \quad \xi \in \mathcal{O}, \ t > 0; \\ u(0,\xi) &= u_0(\xi) \quad \xi \in \mathcal{O}; \\ u(t,\xi) &= u(t,\xi) = 0, \quad t \ge 0, \ \xi \in \partial\mathcal{O}; \end{cases}$$

where $u_0 \in L^p(0, 1)$, $p \ge 1$, g a certain mapping and L is a Lévy process taking values in a certain Banach space E.

Let *B* a Banach space. A mild solution of Equation (*) on *B* is a *B*-valued, adapted, càdlàg process $u = \{u(t) : t \in [0, T]\}$ such that for $t \ge 0$ we have a.s.

$$u(t) = e^{-tA}u_0 + \int_0^t e^{-(t-s)A} F^{\mathsf{a}}(u(s)) dt + \int_0^t e^{-(t-s)A} G(u(s))[L(ds)]$$

^{*a*}*F* and *G* denote the to *f* and *g* associated Nemytskii operators, $\{e^{-tA}\}_{t\geq 0}$ denotes the from operator *A* in *E* generated semigroup.

Banach spaces of M type p

Definition 10 ^a Let 0 . A Banach space*E*is of*M*type*p*, iff there exists a constant <math>C = C(E; p), such that for each discrete *E*-valued martingale $M = (M_1, M_2, ...)$ one has

 $\sup_{n\geq 1} \mathbb{E}|M_n|_E^p \leq C \ \sum_{n\geq 1} \mathbb{E}|M_n - M_{n-1}|_E^p.$

^asee Pisier (1986), Maurey, Schwartz.

Definition 10 Let 0 . A Banach space*E*is of*M*type*p*, iff there exists a constant <math>C = C(E; p), such that for each discrete *E*-valued martingale $M = (M_1, M_2, ...)$ one has

 $\sup_{n\geq 1} \mathbb{E}|M_n|_E^p \leq C \ \sum_{n\geq 1} \mathbb{E}|M_n - M_{n-1}|_E^p.$

• If (S, S, σ) is a probability space and p > 1, then the space $L^p(S, S, \sigma)$ is of M-type $p \land 2$. Additionally, $L^{\infty}(S, S, \sigma)$, $L^1(S, S, \sigma)$ and $C([0, 1]; \mathbb{R})$ are <u>not</u> of M type p.

• Let 0 . Let*E*be of*M*-type*p* $and <math>A : E \to E$ an operator with domain dom(*A*). If A^{-1} is bounded, then dom(*A*) is isomorphic to *E* and therefore of *M*-type *p*.

• (Brzeźniak (1990)) Assume E_1 and E_2 are a Banach space of M-type p, where E_2 is continuously and densely embedded in E_1 . Then for any $\vartheta \in (0, 1)$ the complex interpolation space $[E_1, E_2]_{\vartheta}$ and the real interpolation space $(E_1, E_2)_{\vartheta, p}$ are of M-type p.

see Pisier (1986), Maurey, Schwartz.

Proposition 1 Let *E* be a Banach space of *M*-type *p*, $1 \le p \le 2$. Then there exists a constant $C = C(E; p) < \infty$, such that we have for any discrete *E*-valued martingale $M = (M_1, M_2, ...)$ and for all $1 \le r < \infty$

$$\mathbb{E}\sup_{n\geq 1}|M_n|_E^r \leq C\mathbb{E}\left[\sum_{n\geq 1}|M_{n-1} - M_n|_E^p\right]^{\frac{r}{p}}$$

- E be a separable Banach spaces of M-type p, $1 \le p \le 2$;
- (Z, Z) a measurable space and ν a non negative measure on (Z, Z);
- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbb{P})$ be a filtered complete probability space and
- η be a time homogeneous Poisson random measure on *Z* over $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbb{P})$ with intensity measure ν ;

 $^{{}^{}a}\pi_{s,t} \circ f$ is the projection of f onto the time interval (s,t).

- E be a separable Banach spaces of M-type p, $1 \le p \le 2$;
- (Z, Z) a measurable space and ν a non negative measure on (Z, Z);
- $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbb{P})$ be a filtered complete probability space and
- η be a time homogeneous Poisson random measure on *Z* over $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbb{P})$ with intensity measure ν ;

Remark 3 Here, it is important that $(\mathcal{F}_t)_{t\geq 0}$ is non–anticipated to η . That is, that for all $t \geq 0$ the random variable $\pi_{t,\infty} \circ \eta$ is independent of \mathcal{F}_t .

 $[\]pi_{s,t} \circ f$ is the projection of f onto the time interval (s,t).

Let *h* be a progressively measurable step function with representation

$$h(t) = \sum_{i=1}^{n} H_i \mathbb{1}_{(t_i, t_{i+1}]}(t), \quad t \in \mathbb{R}_+,$$

where $0 = t_0 \leq \cdots t_n = T$ and $H_i : \Omega \to L^p(Z, \nu; E)$ is \mathcal{F}_{t_i} -measurable for $i = 1, \ldots, n$.

Definition 11 The stochastic integral of h with respect to η is defined by

$$I(h) := \sum_{i=1}^{n} \int_{Z} H_i(s) \,\tilde{\eta}(ds; (t_i, t_{i+1}]). \quad (\clubsuit)$$

Definition of the Integral

Let *E* be a Banach space of martingale type *p* and $\mathcal{M}^{p}([0,T]; L^{p}(Z,\nu;E)) := \left\{ h : \Omega \times [0,\infty) \to L^{p}(Z,\nu;E), \\ h \text{ is progressively measurable and } \int_{\mathbb{R}^{+}} \int_{Z} \mathbb{E} \left| h(s,z) \right|^{p} \left| \nu(dz) \right| ds^{a} < \infty \right\}$

Theorem 1 ^b There exists a linear bounded operator

 $I: \mathcal{M}^p([0,T]; L^p(Z,\nu;E)) \to L^p(\Omega, \mathcal{F}_T, \mathbb{P}; E),$

which is a unique bounded extension of the operator defined in (\clubsuit) .

If $h \in \mathcal{M}^p([0,T]; L^p(Z,\nu; E))$ and t > 0 then we put

 $\int_0^t \int_Z h(s)\tilde{\eta}(ds, dz) := I(1_{(0,t]}h)$

and we call the LHS the Itô integral of the process h up to time t.

for Burkholder Davies Gundy type inequalities see Preprint E. Hausenblas (2009) and Röckner, Marinellis Privoty (2009) esses - p.32

 $^{{}^{}a}\nu$ is the intensity of η

 $^{^{}b}p = 1, 2$ B. Rüdiger (2005), $p \in (1, 2]$, EH (2005), EH and Brzeźniak (2008), Filipovic and Tappe (2008)

Properties of the Stochastic Integral

If $h \in \mathcal{M}^p([0,T]; L^p(Z,\nu;E))$, then the process

$$X(t) = \int_0^t \int_Z h(s, z) \, \tilde{\eta}(dz; ds), \quad t \ge 0$$

is an E-valued martingale having a càdlàg modification ^{*a*}.

 $^{a}p=1,2$ B. Rüdiger (2005), $p\in(1,2]$ EH and Brzeźniak (2009).

Properties of the Stochastic Integral

If $h \in \mathcal{M}^p([0,T]; L^p(Z,\nu;E))$, then the process

$$X(t) = \int_0^t \int_Z h(s, z) \, \tilde{\eta}(dz; ds), \quad t \ge 0$$

is an *E*-valued martingale having a càdlàg modification

There exists a constant $C = C(p, E) < \infty$, such that for any $h \in \mathcal{M}^p([0, T]; L^p(Z, \nu; E))$ and for any $0 < r \le p$

$$\mathbb{E} \sup_{0 < t \le T} \left| \int_0^t \int_Z h(s, z) \, \tilde{\eta}(dz; ds) \right|^r \le C \left(\int_0^T \int_Z \mathbb{E} \left| h(s, z) \right|_E^p \nu(dz) \, ds \right)^{\frac{r}{p}}$$

p=1,2 B. Rüdiger (2005), $p\in(1,2]$ EH and Brzeźniak (2009).

A typical Example

The Equation:

$$(\star) \begin{cases} \frac{du(t,\xi)}{dt} &= \frac{\partial^2}{\partial\xi^2}u(t,\xi) + \alpha\nabla u(t,\xi) + g(u(t,\xi))\dot{L}(t,\xi) \\ &+ f(u(t,\xi)), \quad \xi \in \mathcal{O}, \ t > 0; \\ u(0,\xi) &= u_0(\xi) \quad \xi \in \mathcal{O}; \\ u(t,\xi) &= u(t,\xi) = 0, \quad t \ge 0, \ \xi \in \partial\mathcal{O}; \end{cases}$$

where $u_0 \in L^p(0,1)$, $p \ge 1$, g a certain mapping and L is a Lévy process taking values in a certain Banach space Z.

Let *B* a Banach space. A mild solution of Equation (*) on *B* is an adapted *B*-valued càdlàg process $u = \{u(t) : t \in [0,T]\}$ such that for $t \ge 0$ we have a.s.

$$u(t) = e^{-tA}u_0 + \int_0^t e^{-(t-s)A} F^{\mathbf{a}}(u(s)) dt + \int_0^t e^{-(t-s)A} G(u(s))[L(ds)]$$

 $^{{}^{}a}F$ and G denote the to f and g associated Nemytskii operators.

SPDEs - Existence and Uniqueness

Theorem 2 (EH, 2005 EJP) Assume that there exist some $\delta_g < \frac{1}{p}$ and $\delta_f, \delta_I < 1$ such that

Then, there exists a unique mild solution to Problem (1), such that for any T > 0

$$\int_0^T \mathbb{E}|u(s)|_E^p \, ds < \infty,$$

and $(-A)^{-\gamma}u \in L^0(\Omega; \mathbb{D}([0,T];E))$, where $\gamma > \frac{1}{p} + 1$.

By means of Besov-spaces it is possible to show existence of an integral solution if the driving proces is a space time Levy white noise.

Corollary 1 Let *A* be the Laplace operator. If there exists a $p \in (1, 2]$ with 1 , then there exists a solution to the SPDE above with space time Lévy noise.

We are interested in SPDEs of the following type:

$$(\diamondsuit) \begin{cases} du(t) = (\Delta u(t) - u^3(t) + u(t)) dt + dL(t), & t \ge 0, \\ u(0,\xi) = u_0(\xi) & 0 \le \xi \le 1, \\ u(t,0) = u(t,1) = 0, & t \ge 0, \end{cases}$$

where $u_0 \in L^p(0,1)$, $p \ge 1$, and L(t) is a Lévy process.

Or an SPDE given by

$$(\clubsuit) \begin{cases} du(t) = Au(t) dt + F(t, u(t)) dt \\ + \int_Z G(t, u(t); z) \tilde{\eta}(dz; dt), \\ u(0) = u_0 \in E, \end{cases}$$

where F and G are not global Lipschitz, but continuous and bounded, E is a Banach space. **Definition 12** A martingale solution to equation (**4**) is a system

 $(\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_t\}_{t \ge 0}, \{\eta(t)\}_{t \ge 0}, \{u(t)\}_{t \ge 0})$

such that $(\Omega, \mathcal{F}, \mathbb{P})$ is a complete probability space, $\{\mathcal{F}_t\}_{t\geq 0}$ a filtration on it, $\{\eta(t)\}_{t\geq 0}$ is a time homogeneous Poisson Random measure on *Z* over $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$ with intensity ν and u(t) is a *B*-valued adapted process such that for any $t \in [0, T]$

$$\begin{split} u(t) &= e^{-tA}u_0 + \int_0^t e^{-(t-s)A} F(s,u(s)) \, ds \\ &+ \int_0^t \int_Z e^{-(t-s)A} G(s,u(s);z) \, d\tilde{\eta}(dz,ds), \, \, a.s.. \end{split}$$

Assumptions

• there exists some $0 \le \delta_F < 1$ such that the map $A^{-\delta_F}F : [0,\infty) \times E \to E$

is *bounded* and continuous with respect to the second variable. there exists some δ_G , $0 \le \delta_G < \frac{1}{p}$ such that

(i) there exists some $M < \infty$ with

$$\int_{Z} |A^{-\delta_{G}} G(t, u; z)|_{E}^{p} \nu(dz) \le M \quad (\text{boundedness});$$

(ii) for all $u_0 \in E$ and $t \in \mathbb{R}^+$ and for all $u_0 \in E$ and each $\varepsilon > 0$ there exists $\delta > 0$ such that for all $t \in \mathbb{R}^+$ we have

$$\int_{Z} |A^{-\delta_{G}} \left(G(t, u; z) - G(t, u_{0}; z) \right)|_{E}^{p} \nu(dz) \leq \varepsilon \quad (\text{continuity})$$

provided $u \in E$ satisfies $|u - u_0|_E \leq \delta$.

The Result

Given

Theorem 3 (Brzeźniak, E.H.) Assume there exists some $\epsilon < 1$ such that $A^{-\epsilon}x \in E$. Then, under the assumption before, there exists a martingale solution $u = \{u(t), t \ge 0\}$ of (*****), such that

$$\int_0^\infty e^{-\lambda t} \mathbb{E} |u(t)|_E^p \, dt < \infty$$

and for any $\delta > \max(0, \delta_F - 1 + \frac{1}{p}, \delta_G + \frac{1}{p}, \epsilon)$ and we have a.s. $u \in \mathbb{D}(\mathbb{R}^+; B)$, where $B = V_{-\delta}$.

Let $s_n = \frac{k}{2^n}T$ if $\frac{k}{2^n}T \le s < \frac{k+1}{2^n}T$. Define a sequence of adapted *E*-valued processes by

$$\bar{u}_{n}(t) = e^{-tA}x_{n} + \int_{0}^{t} e^{-(t-s)A}F(s,\hat{u}_{n}(s_{n})) ds + \int_{0}^{t} \int_{Z} e^{-(t-s)A}G(s,\hat{u}_{n}(s_{n});z) \,\tilde{\eta}(dz;ds),$$

where $u(s_n)$ is defined by $\hat{u}(s_n) = u_0$ for $0 \le s < 2^{-n}$, and

$$\hat{u}(s_n) := 2^n \int_{s_n - 2^{-n}}^{s_n} \bar{u}_n(r) \, dr.$$

Let $s_n = \frac{k}{2^n}T$ if $\frac{k}{2^n}T \le s < \frac{k+1}{2^n}T$. Define a sequence of adapted *E*-valued processes by

$$\bar{u}_{n}(t) = e^{-tA}x_{n} + \int_{0}^{t} e^{-(t-s)A}F(s,\hat{u}_{n}(s_{n})) ds + \int_{0}^{t} \int_{Z} e^{-(t-s)A}G(s,\hat{u}_{n}(s_{n});z) \,\tilde{\eta}(dz;ds),$$

where $u(s_n)$ is defined by $\hat{u}(s_n) = u_0$ for $0 \le s < 2^{-n}$, and

$$\hat{u}(s_n) := 2^n \int_{s_n-2^{-n}}^{s_n} \bar{u}_n(r) \, dr.$$

Moreover, let $\bar{\eta}_n := \eta$, $n \in \mathbb{N}$.

Let $s_n = \frac{k}{2^n}T$ if $\frac{k}{2^n}T \le s < \frac{k+1}{2^n}T$. Define a sequence of adapted *E*-valued processes by

$$\bar{u}_{n}(t) = e^{-tA}x_{n} + \int_{0}^{t} e^{-(t-s)A}F(s,\hat{u}_{n}(s_{n})) ds + \int_{0}^{t} \int_{Z} e^{-(t-s)A}G(s,\hat{u}_{n}(s_{n});z) \,\tilde{\eta}(dz;ds),$$

where $u(s_n)$ is defined by $\hat{u}(s_n) = u_0$ for $0 \le s < 2^{-n}$, and

$$\hat{u}(s_n) := 2^n \int_{s_n-2^{-n}}^{s_n} \bar{u}_n(r) \, dr.$$

Moreover, let $\bar{\eta}_n := \eta$, $n \in \mathbb{N}$.

In this way we constructed a sequence

 $\{(\bar{u}_n, \bar{\eta}_n), n \in \mathbb{N}\}.$

Proof - The Deterministic Convolution

For fixed $\alpha \in (0,1]$ and $f \in \mathbb{L}^p_{\lambda}(\mathbb{R}^+; E)$ let $\Lambda^{-\alpha}$ be defined by

$$\left(\Lambda^{-\alpha}f\right)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} e^{-(t-s)A} f(s) \, ds, \ t \in \mathbb{R}^+$$

Then, for any $\alpha \in (0, 1]$ the operator satisfies following properties:

• $\Lambda^{-\alpha} : \mathbb{L}^p([0,T];E) \to \mathbb{L}^p([0,T];E)$ is bounded and compact;

for $0 < \beta < \alpha - \frac{1}{q} + \gamma - \delta$, $\Lambda^{-\alpha} : \mathbb{L}^q([0,T];V_{\gamma}) \to \mathcal{C}^{(\beta)}([0,T];V_{\delta})$ is bounded and compact;

[Here we use results of Brzeźniak (1997)]

Proof - the Stochastic Convolution Term

In contrary to the stochastic convolution driven by Wiener noise, the convolution driven by Lévy noise cannot be decomposed !

$$(\mathfrak{G}u)(t) = \int_0^t e^{-(t-s)A} G(s, u(s); z) \tilde{\eta}(dz, ds), \quad t \in \mathbb{R}^+$$

Under the assumption of the Theorem the set

$$\left\{\mathfrak{G}x\ \middle|\ x\in\mathbf{L}^0\left(\Omega;\mathbb{L}^p(\mathbb{R}^+;E)\right)\right\}$$

is tight on $\mathbb{L}^p(\mathbb{R}^+; E)$ and on $\mathbb{D}(\mathbb{R}^+; B)$.

(1) The laws of the set $\{(\bar{u}_n, \bar{\eta}_n), n \in \mathbb{N}\}$ are tight on $\mathbb{L}^p_{\lambda}(\mathbb{R}^+; E) \times M(\mathbb{R}^+ \times Z)$.

(2) The laws of the set $\{(\bar{u}_n, \bar{\eta}_n), n \in \mathbb{N}\}$ are tight on $\mathbb{D}(\mathbb{R}^+; B) \times M(\mathbb{R}^+ \times Z)$.

(1) The laws of the set $\{(\bar{u}_n, \bar{\eta}_n), n \in \mathbb{N}\}$ are tight on $\mathbb{L}^p_{\lambda}(\mathbb{R}^+; E) \times M(\mathbb{R}^+ \times Z)$. (2) The laws of the set $\{(\bar{u}_n, \bar{\eta}_n), n \in \mathbb{N}\}$ are tight on $\mathbb{D}(\mathbb{R}^+; B) \times M(\mathbb{R}^+ \times Z)$.

(1) and (2) \Rightarrow there exist a subsequence of $\{(\bar{u}_n, \bar{\eta}_n), n \in \mathbb{N}\}$ and

 $(\chi^*, \mu^*) \in \mathcal{M}\left(\mathbb{L}^p_\lambda(\mathbb{R}^+; E) \cap \mathbb{D}(\mathbb{R}^+; B) \times M(\mathbb{R}^+ \times Z)\right)$

such that the laws of (\bar{u}_n, η_n) converge to (χ^*, μ^*) .

(1) The laws of the set $\{(\bar{u}_n, \bar{\eta}_n), n \in \mathbb{N}\}$ are tight on $\mathbb{L}^p_{\lambda}(\mathbb{R}^+; E) \times M(\mathbb{R}^+ \times Z)$. (2) The laws of the set $\{(\bar{u}_n, \bar{\eta}_n), n \in \mathbb{N}\}$ are tight on $\mathbb{D}(\mathbb{R}^+; B) \times M(\mathbb{R}^+ \times Z)$.

(1) and (2) \Rightarrow there exist a subsequence of $\{(\bar{u}_n, \bar{\eta}_n), n \in \mathbb{N}\}$ and

$$(\chi^*, \mu^*) \in \mathcal{M}\left(\mathbb{L}^p_\lambda(\mathbb{R}^+; E) \cap \mathbb{D}(\mathbb{R}^+; B) \times M(\mathbb{R}^+ \times Z)\right)$$

such that the laws of (\bar{u}_n, η_n) converge to (χ^*, μ^*) .

By the Skorohod embedding Theorem we know that there exists a probability space $(\check{\Omega}, \check{\mathcal{F}}, \check{\mathbb{P}})$, random variables $(\check{u}_n, \check{\eta}_n)$, $n \in \mathbb{N}$, and $(\check{u}^*, \check{\eta}^*)$ over $(\check{\Omega}, \check{\mathcal{F}}, \check{\mathbb{P}})$ such that

$$(\check{u}_n,\check{\eta}_n) \rightarrow (\check{u}^*,\check{\eta}^*) \quad \mathring{\mathbb{P}}\text{-a.s.};$$

 $\mathcal{L}((\check{u}_n,\check{\eta}_n)) = \mathcal{L}((\bar{u}_n,\bar{\eta}_n)).$

Let

$$\check{\mathcal{F}}_t := \sigma \left(\check{u}^*(s), \check{\eta}^*(A \times [0,s)), \check{u}_n(s), \check{\eta}_n(A \times [0,s)), n \in \mathbb{N}, 0 \le s \le t, A \in \mathcal{B}(Z) \right).$$

It remains to show that the system

$$(\check{\Omega}, \check{\mathcal{F}}, (\check{\mathcal{F}})_{t \ge 0}, \check{\mathbb{P}}, \check{\eta}^*, \check{u}^*)$$

is a martingale solution to (•). In particular, that $\check{\mathbb{P}}$ a.s.

$$\begin{split} \check{u}^*(t) &= e^{-tA}x + \int_0^t e^{-(t-s)A} F(\check{u}^*(s)) \, ds \\ &+ \int_0^t \int_Z e^{-(t-s)A} G(\check{u}^*(s);z) \, \tilde{\check{\eta}}^*(dz;ds), \quad t > 0. \end{split}$$

Here we have the following setting:

$$(\check{u}_n,\check{\eta}_n) \rightarrow (\check{u}^*,\check{\eta}^*) \quad \check{\mathbb{P}}\text{-a.s.};$$

 $\mathcal{L}((\check{u}_n,\check{\eta}_n)) = \mathcal{L}((\bar{u}_n,\bar{\eta}_n));$

Moreover, we know how \bar{u}_n is constructed. In particular,

$$\bar{u}_n(t) = e^{-tA}x_n + \int_0^t e^{-(t-s)A}F(s,\hat{u}_n(s_n))\,ds + \int_0^t \int_Z e^{-(t-s)A}G(s,\hat{u}_n(s_n);z)\,d\tilde{\eta}(dz;ds),$$

where $\hat{u}(s_n)$ is defined by

$$\hat{u}(s_n) := 2^n \int_{s_n - 2^{-n}}^{s_n} \bar{u}_n(r) \, dr.$$

Observe, the latter implies $\mathbb{E} \| \hat{u}_n - \bar{u}_n \|_{L^p_{\lambda}(\mathbb{R}_+, E)}^p \to 0.$

Definition of the Integral

Theorem 4 ^a Assume the following holds: $(\Omega_1, \mathcal{F}_1, (\mathcal{F}_t^1)_{t \ge 0}, \mathbb{P}_1) \text{ and } (\Omega_1, \mathcal{F}_1, (\mathcal{F}_t^1)_{t \ge 0}, \mathbb{P}_1) \text{ are two probability spaces};$ $(\xi_1, \eta_1) \text{ and } (\xi_2, \eta_2) \text{ belong a.s. to } L^p(\mathbb{R}_+; L^p(Z, \nu, E)) \times \mathcal{M}_I(S \times \mathbb{R}_+);$ $\eta_1 \text{ is a time homog. Prm on } Z \text{ over } (\Omega_1, \mathcal{F}_1, (\mathcal{F}_t^1)_{t \ge 0}, \mathbb{P}_1) \text{ with intensity } \nu;$ $\xi_1 \in \mathcal{M}^p(\Omega_1 \times \mathbb{R}_+; L^p(Z, \nu, E)) \text{ with respect to } (\mathcal{F}_t^1)_{t \ge 0};$ Then, if

$$\mathcal{L}\mathsf{aw}((\xi_1,\eta_1)) = \mathcal{L}\mathsf{aw}((\xi_2,\eta_2))$$

on $L^p(\mathbb{R}_+; L^p(Z, \nu, E)) \times \mathcal{M}_I(S \times \mathbb{R}_+)$, then

$$\mathcal{L}\mathsf{aw}\left(\left(\int_{0}^{\cdot}\int_{Z}\xi_{1}(s,z)\,\tilde{\eta}_{1}(dz;ds),\xi_{1},\eta_{1}\right)\right) = \mathcal{L}\mathsf{aw}\left(\left(\int_{0}^{\cdot}\int_{Z}\xi_{2}(s,z)\,\tilde{\eta}_{2}(dz;ds),\xi_{2},\eta_{2}\right)\right)$$

on $\mathbb{D}(\mathbb{R}_{+},E) \cap L^{p}(\mathbb{R}_{+},E) \times L^{p}(\mathbb{R}_{+};L^{p}(S,\nu,E)) \times \mathcal{M}_{I}(S \times \mathbb{R}_{+}).$

^aEH and Brzeźniak (2009), Proceeding of the Ascona workshop 2008

Content of the work: Brzeźniak and E.H. (2008):

Let us assume that $1 , <math>1 \le q \le p$, E is a M-type p Banach space, and -A is an infinitesimal generator of an analytic semigroup $\{e^{-tA}\}_{0 \le t < \infty}$ in E. We consider the following SPDE written in the Itô-form

$$\begin{cases} du(t) &= Au(t) dt + \int_Z \xi(t;x) \tilde{\eta}(dx;dt), \\ u(0) &= 0, \end{cases}$$

where $\xi : [0,T] \times \Omega \rightarrow L^p(Z,\nu;E)$ is a progressively measurable process.

Then, we have

$$\mathbb{E}\int_0^T |u(t)|^p_{D_A(\theta+\frac{1}{p},q)} dt \le C \mathbb{E}\int_0^T \int_Z |\xi(t,z)|^p_{D_A(\theta,q)} dt.$$

(-8)

The Stochastic Convolution Process

Theorem 5 (EH and Brzeźniak (2009)) Assume the setting of Theorem (4). In addition, assume that -A is an infinitesimal generator of an analytic semigroup $\{e^{-t}\}_{0 \le t < \infty}$ in *E*. Let us consider the following SPDE written in the Itô-form

$$\begin{cases} du(t) &= Au(t) dt + \int_Z \xi(t;x) \tilde{\eta}(dx;dt), \\ u(0) &= 0, \end{cases}$$

where $\xi : [0,T] \times \Omega \to L^p(Z,\nu;E)$ is a progressively measurable process. Then, if $\mathcal{L}aw((\xi_1,\eta_1)) = \mathcal{L}aw((\xi_2,\eta_2))$

on $L^p(\mathbb{R}_+; L^p(Z, \nu, E)) \times \mathcal{M}_I(S \times \mathbb{R}_+)$, then

$$\mathcal{L}\mathsf{aw}\Big(\Big(\int_0^{\cdot}\int_Z e^{-(\cdot-s)}\xi_1(s,z)\,\tilde{\eta}_1(dz;ds),\xi_1,\eta_1\Big)\Big) = \mathcal{L}\mathsf{aw}\Big(\Big(\int_0^{\cdot}\int_Z e^{-(\cdot-s)}\xi_2(s,z)\,\tilde{\eta}_2(dz;ds),\xi_2,\eta_2\Big)\Big)$$

on $\mathbb{D}(\mathbb{R}_+, B) \cap L^p(\mathbb{R}_+, X) \times L^p(\mathbb{R}_+; L^p(Z, \nu, E)) \times \mathcal{M}_I(S \times \mathbb{R}_+).$

SPDE of Reaction Diffusion Type

We are interested in SPDEs of the following type

$$\left\{ \begin{array}{ll} \frac{\partial}{\partial t}u(t,\xi) &= -(-\Delta)^{k}u(t,\xi) - |u(t,\xi)|^{q}\operatorname{sgn}(u(t,\xi)) + b\,u(t,\xi) \\ &+ g(u(t-,\xi),\xi;\zeta)\,\,\dot{L}(\xi,t),\,\,\xi\in\mathcal{O},\,\,t>0, \\ u(0,\xi) &= u_{0}(\xi), \quad \xi\in\mathcal{O}, \\ u(t,\xi) &= 0,\,\,\text{for}\,\,\xi\in\partial\mathcal{O},\,t>0\,. \end{array} \right.$$

where $b \in \mathbb{R}$ and \dot{L} denotes roughly spoken the Radon Nikodym derivative of the space time Poissonian noise.

We are asking for the conditions on q and k under which a solution to the equation (\Diamond) exists.

Theorem 6 (Brzeźniak, E.H. (2009)) If

$$d < \frac{2k}{q} + 4\left(\frac{1}{q} - \frac{1}{p}\right)$$

and $x_0 \in W_p^{-(d-\frac{a}{p})}(\mathcal{O})$, then, there exists a martingale solution to (*), such that

 $\mathbb{P}\left(u \in \mathbb{D}(\mathbb{R}_+; B)\right) = 1,$

for $B = W_p^{-\gamma}(\mathcal{O})$ for any $\gamma \in \mathbb{R}$ with $\gamma > d - \frac{d}{p}$.

SPDE of Reaction Diffusion Type

Let F be defined on
$$X = H_p^{\gamma_1}(\mathcal{O})^a$$
 for $\gamma_1 > \frac{d}{p}$ by

$$F(x)(\xi) := -|x(\xi)|^q \operatorname{sgn}(x(\xi)) + x(\xi) , \xi \in \mathcal{O}.$$

Let $F_n: X \to X$ be defined by

$$F_n(x) = \begin{cases} F(x), & \text{if } |x|_X \le n, \\ F\left(\frac{n}{|x|_X}x\right), & \text{otherwise.} \end{cases}$$

Since we have $|F_n(y)|_X \le a(n)$ for all $y \in X$, it follows in view of the Theorem before, that there exists a martingale solution.

Let us denoted the family of martingales solutions by $\{u_n, n \in \mathbb{N}\}$. The next step is to show, that the laws of the family of martingale solutions $\{u_n, n \in \mathbb{N}\}$ are tight in $\mathcal{M}(\mathbb{D}(\mathbb{R}^+; B))$.

^aNote, that $H_p^{\gamma_1}(\mathcal{O}) \hookrightarrow C_b^0(\mathcal{O}).$

Lemma 1 (Da Prato) Assume that X is a Banach space, -A a generator of a strongly continuous semigroup of bounded linear operators on X and a mapping $F: X \to X$ such that

$$< -Ax + F(t, x + y), z > \leq (1 + |y|_X^q) - k|x|_X,$$
 (-7)

for any $z \in x^* = \partial |x|$. Assume that for some $\tau > 0$ two continuous functions $z, v : [0, \infty) \to X$ satisfy

$$z(t) = \int_0^t e^{-(t-s)A} F(z(s) + v(s)) \, ds, \ t \le \tau.$$

Then

$$|z(t)|_X \leq \int_0^t e^{-k(t-s)} \left(1 + |v(s)|_X^q\right) ds, \ 0 \leq t \leq \tau.$$

SPDE of Reaction Diffusion Type

Let

$$v_n(t) := (\Lambda^{-1}u)(t) = \int_0^t e^{-(t-s)A}G(z, u_n(t))^a \tilde{\eta}(dz, ds), \quad t \in \mathbb{R}^+,$$
and

$$z_n(t) = \int_0^t e^{-(t-s)A}F_n(z_n(s) + v_n(s)) \, ds, \quad t \leq \tau.$$
Then $z_n + v_n = u_n$ is the solution to

$$\frac{\partial}{\partial t}u_n(t,\xi) = -(-\Delta)^k u_n(t,\xi) + F_n(u_n(t,\xi)) + g(u_n(t,\xi),\xi;\zeta) \dot{L}(\xi,t),$$

$$u_n(0,\xi) = u_0(\xi), \quad \xi \in \mathcal{O},$$

$$u_n(t,\xi) = 0, \text{ for } \xi \in \partial \mathcal{O}, \quad t > 0.$$

 ${}^{\boldsymbol{a}}G$ is the E valued operater associated to g

Let $\gamma_0 \geq \gamma_1 \geq \gamma_2$ and

$$E := H_p^{\gamma_0}(\mathcal{O}),$$

$$X := H_p^{\gamma_1}(\mathcal{O}) = (E, B)_{[1-\frac{p}{q}]}, \quad \gamma_1 := \gamma_2 + \frac{p}{q}(\gamma_0 - \gamma_2).$$

$$B := H_p^{\gamma_2}(\mathcal{O}) \text{ and }$$

Theorem (Bergh and Löfström)

$$\left(\mathbb{L}^p(\mathbb{R}^+; E), \mathbb{L}^\infty(\mathbb{R}^+; B)\right)_{\left[1 - \frac{p}{q}\right]} = \mathbb{L}^q\left(\mathbb{R}^+; (E, B)_{\left[1 - \frac{p}{q}\right]}\right)$$

SPDE of Reaction Diffusion Type

- if $\gamma_2 < \frac{d}{p} d$ then the space time Poissonian noise can be identified in $H_p^{\gamma_2}(\mathcal{O})$.
- if $\gamma_0 \gamma_2 < \frac{2}{p}$, that the set $\left\{ \Lambda^{-1} x \middle| x \in \mathbf{L}^0 \left(\Omega; \mathbb{L}^p(\mathbb{R}^+; E) \right) \cap \mathbf{L}^0 \left(\Omega; \mathbb{D}(\mathbb{R}^+; B) \right) \right\}$ is tight in $\mathcal{M}(\mathbb{L}(\mathbb{R}^+; E))$ and $\mathcal{M}(\mathbb{D}(\mathbb{R}^+; B))$. ■ if $\gamma_1 > \frac{d}{p}$ then $C_b^0(\mathcal{O}) \hookrightarrow H_p^{\gamma_1}(\mathcal{O})$ and the mappings F_n are satisfying the assumption of the Lemma before;

SPDE of Reaction Diffusion Type

■ ⇒ the set $\{v_n, n \in \mathbb{N}\}$ is tight in $\mathcal{M}(\mathbb{L}^q(\mathbb{R}^+; X));$

By the lemma before, one knows, that the set $\{z_n, n \in \mathbb{N}\}$ given by

$$z_n(t) = \int_0^t e^{-(t-s)A} F_n(z_n(s) + v_n(s)) \, ds, \quad t \le \tau.$$

is tight in $\mathcal{M}(\mathcal{C}(\mathbb{R}^+;X))$;

 $\blacksquare \Longrightarrow$ the set $\{u_n = v_n + z_n, n \in \mathbb{N}\}$ is tight in $\mathcal{M}(\mathbb{D}(\mathbb{R}^+; B))$.

Thank you for your attention