Convergence of the stochastic Euler scheme for locally Lipschitz coefficients

Arnulf Jentzen

Joint work with Martin Hutzenthaler

Department of Mathematics Bielefeld University

19.11.2009

I ⇒

Overview

- Stochastic differential equations (SDEs)
- 2 Computational problem and the Monte Carlo Euler method
- 3 Convergence for SDEs with globally Lipschitz continuous coefficients
- Convergence for SDEs with superlinearly growing coefficients

Stochastic differential equations (SDEs)

Computational problem and the Monte Carlo Euler method Convergence for SDEs with globally Lipschitz continuous coefficients Convergence for SDEs with superlinearly growing coefficients

Overview

2 Computational problem and the Monte Carlo Euler method

3 Convergence for SDEs with globally Lipschitz continuous coefficients

Onvergence for SDEs with superlinearly growing coefficients

Consider • a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with a normal filtration $(\mathcal{F}_t)_{t \in [0, T]}$ and T > 0

- a standard $(\mathcal{F}_t)_{t\in[0,T]}$ -Brownian motion $W:[0,T] imes\Omega o\mathbb{R}$
- \bullet continuous functions $\mu,\sigma:\mathbb{R}\to\mathbb{R}$ and
- a $\mathcal{F}_0/\mathcal{B}(\mathbb{R})$ -measurable mapping $\xi: \Omega \to \mathbb{R}$.

Then let $X : [0, T] \times \Omega \to \mathbb{R}$ be an adapted stochastic process with continuous sample paths which fulfills

$$X_t = \xi + \int_0^t \mu(X_s) \, ds + \int_o^t \sigma(X_s) \, dW_s \quad \mathbb{P} ext{-a.s.}$$

for all $t \in [0, T]$. Short form:

$$dX_t = \mu(X_t) dt + \sigma(X_t) dW_t, \quad X_0 = \xi, \quad t \in [0, T].$$

Stochastic differential equations (SDEs)

Computational problem and the Monte Carlo Euler method Convergence for SDEs with globally Lipschitz continuous coefficients Convergence for SDEs with superlinearly growing coefficients

Examples of SDEs I

Black-Scholes model with $\bar{\mu}, \bar{\sigma}, x_0 \in (0, \infty)$:

$$dX_t = \bar{\mu} X_t dt + \bar{\sigma} X_t dW_t, \qquad X_0 = x_0, \qquad t \in [0, T]$$

A SDE with a cubic drift and additive noise:

$$dX_t = -X_t^3 dt + dW_t, \qquad X_0 = 0, \qquad t \in [0, 1]$$

A SDE with a cubic drift and multiplicative noise:

$$dX_t = -X_t^3 dt + 6 X_t \circ dW_t, \qquad X_0 = 1, \qquad t \in [0,3]$$

Stochastic differential equations (SDEs)

Computational problem and the Monte Carlo Euler method Convergence for SDEs with globally Lipschitz continuous coefficients Convergence for SDEs with superlinearly growing coefficients

Examples of SDEs II

A stochastic Verhulst equation with $\eta, x_0 \in (0, \infty)$:

$$dX_t = X_t (\eta - X_t) dt + X_t dW_t, \quad X_0 = x_0, \quad t \in [0, T]$$

A Feller diffusion with logistic growth with $\eta, x_0 \in (0, \infty)$:

$$dX_t = X_t (\eta - X_t) dt + \sqrt{X_t} dW_t, \qquad X_0 = x_0, \qquad t \in [0, T]$$

イロト イヨト イヨト

Overview

Stochastic differential equations (SDEs)

2 Computational problem and the Monte Carlo Euler method

3 Convergence for SDEs with globally Lipschitz continuous coefficients

Onvergence for SDEs with superlinearly growing coefficients

Weak approximation problem of the SDE (see e.g. Kloeden & Platen (1992))

Suppose we want to compute

$$\mathbb{E}\Big[f(X_T)\Big]$$

for a given smooth function $f:\mathbb{R}\to\mathbb{R}$ whose derivatives grow at most polynomially.

For instance, $f(x) = x^2$ for all $x \in \mathbb{R}$ and we want to compute

$$\mathbb{E}\Big[(X_T)^2\Big]$$

the second moment of the SDE.

Approximation of $\mathbb{E}\left[f(X_T)\right]$

The stochastic Euler scheme $Y_k^N : \Omega \to \mathbb{R}$, $k \in \{0, 1, ..., N\}$, $N \in \mathbb{N}$, is given by $Y_0^N(\omega) = \xi(\omega)$ and

$$\begin{aligned} \mathbf{Y}_{k+1}^{N}(\omega) \\ &= \mathbf{Y}_{k}^{N}(\omega) + \frac{T}{N} \cdot \mu \big(\mathbf{Y}_{k}^{N}(\omega) \big) + \sigma \big(\mathbf{Y}_{k}^{N}(\omega) \big) \cdot \Big(\mathbf{W}_{\frac{(k+1)T}{N}}(\omega) - \mathbf{W}_{\frac{kT}{N}}(\omega) \Big) \end{aligned}$$

for all $\omega \in \Omega$, $k \in \{0, 1, ..., N-1\}$ and all $N \in \mathbb{N}$. Let $Y_k^{N,m} : \Omega \to \mathbb{R}$, $k \in \{0, 1, ..., N\}$, $N \in \mathbb{N}$, for $m \in \mathbb{N}$ be independent copies of the Euler approximations. The **Monte Carlo Euler approximation** is then given by

$$\frac{1}{M}\left(\sum_{m=1}^{M}f(Y_{N}^{N,m})\right)\approx\mathbb{E}\Big[f(X_{T})\Big]$$

with $N \in \mathbb{N}$ time steps and $M \in \mathbb{N}$ Monte Carlo runs.

Approximation of $\mathbb{E}[f(X_T)]$

The stochastic Euler scheme $Y_k^N : \Omega \to \mathbb{R}$, $k \in \{0, 1, ..., N\}$, $N \in \mathbb{N}$, is given by $Y_0^N(\omega) = \xi(\omega)$ and

$$\begin{aligned} \mathbf{Y}_{k+1}^{N}(\omega) \\ &= \mathbf{Y}_{k}^{N}(\omega) + \frac{T}{N} \cdot \mu \big(\mathbf{Y}_{k}^{N}(\omega) \big) + \sigma \big(\mathbf{Y}_{k}^{N}(\omega) \big) \cdot \Big(\mathbf{W}_{\frac{(k+1)T}{N}}(\omega) - \mathbf{W}_{\frac{kT}{N}}(\omega) \Big) \end{aligned}$$

for all $\omega \in \Omega$, $k \in \{0, 1, ..., N-1\}$ and all $N \in \mathbb{N}$. Let $Y_k^{N,m} : \Omega \to \mathbb{R}$, $k \in \{0, 1, ..., N\}$, $N \in \mathbb{N}$, for $m \in \mathbb{N}$ be independent copies of the Euler approximations. The **Monte Carlo Euler approximation** is then given by

$$\frac{1}{N^2}\left(\sum_{m=1}^{N^2}f(Y_N^{N,m})\right)\approx \mathbb{E}\Big[f(X_T)\Big]$$

with $N \in \mathbb{N}$ time steps and $N^2 \in \mathbb{N}$ Monte Carlo runs.

Overview

2 Computational problem and the Monte Carlo Euler method

3 Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

The triangle inequality shows

$$\left| \mathbb{E} \left[f(X_{T}) \right] - \frac{1}{N^{2}} \sum_{m=1}^{N^{2}} f(Y_{N}^{N,m}) \right| \\ \leq \underbrace{\left| \mathbb{E} \left[f(X_{T}) \right] - \mathbb{E} \left[f(Y_{N}^{N}) \right] \right|}_{\text{time discretization error}} + \underbrace{\left| \mathbb{E} \left[f(Y_{N}^{N}) \right] - \frac{1}{N^{2}} \sum_{m=1}^{N^{2}} f(Y_{N}^{N,m}) \right|}_{\text{statistical error}}$$
(1)

for all $N \in \mathbb{N}$.

The stochastic Euler scheme converges in the numerically weak sense if

$$\lim_{N \to \infty} \left| \mathbb{E} \left[f \left(X_T \right) \right] - \mathbb{E} \left[f \left(Y_N^N \right) \right] \right| = 0$$
(2)

holds for every smooth function $f : \mathbb{R} \to \mathbb{R}$ whose derivatives have at most polynomial growth (see e.g. Kloeden & Platen (1992), Milstein (1995), Talay (1996), Higham (2001), Rössler (2003)).

Numerically weak convergence

Theorem (see e.g. Kloeden & Platen (1992))

Let $\mu, \sigma, f : \mathbb{R} \to \mathbb{R}$ be four times continuously differentiable with at most polynomially growing derivatives. Moreover, let $\mu, \sigma : \mathbb{R} \to \mathbb{R}$ be **globally** Lipschitz continuous. Then there is a real number C > 0 such that

$$\left|\mathbb{E}\left[f(X_{T})\right] - \mathbb{E}\left[f(Y_{N}^{N})\right]\right| \leq C \cdot \frac{1}{N}$$

holds for all $N \in \mathbb{N}$.

The stochastic Euler scheme converges in the numerically weak sense if the coefficients of the SDE are smooth and globally Lipschitz continuous.

Numerically weak convergence yields

$$\begin{split} & \left| \mathbb{E} \Big[f(X_T) \Big] - \frac{1}{N^2} \sum_{m=1}^{N^2} f(Y_N^{N,m}) \right| \\ & \leq \left| \mathbb{E} \Big[f(X_T) \Big] - \mathbb{E} \Big[f(Y_N^N) \Big] \Big| + \left| \mathbb{E} \Big[f(Y_N^N) \Big] - \frac{1}{N^2} \sum_{m=1}^{N^2} f(Y_N^{N,m}) \right| \\ & \leq C \cdot \frac{1}{N} + C_{\varepsilon} \cdot \frac{1}{N^{(1-\varepsilon)}} \leq (C + C_{\varepsilon}) \cdot \frac{1}{N^{(1-\varepsilon)}} \qquad \mathbb{P} - \text{a.s.} \end{split}$$

for all $N \in \mathbb{N}$ and all $\varepsilon \in (0, 1)$ with an appropriate constant $C \in (0, \infty)$ and appropriate random variables $C_{\varepsilon} : \Omega \to [0, \infty), \varepsilon \in (0, 1)$.

The Monte Carlo Euler method converges if the coefficients of the SDE are smooth and globally Lipschitz continuous.

・ロト ・同ト ・ヨト ・ヨト

Examples of SDEs I

The global Lipschitz assumption on the coefficients of the SDE is a serious shortcoming:

<u>Black-Scholes model</u> with $\bar{\mu}, \bar{\sigma}, x_0 \in (0, \infty)$:

$$dX_t = \bar{\mu} X_t dt + \bar{\sigma} X_t dW_t, \qquad X_0 = x_0, \qquad t \in [0, T]$$

Overview

2 Computational problem and the Monte Carlo Euler method

3 Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

Theorem (Hutzenthaler & J (2009))

Suppose $\mathbb{P} \big[\sigma(\xi) \neq \mathbf{0} \big] > \mathbf{0}$ and let $\alpha, \mathbf{C} > \mathbf{1}$ be such that

$$|\mu(x)| \geq rac{|x|^lpha}{C}$$
 and $|\sigma(x)| \leq C|x|$

holds for all
$$|\mathbf{x}| \geq C$$
. If the exact solution of the SDE satisfies
 $\mathbb{E}\left[|X_T|^p\right] < \infty$ for one $p \in [1, \infty)$, then

$$\lim_{N \to \infty} \mathbb{E}\left[|X_T - Y_N^N|^p\right] = \infty, \quad \lim_{N \to \infty} \left|\mathbb{E}\left[|X_T|^p\right] - \mathbb{E}\left[|Y_N^N|^p\right]\right| = \infty$$
holds.

Strong and numerically weak convergence fails to hold if the diffusion coefficient grows at most linearly and the drift coefficient grows superlinearly.

Examples of SDEs I

Divergence of Euler's method

$$\lim_{N \to \infty} \mathbb{E} \left| X_{T} - Y_{N}^{N} \right| = \infty, \quad \lim_{N \to \infty} \left| \mathbb{E} \left[(X_{T})^{2} \right] - \mathbb{E} \left[(Y_{N}^{N})^{2} \right] \right| = \infty$$

holds for:

A SDE with a cubic drift and additive noise:

$$dX_t = -X_t^3 dt + dW_t, \qquad X_0 = 0, \qquad t \in [0, 1]$$

A SDE with a cubic drift and multiplicative noise:

$$dX_t = -X_t^3 dt + 6 X_t \circ dW_t, \qquad X_0 = 1, \qquad t \in [0,3]$$

Examples of SDEs II

Divergence of Euler's method

$$\lim_{N \to \infty} \mathbb{E} \left| X_{T} - Y_{N}^{N} \right| = \infty, \quad \lim_{N \to \infty} \left| \mathbb{E} \left[(X_{T})^{2} \right] - \mathbb{E} \left[(Y_{N}^{N})^{2} \right] \right| = \infty$$

holds for:

A stochastic Verhulst equation with $\eta, x_0 \in (0, \infty)$:

$$dX_t = X_t (\eta - X_t) dt + X_t dW_t, \quad X_0 = x_0, \quad t \in [0, T]$$

A Feller diffusion with logistic growth with η , $x_0 \in (0, \infty)$:

$$dX_t = X_t \left(\eta - X_t\right) dt + \sqrt{X_t} \, dW_t, \qquad X_0 = x_0, \qquad t \in [0, T]$$

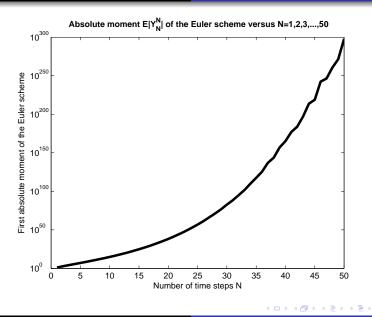
Simulations of the first absolute moment of the solution of a SDE

Consider the SDE

$$dX_t = -10 \operatorname{sgn}(X_t) |X_t|^{1.1} dt + 4 dW_t, \qquad X_0 = 0, \qquad t \in [0, 10]$$

The first absolute moment of X_T with T = 10 satisfies

$$\mathbb{E}\Big[|X_{10}|\Big]pprox 0.7141$$
 .



Simulations for a SDE with a cubic drift and multiplicative noise

Consider the SDE

$$dX_t = -X_t^3 dt + 6 X_t \circ dW_t, \qquad X_0 = 1, \qquad t \in [0,3].$$

The second moment of X_T with T = 3 satisfies

$$\mathbb{E}\left[\left(X_3
ight)^2
ight]pprox$$
 1.5423 .

Different simulation values of the Monte Carlo Euler method with 300 time steps and 10 000 Monte Carlo runs:

NaN	0.5097	NaN	0.5378	0.5197
0.5243	NaN	NaN	0.5475	NaN

Proof of divergence of Euler's method in the numerically weak sense

For simplicity we restrict our attention to the SDE

$$dX_t = -X_t^3 dt + dW_t, \qquad X_0 = 0, \qquad t \in [0, 1]$$

and show

$$\lim_{N \to \infty} \mathbb{E} \Big[\big| X_T - Y_N^N \big|^p \Big] = \infty, \quad \lim_{N \to \infty} \Big| \mathbb{E} \Big[\big| X_T \big|^p \Big] - \mathbb{E} \Big[\big| Y_N^N \big|^p \Big] \Big| = \infty$$

for every $p \in [1, \infty)$. Of course, it remains to show

$$\lim_{N\to\infty}\mathbb{E}\left|Y_{N}^{N}\right|=\infty.$$

Proof: Define

$$\Omega_{N} := \left\{ \omega \in \Omega \left| \sup_{k \in \{1,2,\dots,N-1\}} \left| W_{\frac{k+1}{N}}(\omega) - W_{\frac{k}{N}}(\omega) \right| \le 1, \right. \\ \left| W_{\frac{1}{N}}(\omega) - W_{0}(\omega) \right| \ge 3N \right\}$$

for every $N \in \mathbb{N}$. Claim:

$$\left| \mathsf{Y}_{\mathsf{k}}^{\mathsf{N}}(\omega) \right| \geq (\mathsf{3N})^{\left(\mathsf{2}^{(\mathsf{k}-1)} \right)} \quad \forall \; \mathsf{k} \in \{\mathsf{1}, \mathsf{2}, \dots, \mathsf{N}\}$$
 (3)

for every $\omega \in \Omega_N$ and every $N \in \mathbb{N}$. We fix $N \in \mathbb{N}$, $\omega \in \Omega_N$ and show (3) by induction on $k \in \{1, 2, \dots, N\}$.

$$\begin{split} \left| Y_{1}^{N}(\omega) \right| &= \left| Y_{0}^{N}(\omega) - \frac{1}{N} \left(Y_{0}^{N}(\omega) \right)^{3} + \left(W_{\frac{1}{N}}(\omega) - W_{0}(\omega) \right) \right| \\ &= \left| W_{\frac{1}{N}}(\omega) - W_{0}(\omega) \right| \geq 3N \end{split}$$

Induction hypothesis
$$|\mathbf{Y}_{\mathbf{k}}^{\mathbf{N}}(\omega)| \geq (\mathbf{3N})^{(\mathbf{2}^{(\mathbf{k}-1)})}$$
 for one $k \in \{1, 2, \dots, N\}$:

$$\begin{split} \left| Y_{k+1}^{N}(\omega) \right| &= \left| Y_{k}^{N}(\omega) - \frac{1}{N} \left(Y_{k}^{N}(\omega) \right)^{3} + \left(W_{\frac{k+1}{N}}(\omega) - W_{\frac{k}{N}}(\omega) \right) \right| \\ &\geq \left| \frac{1}{N} \left(Y_{k}^{N}(\omega) \right)^{3} \right| - \left| Y_{k}^{N}(\omega) \right| - \left| W_{\frac{k+1}{N}}(\omega) - W_{\frac{k}{N}}(\omega) \right| \\ &\geq \frac{1}{N} \left| Y_{k}^{N}(\omega) \right|^{3} - \left| Y_{k}^{N}(\omega) \right| - 1 \\ &\geq \frac{1}{N} \left| Y_{k}^{N}(\omega) \right|^{3} - 2 \left| Y_{k}^{N}(\omega) \right|^{2} \\ &\geq \left| Y_{k}^{N}(\omega) \right|^{2} \left(\frac{1}{N} \left| Y_{k}^{N}(\omega) \right| - 2 \right) \\ &\geq \left| Y_{k}^{N}(\omega) \right|^{2} \left(\frac{1}{N} 3N - 2 \right) = \left| Y_{k}^{N}(\omega) \right|^{2} \\ &\geq \left((3N)^{(2^{k-1})} \right)^{2} = (3N)^{(2^{k})} \end{split}$$

▲□▶★@▶★≧▶★≧▶ = 差

In particular, we obtain

$$\left|Y_{N}^{N}(\omega)\right| \geq (3N)^{\left(2^{(N-1)}\right)} \tag{4}$$

for all $\omega \in \Omega_N$ and all $N \in \mathbb{N}$. Recall that

$$\begin{split} \Omega_{N} &= \left\{ \omega \in \Omega \middle| \sup_{k \in \{1, \dots, N-1\}} \left| W_{\frac{k+1}{N}}(\omega) - W_{\frac{k}{N}}(\omega) \right| \leq 1, \\ & \left| W_{\frac{1}{N}}(\omega) - W_{0}(\omega) \right| \geq 3N \right\} \end{split}$$

holds and therefore

$$\mathbb{P}[\Omega_N] \ge e^{-cN^3} \tag{5}$$

for all $N\in\mathbb{N}$ with $c\in(0,\infty)$ appropriate. Combining (4) and (5) shows

$$\mathbb{E} \left| Y_{N}^{N} \right| \geq \mathbb{P} \big[\Omega_{N} \big] \cdot (3N)^{\left(2^{(N-1)} \right)} \geq e^{-cN^{2}} \cdot (3N)^{\left(2^{(N-1)} \right)} \xrightarrow{N \to \infty} \infty. \quad \Box$$

Do we need **new numerical methods** which converge in the numerically weak sense?

The Monte Carlo Euler method works very well in practice!

イロト イヨト イヨト

æ

Theorem (Hutzenthaler & J (2009))

Suppose that $\mu, \sigma, f: \mathbb{R} \to \mathbb{R}$ are four times continuously differentiable functions with at most polynomially growing derivatives. Moreover, let σ be globally Lipschitz continuous and let μ be **globally one-sided Lipschitz continuous**, i.e.,

$$(x-y)\cdot(\mu(x)-\mu(y))\leq L(x-y)^2$$

holds for all $x, y \in \mathbb{R}$, where $L \in (0, \infty)$ is a fixed constant. Then there are $\mathcal{F}/\mathcal{B}([0,\infty))$ -measurable mappings $C_{\varepsilon} \colon \Omega \to [0,\infty), \varepsilon \in (0,1)$, and a set $\tilde{\Omega} \in \mathcal{F}$ with $\mathbb{P}[\tilde{\Omega}] = 1$ such that

$$\left|\mathbb{E}\left[f(X_T)\right] - \frac{1}{N^2}\left(\sum_{m=1}^{N^2} f(Y_N^{N,m}(\omega))\right)\right| \le C_{\varepsilon}(\omega) \cdot \frac{1}{N^{(1-\varepsilon)}}$$

holds for every $\omega \in \tilde{\Omega}$, $N \in \mathbb{N}$ and every $\varepsilon \in (0, 1)$.

The theorem applies to ...

<u>Black-Scholes model</u> with $\bar{\mu}, \bar{\sigma}, x_0 \in (0, \infty)$:

$$dX_t = \bar{\mu} X_t \, dt + \bar{\sigma} X_t \, dW_t, \qquad X_0 = x_0, \qquad t \in [0, T]$$

A SDE with a cubic drift and additive noise:

$$dX_t = -X_t^3 dt + dW_t, \qquad X_0 = 0, \qquad t \in [0, 1]$$

A SDE with a cubic drift and multiplicative noise:

$$dX_t = -X_t^3 dt + 6 X_t \circ dW_t, \qquad X_0 = 1, \qquad t \in [0,3]$$

A stochastic Verhulst equation with η , $x_0 \in (0, \infty)$:

$$dX_t = X_t \left(\eta - X_t\right) dt + X_t dW_t, \quad X_0 = x_0, \quad t \in [0, T]$$

Sketch of the proof:

For simplicity we restrict our attention again to the SDE

$$dX_t = -X_t^3 dt + dW_t, \qquad X_0 = 0$$

for $t \in [0, T]$ with T = 1.

Define the events $\Omega_{\scriptscriptstyle N}\in \mathcal{F},\, {\it N}\in \mathbb{N},$ given by

$$\Omega_{N} := \left\{ \omega \in \Omega \middle| \sup_{0 \le t \le \tau} |W_{t}(\omega)| \le \sqrt{N/2} \right\}$$

for all $N \in \mathbb{N}.$ Moreover, define $au_n^N: \Omega o \{0, 1, \dots, N\}$ by

$$\begin{aligned} \tau_n^N(\omega) &:= \\ \max\left(\{0\} \cup \left\{k \in \{1, 2, \dots, n\} \ \left| \ \operatorname{sgn}(Y_{k-1}^N(\omega)) \neq \operatorname{sgn}(Y_k^N(\omega))\right\}\right) \end{aligned}$$

for every $\omega \in \Omega, \, n \in \{0,1,\ldots,N\}$ and every $N \in \mathbb{N}$.

Then we obtain

$$\begin{split} Y_n^N(\omega) &= Y_{\tau_n^N(\omega)}^N(\omega) + \sum_{k=\tau_n^N(\omega)}^{n-1} \left(Y_{k+1}^N(\omega) - Y_k^N(\omega) \right) \\ &= Y_{\tau_n^N(\omega)}^N(\omega) + \sum_{k=\tau_n^N(\omega)}^{n-1} \left(-\frac{1}{N} \left(Y_k^N(\omega) \right)^3 + \left(W_{\frac{k+1}{N}} - W_{\frac{k}{N}} \right) \right) \\ &= Y_{\tau_n^N(\omega)}^N(\omega) - \frac{1}{N} \left(\sum_{k=\tau_n^N(\omega)}^{n-1} \left(Y_k^N(\omega) \right)^3 \right) + \left(W_{\frac{n}{N}} - W_{\frac{\tau_n^N(\omega)}{N}} \right) \end{split}$$

for every $\omega \in \Omega,$ $n \in \{0, 1, \dots, N\}$ and every $N \in \mathbb{N}.$ This implies

$$\left| Y_{n}^{N}(\omega) \right| \leq \left| Y_{ au_{n}^{N}(\omega)}^{N}(\omega) + \left(W_{rac{n}{N}} - W_{rac{ au_{n}^{N}(\omega)}{N}}
ight)
ight|$$

for every $\omega \in \Omega$, $n \in \{0, 1, \dots, N\}$ and every $N \in \mathbb{N}$.

We have

$$\left| Y_{n}^{N}(\omega) \right| \leq \left| Y_{ au_{n}^{N}(\omega)}^{N}(\omega) + \left(W_{rac{n}{N}} - W_{rac{ au_{n}(\omega)}{N}}
ight) \right|$$

for every $\omega \in \Omega$, $n \in \{0, 1, \dots, N\}$ and every $N \in \mathbb{N}$.

This enables us to show the domination of Euler's method by twice the supremum of the Brownian motion

$$\sup_{k \in \{0,1,\dots,N\}} \left| \mathsf{Y}_k^{\mathsf{N}}(\omega) \right| \leq 2 \left(\sup_{0 \leq t \leq T} \left| \mathsf{W}_t(\omega) \right| \right)$$

for all $\omega \in \Omega_N$ and all $N \in \mathbb{N}$. The domination inequality can also be written as

$$\sup_{N\in\mathbb{N}}\sup_{k\in\{0,1,\ldots,N\}} \left(\mathbbm{1}_{\Omega_N}(\omega)\cdot \left|\,Y_k^N(\omega)\right|\right) \leq 2\left(\sup_{0\leq t\leq T}|\mathit{W}_t(\omega)|\right)$$

for every $\omega \in \Omega$.

In particular, we obtain

$$\sup_{N \in \mathbb{N}} \mathbb{E} \bigg[\mathbb{1}_{\Omega_{N}} \, \big| \, \mathsf{Y}_{N}^{N} \big|^{\rho} \bigg] \leq 2^{\rho} \cdot \mathbb{E} \left[\sup_{0 \leq t \leq \tau} | \, W_{t} |^{\rho} \right] < \infty$$

for all $p \in [1,\infty)$. This estimate complements the divergence

$$\lim_{N\to\infty} \mathbb{E}\Big[\mathbbm{1}_{(\Omega_N)^c} \,\big|\, Y_N^N\big|^p\Big] = \infty$$

for all $p \in [1, \infty)$. Using now that

$$\mathbb{P}\Big[(\Omega_N)^c\Big] \leq e^{-cN}$$

holds for all $N \in \mathbb{N}$ with an appropriate constant $c \in (0, \infty)$, an adaption of the arguments in the global Lipschitz case yields the convergence of the Monte Carlo Euler method.

Simulations for a SDE with a cubic drift and additive noise

Consider the SDE

$$dX_t = -X_t^3 dt + dW_t, \quad X_0 = 0, \quad t \in [0, 1].$$

The second moment of X_T with T = 1 satisfies

$$\mathbb{E}\left[\left(X_3
ight)^2
ight]pprox$$
 0.4529.

Different simulation values of the Monte Carlo Euler method:

$N = 2^{0}$	$N = 2^{1}$	$N = 2^{2}$	$N = 2^{3}$	$N = 2^{4}$
1.4516	0.5166	0.4329	0.5308	0.4285
$N = 2^{5}$	$N = 2^{6}$	$N = 2^{7}$	$N = 2^{8}$	N = 2 ⁹

< ∃ >

Summary

- Counterexamples of numerically weak convergence of the stochastic Euler scheme if the coefficients of the SDE grow superlinearly.
- The Monte Carlo Euler method nevertheless converges if the drift function is globally one-sided Lipschitz continuous, the diffusion function is globally Lipschitz continuous and both the drift and diffusion function are smooth with at most polynomially growing derivatives.

Remark: The situation is similar in the case of SPDEs and Multi-Level Monte Carlo.

Conclusion

Strong and numerically weak error estimates are convenient, since stochastic calculus is an L^2 -calculus (Itô isometry, etc.).

But, if Euler's method is used to solve one of the nonlinear problems above, then one needs different concepts such as

$$|X_T - Y_N^N| \xrightarrow{N \to \infty} 0$$
 \mathbb{P} -a.s.

for the strong approximation problem (Gyöngy (1998)) and

$$\left|\mathbb{E}\left[f(X_T)\right] - \frac{1}{N^2}\left(\sum_{m=1}^{N^2} f(Y_N^N)\right)\right| \xrightarrow{N \to \infty} 0 \qquad \mathbb{P}\text{-a.s.}$$

for the weak approximation problem (Hutzenthaler & J (2009)).

References

- Hutzenthaler and J (2009), Non-globally Lipschitz Counterexamples for the stochastic Euler scheme.
- Hutzenthaler and J (2009), Convergence of the stochastic Euler scheme for locally Lipschitz coefficients.