Spatial discretization of dynamical systems

Peter Kloeden Goethe-Universität, Frankfurt am Main

Joint work with

Phil Diamond (Brisbane), Peter Imkeller (Berlin),

Jamie Mustard (Geelong), Alexei Pokrovskii (Cork)

0-0

Spatial discretization

Consider a continuous mapping $f: X \to X$ on a compact metric space (X, d).

The difference equation

$$x_{n+1} = f(x_n) \tag{1}$$

generates a discrete time dynamical system on X.

Consider a finite subset X_h of X with grid fineness

$$\Delta_h := \sup_{x \in X} \inf_{x_h \in X_h} d(x, x_h)$$

Examples

•
$$X = [0, 1], \qquad X_h = 2^N$$
-bit computer numbers in $[0, 1]$

•
$$X = [0,1], \qquad X_h = \left\{\frac{j}{2^N} : j = 0, 1, \dots, N\right\}$$
 N-dyadic numbers

Consider a "projection" $P_h : X \to X_h$, e.g. round-off operator

The mapping $f_h := P_h \circ f : X_h \to X_h$ generates a discrete time dynamical system on X_h through the difference equation

$$x_{n+1}^{(h)} = f_h\left(x_n^{(h)}\right) \tag{2}$$

What is the relationship between the dynamical behaviour of the original dynamical system (1) and the spatially discretized system (2) as

$$\Delta_h \to 0$$
 ?

Plan

- the effect of spatial discretization on <u>attractors</u>
- \bullet the effect of spatial discretization on <u>chaos</u>
- the approximation of Lebesgue measure preserving maps on a torus by permutations
- approximation by <u>Markov chains</u> of invariant measures of spatial discretized
 - i) deterministic difference equations
 - ii) random difference equations

Spatial discretization of attractors

P. Diamond and P. E. Kloeden,
Spatial discretization of mappings, J. Computers Math. Applns. 26 (1993), 85-94.

P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and in their one-step discretizations,

SIAM J. Numer. Analysis 23 (1986), 986-995.

Assume that

- $f: X \to X$ is <u>Lipschitz</u> with constant K > 0
- the projection $P_h: X \to X_h$ satisfies for a constant M > 0

 $d\left(P_h(x), x\right) \le Mh$

Theorem 1

Suppose that a nonempty compact subset L of X is <u>uniformly asymptotically stable</u> (UAS) for the dynamical system f on X.

Then there exists a nonempty compact subset L_h of X_h which is UAS for the dynamical system $f_h := P_h \circ f$ on X_h such that the Hausdorff distance

 $H(L_h, L) \to 0$ as $h \to 0+$

Sketch of proof

The UAS of the set L for the system f implies that there exists a

Lyapunov function $V: X \to \mathbb{R}^+$,

which is Lipschitz continuous, and a constant 0 < q < 1 such that

$$V(f(x)) \le q V(x), \qquad \forall x \in X.$$

Then the discretized system satisfies the key inequality

$$V(f_h(x_h)) \le q V(x_h) + KMh$$
 $\forall x_h \in X_h$

Define

$$L_h := \left\{ x_h \in X_h : V(x_h) \le \frac{2KMh}{1-q} \right\},$$

which is a nonempty, compact subset of X_h for all h > 0.

The key inequality and other properties of the Lyapunov function V imply that L_h is UAS for f_h on X_h and satisfies the convergence asserted in the theorem.

Fig. 1 consists of stable cycles of periods 4, 11 and 33 Fig. 3 consists of stable cycles of periods 30 and 78

Complications

- a fixed point $f(\bar{x}) = \bar{x} \in X$ need not belong to X_h
- if such a fixed point $\bar{x} \in X_h$, then it need not be a fixed point of f_h .

• f_h may have <u>spurious cycles</u> in X_h , i.e. periodic solutions which do not correspond to periodic solutions of f.

In fact, the dynamics of f_h on X_h is always eventually periodic

Moreover, the convergence $H(L_h, L) \to 0$ as $h \to 0$ is deceptive

• the attracting set L_h of f_h may contains <u>transients</u> as well as limit points and cycles

• it is better to consider the omega set of limiting values

$$L_h^* := \bigcap_{j \ge 1} \overline{\bigcup_{n \ge 1} f_h^j(L_h)},$$

i.e. the global attractor, which may be a proper subset of L_h .

Without additional assumptions about the dynamics of f on L such as hyperbolicity, we only have the weaker convergence in the Hausdorff <u>semi-distance</u>

$$H^*(L_h^*, L) := \max_{x_h \in L_h^*} d(x_h, L) \to 0 \text{ as } h \to 0+$$

the effect can be <u>extreme</u>

Example Consider the extended tent mapping $f : [0, 2] \rightarrow [0, 2]$ defined by $f(x) = \begin{cases} 2x & \text{if } 0 \le x \le \frac{1}{2} \\ 2(1-x) & \text{if } \frac{1}{2} \le x \le 1 \\ 0 & \text{if } 1 \le x \le 2 \end{cases}$

which has the <u>chaotic attractor</u> L = [0, 1]. Consider the N-dyadics

$$X_h := \left\{ \frac{j}{2^N}, 1 + \frac{j}{2^N} : j = 0, 1, \dots, N \right\}, \qquad h = 2^{-N}.$$

Since $f: X_h \to X_h$, here we take $f_h \equiv f$.

$$f_h^N(x_h) = 0, \quad \forall x_h \in X_h \qquad \Longrightarrow \quad L_h^* = \{0\}$$

the chaos has collapsed onto trivial behaviour

This collapsing effect is not exceptional

Theorem 2

For any continuous $f: X \to X$ and any cycle $\{c_1, \ldots, c_p\}$ of f there exists a finite subset X_h of X which contains $\{c_1, \ldots, c_p\}$ and a mapping $f_h: X_h \to X_h$ for $h \to 0$ such that the dynamics of f_h collapses on $\{c_1, \ldots, c_p\}$.

P. Diamond, P.E. Kloeden und A. Pokrovskii,

Cycles of spatial discretizations of shadowing dynamical systems, Mathematische Nachrichten **171** (1995), 95–110.

Invariant measures

- allow us to circumvent some of the above difficulties with attractors and cycles
- are <u>robuster</u> for approximation and comparison

A measure μ on X is called <u>f</u>-invariant if $\mu(B) = \mu(f^{-1}(B)), \quad \forall B \in \mathcal{B}(X),$

for the Borel subsets $\mathcal{B}(X)$ of X, where

$$f^{-1}(B) := \{ x \in X : f(x) \in B \}$$

Can we always approximate an invariant measure μ of f on X by an invariant measure μ_h of f_h on X_h ? <u>how</u>?

SPECIAL CASE: mappings on a torus

Consider

- a *d*-dimensional torus \mathbb{T}^d , where $d \ge 1$,
- a <u>measurable</u> mapping $f : \mathbb{T}^d \to \mathbb{T}^d;$
- a uniform $\frac{1}{N}$ partition \mathbb{T}_N^d of \mathbb{T}^d .

How should we construct a mapping f_N on \mathbb{T}_N^d to approximate f?

P.E. Kloeden and J. Mustard,

Construction of permutations approximating Lebesgue measure preserving dynamical systems under spatial discretization.

J. Bifurcation & Chaos 7 (1997), 401–406.

Theorem 3 Suppose that the Lebesgue measure on \mathbb{T}^d is f-invariant. Then there exists a permutation $P_N(f)$ on \mathbb{T}^d_N with $H^*(\operatorname{Gr}(P_N(f)), \operatorname{Gr}(f)) \leq \frac{1}{N}$

where H^* is the <u>Hausdorff semi-distance</u> on $\mathbb{T}^d \times \mathbb{T}^d$ and Gr(f) is the graph of f defined by

$$\operatorname{Gr}(f) := \left\{ (x, y) \in \mathbb{T}^d \times \mathbb{T}^d \ : \ y = f(x) \right\}$$

Comments

• f can be non-injective here, i.e. not 1 to 1

• the inverse of the theorem holds if f is <u>continuous</u>

• Peter Lax has an theorem about permutations approximating areapreserving diffeomorphisms

Outline of proof

- <u>enumerate</u> $\mathbb{T}_N^d = \{x_1, \dots, x_M\}$, where $M = N^d$
- <u>define</u> the $\frac{1}{N}$ -band about the graph Gr(f) of f, i.e.

$$S_N(f) := \left\{ (x, y) \in \mathbb{T}_N^d \times \mathbb{T}_N^d : \operatorname{dist} ((x, y), \operatorname{Gr}(f)) \le \frac{1}{N} \right\}$$

The following problems are equivalent by the \underline{f} -invariance of the Lebesgue measure and a combinatorial theorem of Frobenius and König,

(1) construct a permutation $P_N(f)$ on \mathbb{T}_N^d with $Gr(P_N(f)) \subseteq S_N(f)$.

(2) choose a diagonal (possibly permuted) without zeros of the $M \times M$ matrix $A_N(f) = [a_{i,j}]$ defined by

$$a_{i,j} = \begin{cases} 1 & if(x_i, x_j) \in S_N(f) \\ 0 & otherwise \end{cases}$$

reformulate the problem as an optimal assignment LP problem

GENERAL CASE: using Markov chains

Consider a finite subset $X_N = \{x_1^{(N)}, \ldots, x_N^{(N)}\}$ of a compact metric space (X, d) with fineness parameter

$$h_N := \Delta_N := \sup_{x \in X} \inf_{x_j^{(N)} \in X_N} d\left(x, x_j^{(N)}\right) \to 0 \quad \text{as } N \to \infty$$

How do we construct an approximation f_N on X_N of a function $f: X \to X$?

The choice is usually not unique: there may be several nearest grid points to an $f(x_j^{(N)}) \notin X_N$.

There are two ways to handle the problem:

1) <u>setvalued</u>: use a setvalued mapping

$$F_N(x_j^{(N)}) := \left\{ \text{nearests points in } X_N \text{ to } f(x_j^{(N)}) \right\}$$

and then consider the set valued dynamical system $x_{n+1} \in F_N(x_n)$ on X_N .

2) <u>stochastic</u>: use a Markov chain P_N on X_N with transition probabilities

$$p_{i,j}^{(N)} = \begin{cases} >0 & \text{if } x_i^{(N)} \text{ in a neighbourhod of } f(x_j^{(N)}) \\ 0 & \text{otherwise} \end{cases}$$

Distances

1) between a Markov chain P_N on $X_N \subset X$ and a mapping $f: X \to X$

$$D(P_N, f) := \max_{1 \le i \le N} \sum_{j=1}^N p_{i,j}^{(N)} \text{dist}\left(\left(x_i^{(N)}, x_j^{(N)}\right), \text{Gr}(f)\right)$$

2) between a probability vector p_N on X_N and a probability measure μ on X

Prokhorov metric
$$\rho(\mu_N, \mu)$$

where μ_N is the extension of p_N to a measure on X.

Let $f: X \to X$ be <u>Borel measurable</u> and consider the generalized inverse

$$\widetilde{f^{-1}}(B) := \left\{ x \in X : \exists y \in \overline{B} \text{ with } (x, y) \in \overline{\mathrm{Gr}(f)} \right\}$$

A Borel measure μ on X is called f-semi-invariant if

$$\mu(B) \leq \mu\left(\widetilde{f^{-1}}(B)\right), \quad \forall B \in \mathcal{B}(X)$$

$$f \underline{\text{continuous}} \implies f - \text{semi-invariant} \equiv f - \text{invariant}$$

Theorem 4

A probability measure μ on X is f-semi-invariant if and only if it is stochastically approachable, i.e. for each N there exist

1) a grid X_N with fineness $\Delta_N \to 0$ as $N \to \infty$

2) a Markov chain P_N on X_N

3) probability measure μ_N on X corresponding to an equilibrium probability vector \bar{p}_N of P_N on X_N , such that

 $D(P_N, f) \to 0, \quad \rho(\bar{\mu}_N, \mu) \to 0 \quad \text{as} \quad N \to \infty$

P. Diamond, P.E. Kloeden and A. Pokrovskii,

Interval stochastic matrices, a combinatorial lemma, and the computation of invariant measures, J. Dynamics & Diff. Eqns. 7 (1995), 341–364.

Key idea in the proof: interval stochastic matrices

An $N \times N$ matrix $C = [c_{i,j}]$ with nonnegative components is called

substochastic
stochastic
superstochastic
$$\begin{cases}
if \sum_{j=1}^{N} c_{i,j} \\
if \sum_{j=1}^{N} c_{i,j}
\end{cases}
\begin{cases}
\leq 1 \\
= 1 \\
\geq 1
\end{cases}$$
for $i = 1, \dots, N$.

Let $A = [a_{i,j}]$ be <u>substochastic</u> and $B = [b_{i,j}]$ be <u>superstochastic</u>. Then $\widehat{AB} := \{P \text{ stochastic } : a_{i,j} \leq p_{i,j} \leq b_{i,j}, \quad \forall i, j = 1, ..., N\}$ is called an <u>interval stochastic matrix</u> with boundaries A and B. • The (j, I)-flow of an interval stochastic matrix \widehat{AB} is defined by

$$H_j\left(I,\widehat{AB}\right) := \min\left\{\sum_{i\in I} b_{i,j}, 1-\sum_{i\notin I} a_{i,j}\right\},\$$

where $j \in \subset \{1, ..., N\} \subset \{1, ..., N\}, I \subset \{1, ..., N\}$

• A probability vector p_N on X_N is called $\underline{\widehat{AB}}$ -semi-invariant if the inequalities

$$\sum_{j=1}^{N} p_j H_j \left(I, \widehat{AB} \right) \ge \sum_{j=1}^{N} p_j$$

for every subset $I \subset \{1, \ldots, N\}$.

Lemma

A probability vector p_N on X_N is \widehat{AB} -semi-invariant if and only $p_N = p_N P_N$ for some $P_N \in \widehat{AB}$

In the proof of Theorem 4 we use

$$a_{i,j} \equiv 0, \qquad b_{i,j} = \begin{cases} 1 & \text{if } \operatorname{dist}\left((x,y), \operatorname{Gr}(f)\right) \leq \frac{1}{N} \\ 0 & \text{otherwise} \end{cases}$$

i.e. we consider only those $\left(x_i^{(N)}, x_j^{(N)}\right) \in S_N(f)$, a $\frac{1}{N}$ -neighbourhood of $\operatorname{Gr}(f)$.

$$\implies \qquad H_j\left(I,\widehat{AB}\right) = \begin{cases} 1 & \text{if } b_{i,j} = 1 \text{ for some } i \in I \\ 0 & \text{otherwise} \end{cases}$$

Moreover, a probability vector p_N on X_N is \widehat{AB} -semi-invariant if and only

$$\sum_{j \in J(I)}^{N} p_j \ge \sum_{j \in I}^{N} p_j$$

for all $I \subset \{1, \ldots, N\}$, where

$$J(I) := \{j : b_{i,j} = 1 \text{ for some } i \in I\}$$

Convergence follows from this choice of matrix components

Other technical details include weak convergence of measures, etc

Random difference equations

- probability space $(\Omega, \mathcal{F}, \mathbb{P})$, ergodic process $\theta : \Omega \to \Omega$
- compact metric space (X, d), measurable mapping $f: X \times \Omega \to X$

random difference equation

$$x_{n+1} = f(x_n, \theta^n(\omega))$$

$$\implies \qquad \text{skew product} \qquad (x,\omega) \mapsto F(x,\omega) := \left(\begin{array}{c} f(x,\omega) \\ \theta(\omega) \end{array}\right)$$

 $\implies \quad \text{invariant measure} \quad \mu \quad \text{on } X \times \Omega \qquad \qquad \mu = F^* \mu$

BUT we can only discretize the state space X, i.e. use a grid

$$X_N = \{x_1^{(N)}, \dots, x_N^{(N)}\} \text{ with } h_N \to 0 \text{ as } N \to \infty$$

We can decompose the invariant measure $\mu = F^* \mu$ as

$$\mu(B,\omega) = \mu_{\omega}(B) \mathbb{P}(d\omega) \qquad \forall B \in \mathcal{B}(X)$$

where the measures μ_{ω} on X are θ -invariant w.r.t. f, i.e.

$$\mu_{\theta(\omega)}(B) = \mu_{\omega} \left(f^{-1}(B, \omega) \right), \quad \forall B \in \mathcal{B}(X), \, \omega \in \Omega$$

On the deterministic grid X_N we now consider

- random Markov chains $\{P_N(\omega), \omega \in \Omega\}$
- random probability vectors $\{p_N(\omega), \omega \in \Omega\}$

 $p_{N,n+1}(\theta^{n+1}(\omega)) = p_{N,n}(\theta^n(\omega))P_N(\theta^n(\omega))$

$$\forall \quad n \in \mathbb{Z}, \quad \omega \in \Omega$$

equilibrium probability vector

$$\bar{p}_N(\theta(\omega)) = \bar{p}_N(\omega)P_N(\omega)$$

$$\implies$$
 random measure $\mu_{N,\omega}$ on X

Theorem 5

A random probability measure $\{\mu_{\omega}, \omega \in \Omega\}$ is θ -semi-invariant w.r.t. f on X if and only if it is randomly stochastically approachable, i.e. for each N there exist

1) a grid X_N with fineness $\Delta_N \to 0$ as $N \to \infty$

2) a random Markov chain $\{P_N(\omega), \omega \in \Omega\}$ on X_N

3) random probability measure $\{\mu_{N,\omega}, \omega \in \Omega\}$ on X corresponding to a random equilibrium probability vectors $\{\bar{p}_N(\omega), \omega \in \Omega\}$ of the $\{P_N(\omega), \omega \in \Omega\}$ on X_N with the expected convergences.

$$\mathbb{E}D\left(P_N(\omega), f(\cdot, \omega)\right) \to 0 \qquad \mathbb{E}\rho\left(\mu_{N,\omega}, \mu\right) \to 0$$

P. Imkeller and P.E. Kloeden,

On the computation of invariant measures in random dynamical systems, Stochastics & Dynamics **3** (2003), 247–265.