Spatial discretization of dynamical systems

Peter Kloeden
Goethe-Universität, Frankfurt am Main

Joint work with
Phil Diamond (Brisbane), Peter Imkeller (Berlin),
Jamie Mustard (Geelong), Alexei Pokrovskii (Cork)

Spatial discretization

Consider a continuous mapping $f: X \rightarrow X$ on a compact metric space (X, d).

The difference equation

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}\right) \tag{1}
\end{equation*}
$$

generates a discrete time dynamical system on X.

Consider a finite subset X_{h} of X with grid fineness

$$
\Delta_{h}:=\sup _{x \in X} \inf _{x_{h} \in X_{h}} d\left(x, x_{h}\right)
$$

Examples

- $X=[0,1], \quad X_{h}=2^{N}$-bit computer numbers in $[0,1]$
- $X=[0,1], \quad X_{h}=\left\{\frac{j}{2^{N}}: j=0,1, \ldots, N\right\} \quad N$-dyadic numbers

Consider a" projection" $P_{h}: X \rightarrow X_{h}$, e.g. round-off operator
The mapping $f_{h}:=P_{h} \circ f: X_{h} \rightarrow X_{h}$ generates a discrete time dynamical system on X_{h} through the difference equation

What is the relationship between the dynamical behaviour of the original dynamical system (1) and the spatially discretized system (2) as

$$
\Delta_{h} \rightarrow 0 ?
$$

Plan

- the effect of spatial discretization on attractors
- the effect of spatial discretization on chaos
- the approximation of Lebesgue measure preserving maps on a torus by permutations
- approximation by Markov chains of invariant measures of spatial discretized
i) deterministic difference equations
ii) random difference equations

Spatial discretization of attractors

P. Diamond and P. E. Kloeden, Spatial discretization of mappings, J. Computers Math. Applns. 26 (1993), 85-94.
P. E. Kloeden and J. Lorenz,

Stable attracting sets in dynamical systems and in their one-step discretizations, SIAM J. Numer. Analysis 23 (1986), 986-995.

Assume that

- $f: X \rightarrow X$ is Lipschitz with constant $K>0$
- the projection $P_{h}: X \rightarrow X_{h}$ satisfies for a constant $M>0$

$$
d\left(P_{h}(x), x\right) \leq M h
$$

Theorem 1

Suppose that a nonempty compact subset L of X is uniformly asymptotically stable (UAS) for the dynamical system f on X.

Then there exists a nonempty compact subset L_{h} of X_{h} which is UAS for the dynamical system $f_{h}:=P_{h} \circ f$ on X_{h} such that the Hausdorff distance

$$
H\left(L_{h}, L\right) \rightarrow 0 \quad \text { as } \quad h \rightarrow 0+
$$

Sketch of proof

The UAS of the set L for the system f implies that there exists a

$$
\underline{\text { Lyapunov function }} \quad V: X \rightarrow \mathbb{R}^{+},
$$

which is Lipschitz continuous, and a constant $0<q<1$ such that

$$
V(f(x)) \leq q V(x), \quad \forall x \in X
$$

Then the discretized system satisfies the key inequality

$$
V\left(f_{h}\left(x_{h}\right)\right) \leq q V\left(x_{h}\right)+K M h \quad \forall x_{h} \in X_{h}
$$

Define

$$
L_{h}:=\left\{x_{h} \in X_{h}: V\left(x_{h}\right) \leq \frac{2 K M h}{1-q}\right\}
$$

which is a nonempty, compact subset of X_{h} for all $h>0$.

The key inequality and other properties of the Lyapunov function V imply that L_{h} is UAS for f_{h} on X_{h} and satisfies the convergence asserted in the theorem.

Figure 1. $\Lambda_{h}: h=0.025$.

Figure 2. $\Lambda_{h}: h=0.005$.

Figure 3. $\boldsymbol{\Lambda}_{\boldsymbol{h}}: \boldsymbol{h}=\mathbf{0 . 0 0 0 5}$.

Figure 4. $\Lambda_{h}: h=$ double precision.

Fig. 1 consists of stable cycles of periods 4,11 and 33 Fig. 3 consists of stable cycles of periods 30 and 78

Complications

- a fixed point $f(\bar{x})=\bar{x} \in X$ need not belong to X_{h}
- if such a fixed point $\bar{x} \in X_{h}$, then it need not be a fixed point of f_{h}.
- f_{h} may have spurious cycles in X_{h}, i.e. periodic solutions which do not correspond to periodic solutions of f.

In fact, the dynamics of f_{h} on X_{h} is always eventually periodic

Moreover, the convergence $H\left(L_{h}, L\right) \rightarrow 0$ as $h \rightarrow 0$ is deceptive

- the attracting set L_{h} of f_{h} may contains transients as well as limit points and cycles
- it is better to consider the omega set of limiting values

$$
L_{h}^{*}:=\bigcap_{j \geq 1} \overline{\bigcup_{n \geq 1} f_{h}^{j}\left(L_{h}\right)}
$$

i.e. the global attractor, which may be a proper subset of L_{h}.

Without additional assumptions about the dynamics of f on L such as hyperbolicity, we only have the weaker convergence in the Hausdorff semi-distance

$$
H^{*}\left(L_{h}^{*}, L\right):=\max _{x_{h} \in L_{h}^{*}} d\left(x_{h}, L\right) \rightarrow 0 \quad \text { as } \quad h \rightarrow 0+
$$

the effect can be extreme

Example Consider the extended tent mapping $f:[0,2] \rightarrow[0,2]$ defined by
$f(x)=\left\{\begin{array}{ccc}2 x & \text { if } & 0 \leq x \leq \frac{1}{2} \\ 2(1-x) & \text { if } & \frac{1}{2} \leq x \leq 1 \\ 0 & \text { if } & 1 \leq x \leq 2\end{array}\right.$
which has the chaotic attractor $L=[0,1]$. Consider the N-dyadics

$$
X_{h}:=\left\{\frac{j}{2^{N}}, 1+\frac{j}{2^{N}}: j=0,1, \ldots, N\right\}, \quad h=2^{-N}
$$

Since $f: X_{h} \rightarrow X_{h}$, here we take $f_{h} \equiv f$.

$$
\Longrightarrow \quad L_{h}^{*}=\{0\}
$$

the chaos has collapsed onto trivial behaviour

This collapsing effect is not exceptional

> Theorem 2
> For any continuous $f: X \rightarrow X$ and any cycle $\left\{c_{1}, \ldots, c_{p}\right\}$ of f there exists a finite subset X_{h} of X which contains $\left\{c_{1}, \ldots, c_{p}\right\}$ and a mapping $f_{h}: X_{h} \rightarrow X_{h}$ for $h \rightarrow 0$ such that the dynamics of f_{h} collapses on $\left\{c_{1}, \ldots, c_{p}\right\}$.
P. Diamond, P.E. Kloeden und A. Pokrovskii, Cycles of spatial discretizations of shadowing dynamical systems, Mathematische Nachrichten 171 (1995), 95-110.

Invariant measures

- allow us to circumvent some of the above difficulties with attractors and cycles
- are robuster for approximation and comparison

$$
\begin{aligned}
& A \text { measure } \mu \text { on } X \text { is called } \underline{f \text {-invariant }} \text { if } \\
& \qquad \mu(B)=\mu\left(f^{-1}(B)\right), \quad \forall B \in \mathcal{B}(X),
\end{aligned}
$$

for the Borel subsets $\mathcal{B}(X)$ of X, where

$$
f^{-1}(B):=\{x \in X: f(x) \in B\}
$$

Can we always approximate an invariant measure μ of f on X by an invariant measure μ_{h} of f_{h} on X_{h} ? how?

SPECIAL CASE: mappings on a torus

Consider

- a d-dimensional torus \mathbb{T}^{d}, where $d \geq 1$,
- a measurable mapping $f: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$;
- a uniform $\frac{1}{N}$ partition \mathbb{T}_{N}^{d} of \mathbb{T}^{d}.

How should we construct a mapping f_{N} on \mathbb{T}_{N}^{d} to approximate f ?
P.E. Kloeden and J. Mustard,

Construction of permutations approximating Lebesgue measure preserving dynamical systems under spatial discretization.
J. Bifurcation \&3 Chaos 7 (1997), 401-406.

Theorem 3

Suppose that the Lebesgue measure on \mathbb{T}^{d} is f-invariant. Then there exists a permutation $P_{N}(f)$ on \mathbb{T}_{N}^{d} with

$$
H^{*}\left(\operatorname{Gr}\left(P_{N}(f)\right), \operatorname{Gr}(f)\right) \leq \frac{1}{N}
$$

where H^{*} is the Hausdorff semi-distance on $\mathbb{T}^{d} \times \mathbb{T}^{d}$ and $\operatorname{Gr}(f)$ is the graph of f defined by

$$
\operatorname{Gr}(f):=\left\{(x, y) \in \mathbb{T}^{d} \times \mathbb{T}^{d}: y=f(x)\right\}
$$

Comments

- f can be non-injective here, i.e. not 1 to 1
- the inverse of the theorem holds if f is continuous
- Peter Lax has an theorem about permutations approximating areapreserving diffeomorphisms

Outline of proof

- enumerate $\mathbb{T}_{N}^{d}=\left\{x_{1}, \ldots, x_{M}\right\}$, where $M=N^{d}$
- define the $\frac{1}{N}$-band about the graph $\operatorname{Gr}(f)$ of f, i.e.

$$
S_{N}(f):=\left\{(x, y) \in \mathbb{T}_{N}^{d} \times \mathbb{T}_{N}^{d}: \operatorname{dist}((x, y), \operatorname{Gr}(f)) \leq \frac{1}{N}\right\}
$$

The following problems are equivalent by the f-invariance of the Lebesgue measure and a combinatorial theorem of Frobenius and König,
(1) construct a permutation $P_{N}(f)$ on \mathbb{T}_{N}^{d} with $\operatorname{Gr}\left(P_{N}(f)\right) \subseteq S_{N}(f)$.
(2) choose a diagonal (possibly permuted) without zeros of the $M \times M$ matrix $A_{N}(f)=\left[a_{i, j}\right]$ defined by

$$
a_{i, j}=\left\{\begin{array}{cc}
1 & \text { if }\left(x_{i}, x_{j}\right) \in S_{N}(f) \\
0 & \text { otherwise }
\end{array}\right.
$$

reformulate the problem as an optimal assignment LP problem

GENERAL CASE: using Markov chains

Consider a finite subset $X_{N}=\left\{x_{1}^{(N)}, \ldots, x_{N}^{(N)}\right\}$ of a compact metric space (X, d) with fineness parameter

$$
h_{N}:=\Delta_{N}:=\sup _{x \in X} \inf _{x_{j}^{(N)} \in X_{N}} d\left(x, x_{j}^{(N)}\right) \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

$$
\begin{aligned}
& \text { How do we construct an approximation } f_{N} \text { on } X_{N} \\
& \text { of a function } f: X \rightarrow X \text { ? }
\end{aligned}
$$

The choice is usually not unique: there may be several nearest grid points to an $f\left(x_{j}^{(N)}\right) \notin X_{N}$.

There are two ways to handle the problem:

1) setvalued: use a setvalued mapping

$$
F_{N}\left(x_{j}^{(N)}\right):=\left\{\text { nearests points in } X_{N} \text { to } f\left(x_{j}^{(N)}\right)\right\}
$$

and then consider the setvalued dynamical system $x_{n+1} \in F_{N}\left(x_{n}\right)$ on X_{N}.
2) stochastic: use a Markov chain P_{N} on X_{N} with transition probabilities

$$
p_{i, j}^{(N)}=\left\{\begin{array}{cc}
>0 & \text { if } x_{i}^{(N)} \text { in a neighbourhod of } f\left(x_{j}^{(N)}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

Distances

1) between a Markov chain P_{N} on $X_{N} \subset X$ and a mapping $f: X \rightarrow X$

$$
D\left(P_{N}, f\right):=\max _{1 \leq i \leq N} \sum_{j=1}^{N} p_{i, j}^{(N)} \operatorname{dist}\left(\left(x_{i}^{(N)}, x_{j}^{(N)}\right), \operatorname{Gr}(f)\right)
$$

2) between a probability vector p_{N} on X_{N} and a probability measure μ on X

$$
\text { Prokhorov metric } \quad \rho\left(\mu_{N}, \mu\right)
$$

where μ_{N} is the extension of p_{N} to a measure on X.

Let $f: X \rightarrow X$ be Borel measurable and consider the generalized inverse

$$
\widetilde{f^{-1}}(B):=\{x \in X: \exists y \in \bar{B} \text { with }(x, y) \in \overline{\operatorname{Gr}(f)}\}
$$

A Borel measure μ on X is called $\underline{f \text {-semi-invariant }}$ if

$$
\mu(B) \leq \mu\left(\widetilde{f^{-1}}(B)\right), \quad \forall B \in \mathcal{B}(X)
$$

$$
f \text { continuous } \quad \Longrightarrow \quad f \text {-semi-invariant } \equiv f \text {-invariant }
$$

Theorem 4

A probability measure μ on X is f-semi-invariant if and only if it is stochastically approachable, i.e. for each N there exist

1) a grid X_{N} with fineness $\Delta_{N} \rightarrow 0$ as $N \rightarrow \infty$
2) a Markov chain P_{N} on X_{N}
3) probability measure μ_{N} on X corresponding to an equilibrium probability vector \bar{p}_{N} of P_{N} on X_{N}, such that

$$
D\left(P_{N}, f\right) \rightarrow 0, \quad \rho\left(\bar{\mu}_{N}, \mu\right) \rightarrow 0 \quad \text { as } \quad N \rightarrow \infty
$$

P. Diamond, P.E. Kloeden and A. Pokrovskii, Interval stochastic matrices, a combinatorial lemma, and the computation of invariant measures, J. Dynamics \& Diff. Eqns. 7 (1995), 341-364.

Key idea in the proof: interval stochastic matrices

An $N \times N$ matrix $C=\left[c_{i, j}\right]$ with nonnegative components is called

Let $A=\left[a_{i, j}\right]$ be substochastic and $B=\left[b_{i, j}\right]$ be superstochastic. Then

$$
\widehat{A B}:=\left\{P \text { stochastic }: a_{i, j} \leq p_{i, j} \leq b_{i, j}, \quad \forall i, j=1, \ldots, N\right\}
$$

is called an interval stochastic matrix with boundaries A and B.

- The $\underline{(j, I) \text {-flow of an interval stochastic matrix } \widehat{A B} \text { is defined by }}$

$$
H_{j}(I, \widehat{A B}):=\min \left\{\sum_{i \in I} b_{i, j}, 1-\sum_{i \notin I} a_{i, j}\right\}
$$

where $j \in \subset\{1, \ldots, N\} \subset\{1, \ldots, N\}, I \subset\{1, \ldots, N\}$

- A probability vector p_{N} on X_{N} is called $\widehat{A B}$-semi-invariant if the inequalities

$$
\sum_{j=1}^{N} p_{j} H_{j}(I, \widehat{A B}) \geq \sum_{j=1}^{N} p_{j}
$$

for every subset $I \subset\{1, \ldots, N\}$.

> Lemma
> A probability vector p_{N} on X_{N} is $\widehat{A B}$-semi-invariant if and only $p_{N}=p_{N} P_{N}$ for some $P_{N} \in \widehat{A B}$

In the proof of Theorem 4 we use

$$
a_{i, j} \equiv 0, \quad b_{i, j}=\left\{\begin{array}{cc}
1 & \text { if dist }((x, y), \operatorname{Gr}(f)) \leq \frac{1}{N} \\
0 & \text { otherwise }
\end{array}\right.
$$

i.e. we consider only those $\left(x_{i}^{(N)}, x_{j}^{(N)}\right) \in S_{N}(f)$, a $\frac{1}{N}$-neighbourhood of $\operatorname{Gr}(f)$.

$$
\Longrightarrow \quad H_{j}(I, \widehat{A B})=\left\{\begin{array}{cc}
1 & \text { if } b_{i, j}=1 \text { for some } i \in I \\
0 & \text { otherwise }
\end{array}\right.
$$

Moreover, a probability vector p_{N} on X_{N} is $\widehat{A B}$-semi-invariant if and only

$$
\sum_{j \in J(I)}^{N} p_{j} \geq \sum_{j \in I}^{N} p_{j}
$$

for all $I \subset\{1, \ldots, N\}$, where

$$
J(I):=\left\{j: b_{i, j}=1 \text { for some } i \in I\right\}
$$

Convergence follows from this choice of matrix components

Other technical details include weak convergence of measures, etc

Random difference equations

- probability space $(\Omega, \mathcal{F}, \mathbb{P}), \quad$ ergodic process $\theta: \Omega \rightarrow \Omega$
- compact metric space (X, d), measurable mapping $f: X \times \Omega \rightarrow X$
$\underline{\text { random difference equation }} \quad x_{n+1}=f\left(x_{n}, \theta^{n}(\omega)\right)$
$\Longrightarrow \quad$ skew product $\quad(x, \omega) \mapsto F(x, \omega):=\binom{f(x, \omega)}{\theta(\omega)}$
$\Longrightarrow \quad$ invariant measure $\quad \mu$ on $X \times \Omega \quad \mu=F^{*} \mu$

BUT we can only discretize the state space X, i.e. use a grid

$$
X_{N}=\left\{x_{1}^{(N)}, \ldots, x_{N}^{(N)}\right\} \quad \text { with } \quad h_{N} \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

We can decompose the invariant measure $\mu=F^{*} \mu$ as

$$
\mu(B, \omega)=\mu_{\omega}(B) \mathbb{P}(d \omega) \quad \forall B \in \mathcal{B}(X)
$$

where the measures μ_{ω} on X are θ-invariant w.r.t. f, i.e.

$$
\mu_{\theta(\omega)}(B)=\mu_{\omega}\left(f^{-1}(B, \omega)\right), \quad \forall B \in \mathcal{B}(X), \omega \in \Omega
$$

On the deterministic grid X_{N} we now consider

- random Markov chains $\quad\left\{P_{N}(\omega), \omega \in \Omega\right\}$
- random probability vectors $\quad\left\{p_{N}(\omega), \omega \in \Omega\right\}$

$$
p_{N, n+1}\left(\theta^{n+1}(\omega)\right)=p_{N, n}\left(\theta^{n}(\omega)\right) P_{N}\left(\theta^{n}(\omega)\right) \quad \forall n \in \mathbb{Z}, \omega \in \Omega
$$

equilibrium probability vector

$$
\bar{p}_{N}(\theta(\omega))=\bar{p}_{N}(\omega) P_{N}(\omega)
$$

\Longrightarrow random measure $\mu_{N, \omega}$ on X

Theorem 5

A random probability measure $\left\{\mu_{\omega}, \omega \in \Omega\right\}$ is θ-semi-invariant w.r.t. f on X if and only if it is randomly stochastically approachable, i.e. for each N there exist

1) a grid X_{N} with fineness $\Delta_{N} \rightarrow 0$ as $N \rightarrow \infty$
2) a random Markov chain $\left\{P_{N}(\omega), \omega \in \Omega\right\}$ on X_{N}
3) random probability measure $\left\{\mu_{N, \omega}, \omega \in \Omega\right\}$ on X corresponding to a random equilibrium probability vectors $\left\{\bar{p}_{N}(\omega), \omega \in \Omega\right\}$ of the $\left\{P_{N}(\omega), \omega \in \Omega\right\}$ on X_{N} with the expected convergences.

$$
\mathbb{E} D\left(P_{N}(\omega), f(\cdot, \omega)\right) \rightarrow 0 \quad \mathbb{E} \rho\left(\mu_{N, \omega}, \mu\right) \rightarrow 0
$$

P. Imkeller and P.E. Kloeden,

On the computation of invariant measures in random dynamical systems, Stochastics \& Dynamics 3 (2003), 247-265.

